Thesis
E. Larsson,
Domain Decomposition and Preconditioned Iterative
Methods for the Helmholtz Equation,
Ph.D. thesis, Dept. of Information Technology,
Uppsala Univ., Uppsala, Sweden, 2000.
Refereed journal publications
- K. Otto and E. Larsson,
Iterative solution of the Helmholtz equation by a
second-order method, SIAM J. Matrix Anal. Appl.,
21 (1999), pp. 209-229.
- E. Larsson,
A domain decomposition method for the Helmholtz
equation in a multilayer domain, SIAM J. Sci. Comput.,
20 (1999), pp. 1713-1731.
- E. Larsson and L. Abrahamsson,
Helmholtz and parabolic equation solutions to a benchmark
problem in ocean
acoustics,
The Journal of the Acoustical Society of America,
113 (2003), pp. 2446-2454.
- E. Larsson and S. Holmgren,
Parallel solution of the Helmholtz equation in a multilayer domain
, BIT, 43 (2003), pp. 387-411.
- E. Larsson and B. Fornberg,
A numerical study of some radial basis function based solution
methods for elliptic PDEs,
Computers and Mathematics with Applications, 46 (2003), pp. 891-902.
- B. Fornberg, G. Wright, and E. Larsson,
Some observations regarding interpolants in the limit of flat
radial basis functions,
Computers and Mathematics with Applications, 47 (2004), pp. 37-55.
- E. Larsson and B. Fornberg,
Theoretical and computational aspects of multivariate
interpolation with increasingly flat radial basis functions
, Computers and Mathematics with Applications, 49 (2005),
pp. 103-130.
- B. Fornberg, E. Larsson, and G. Wright,
A new class of oscillatory radial basis functions,
Computers and Mathematics with Applications, 51 (2006),
pp. 1209-1222.
- U. Pettersson, E. Larsson, G. Marcusson, and J. Persson,
Improved radial basis function methods for multi-dimensional
option pricing,
Journal of Computational and Applied Mathematics, 222 (2008),
pp. 82-93.
- E. Larsson, K. Åhlander, and A. Hall,
Multi-dimensional option pricing using radial basis functions and
the generalized Fourier transform,
Journal of Computational and Applied Mathematics, 222 (2008),
pp. 175-192.
- M.D. Buhmann, S. Dinew, and E. Larsson,
A note on radial basis function interpolant limits,
IMA Journal of Numerical Analysis, 30 (2009), pp. 543-554.
- B. Fornberg, E. Larsson, and N. Flyer,
Stable computations with Gaussian radial basis functions
SIAM J. Sci. Comput., 33 (2011), pp. 869-892.
- E. Larsson, S. Pålsson, J. Rantakokko, L. von Sydow, M. Thuné,
Gender-aware course reform in Scientific Computing,
Int. J. Engrg. Edu., 29 (2013), pp. 403-414.
- E. Larsson, E. Lehto, A. Heryudono, and B. Fornberg,
Stable computation of differentiation matrices and scattered
node stencils based on Gaussian radial basis functions,
SIAM J. Sci. Comput., 35 (2013), pp. A2096-A2119.
- K. Kormann and E. Larsson
A Galerkin Radial Basis Function Method for the Schrödinger
Equation,
SIAM J. Sci. Comput., 35 (2013), pp. A2832-A2855. (pdf)
- M. Tillenius, E. Larsson, R. M. Badia, and X. Martorell,
Resource-aware task scheduling,
ACM Trans. Embedd. Comput. Syst. 14 (2015), pp. 5:1-25.
- A. Safdari-Vaighani, A. Heryudono, and E. Larsson,
A radial basis function partition of unity
collocation method for convection-diffusion equations arising
in financial applications, J. Sci. Comput., 64 (2015), pp. 341-367. (pdf)
- M. Tillenius, E. Larsson, E. Lehto, and N. Flyer,
A scalable RBF-FD method for atmospheric flow, J. Comp. Phys., 298 (2015), pp. 406-422.
- L. von Sydow, L. J. Höök, E. Larsson, E. Lindström,
S. Milovanović, J. Persson, V. Shcherbakov, Y. Shpolyanskiy,
S. Sirén, J. Toivanen, J. Waldén, M. Wiktorsson,
J. Levesley, J. Li, C. W. Oosterlee, M. J. Ruijter, A. Toropov,
Y. Zhao,
BENCHOP-The BENCHmarking project in Option Pricing
Int. J. Comput. Math., 92 (2015), pp. 2361-2379.
- A. Heryudono, E. Larsson, A. Ramage, and L. von Sydow,
Preconditioning for radial basis function partition
of unity methods, J. Sci. Comput., 67 (2015), pp. 1089-1109.
- V. Shcherbakov and E. Larsson,
Radial basis function partition
of unity methods for pricing vanilla basket options,
Comput. Math. Appl. 71 (2016), pp. 185-200.
- M. Kowalewski, E. Larsson, and A. Heryudono, An adaptive interpolation scheme for molecular potential energy surfaces, J. Chem. Phys., 145 (2016). Preprint arXiv:1605.09751 [physics.chem-ph], 2016.
- E. Larsson, V. Shcherbakov, A. Heryudono, A least squares radial basis function partition of unity method for solving PDEs, SIAM J. Sci. Comp., 39 (2017), pp. A2538-A2563. (pdf)
- A. Safdari-Vaighani, E. Larsson, A. Heryudono, Radial basis function methods for the Rosenau equation and other higher order PDEs, J. Sci. Comp., 75 (2018), pp. 1555-1580.
- J. Amani Rad, J. Höök, E. Larsson, and L. von Sydow, Forward deterministic pricing of options using Gaussian radial basis functions, J. Comput. Sci., 24 (2018), pp. 209-217.
- L. von Sydow, S. Milovanović, E. Larsson, K. In 't Hout, M. Wiktorsson, C.W. Oosterlee, V. Shcherbakov, M. Wyns, A. Leitao, S. Jain, T. Haentjens, and J. Waldén, BENCHOP-SLV: The BENCHmarking project in Option Pricing - Stochastic and Local Volatility problems, Int. J. Comput. Math., 96 (2018), pp. 1910-1923.
- A. Zafari, E. Larsson, M. Tillenius, DuctTeip: An efficient programming model for distributed task-based parallel computing, Parallel Comput., 90 (2019), No. 102582.
- M. Ahmad, S.-ul-Islam, E. Larsson, Local meshless methods for second order elliptic interface problems with sharp corners, J. Comput. Phys., 416 (2020), No. 109500.
- E. Larsson and U. Sundin, An investigation of global radial basis function collocation methods applied to Helmholtz problems, Dolomites Research Notes on Approximation 13 (2020), pp. 65-85.
- I. Tominec, E. Larsson, and A. Heryudono, A Least Squares Radial Basis Function Finite Difference Method with Improved Stability Properties, SIAM J. Sci. Comp., 43 (2021), pp. A1441-A1471.
- I. Tominec, P.F. Villard, E. Larsson, V. Bayona, N. Cacciani,
An unfitted radial basis function generated finite difference method applied to thoracic diaphragm simulations, J. Comput. Phys., 469 (2022), 111496.
- E. Larsson, B. Mavrič, A. Michael, F. Pooladi, A numerical investigation of some RBF-FD error estimates, Dolomites Res. Notes Approx., 15 (2022), pp. 78-95.
- E. Larsson and R. Schaback, Scaling of radial basis functions, IMA J. Numer. Anal., (2023), drad035.
- F. Pooladi and E. Larsson, Stabilized interpolation using radial basis functions augmented with selected radial polynomials, J. Comput. Appl. Math., (2023), 115482.
Refereed book chapters
- E. Larsson, A. Zafari, M. Righero, M.A. Francavilla, G. Giordanengo, F. Vipiana, G. Vecchi, C. Kessler, C. Ancourt,
C. Grelck, Parallelization of Hierarchical Matrix Algorithms for Electromagnetic Scattering Problems, in High-Performance Modelling and Simulation for Big Data Applications, J. Kołodziej and H. González-Vélez, eds.,
Lecture Notes in Computer Science, 11400 (2019), Springer, Cham, pp. 36-68.
- I. Rached and E. Larsson, Tail Distribution and Extreme Quantile Estimation
Using Non-parametric Approaches, in High-Performance Modelling and Simulation for Big Data Applications, J. Kołodziej and H. González-Vélez, eds., Lecture
Notes in Computer Science, 11400 (2019), Springer, Cham, pp. 69-87.
Refereed conference publications
- U. Pettersson, E. Larsson, G. Marcusson, and J. Persson,
Option pricing using radial basis functions,
Proceedings of
ECCOMAS Thematic Conference on Meshless Methods, Lisbon, July 11-14,
2005, pp. C24.1-C24.6.
- K. Otto and E. Larsson,
A flexible solver of the Helmholtz equation for layered media,
Proceedings of
ECCOMAS CFD Conference 2006, Delft, The Netherlands, 8 pp.
- M. Tillenius and E. Larsson,
An efficient task-based approach for solving the n-body problem on
multicore architectures, PARA 2010: State of the Art in
Scientific and Parallel Computing, University of Iceland, Reykjavík,
2010, 4 pp.
- K. Ljungkvist, M. Tillenius, S. Holmgren, M. Karlsson, and E. Larsson,
Early results using hardware transactional memory for high-performance
computing applications, in Proc. 3rd Swedish Workshop on
Multi-Core Computing, Chalmers University of Technology, Göteborg,
Sweden, 2010, pp. 93-97.
- K. Ljungkvist, M. Tillenius, D. Black-Schaffer, S. Holmgren,
M. Karlsson, and E. Larsson,
Using hardware transactional memory for high-performance
computing,
in Proc. 25th International Symposium on Parallel and Distributed
Processing Workshops and PhD Forum (Workshop on Multi-Threaded
Architectures and Applications), IEEE, Piscataway, NJ, 2011,
pp. 1660-1667.
- K. Kormann and E. Larsson, Radial basis functions for the
time-dependent Schrödinger equation, ICNAAM 2011, Halkidiki,
Greece, September 19-25, 2011, 4 pp.
- A. Zafari, M. Tillenius, E. Larsson,
Programming models based on data versioning for dependency-aware task-based parallelisation,
in Proc. 15th International Conference on Computational Science and Engineering, IEEE, 2012, pp. 275-280.
- M. Tillenius, E. Larsson, R. M. Badia, X. Martorell,
Resource-aware task scheduling, in Proc. 4th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures (PARMA), HiPEAC, Berlin, 2013, 6 pp.
- E. Larsson, S. Gomes, A. Heryudono, and A. Safdari-Vaigahni,
Radial basis function methods in computational finance,
in Proc. CMMSE 13, Almería, Spain, 2013, 12 pp.
- M. Tillenius, E. Larsson, E. Lehto, and N. Flyer, A task parallel implementation of a scattered node stencil-based solver for the shallow water equations, in Proc. 6th Swedish Workshop on Multi-Core Computing, Halmstad University, Halmstad, Sweden, 2013, pp. 33-36.
- F. Bernal, A.R.H. Heryudono, E. Larsson, Numerical solution of the viscous flow past a cylinder with a non-global yet spectrally convergent meshless collocation method, in M. Bittencourt, N. Dumont, J. Hesthaven (eds) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016. Lecture Notes in Computational Science and Engineering, 119 (2017), Springer, Cham, pp. 495-507.
- N. Cacciani, E. Larsson, A. Lauro, M. Meggiolaro, A. Scatto,
I. Tominec, and P.-F. Villard, A first meshless approach to simulation of the
elastic behaviour of the diaphragm, in S. Sherwin, D. Moxey, C. Schwab, J. Peiro,
and P.E. Vincent (eds) Spectral and High Order Methods for Partial Differen-
tial Equations ICOSAHOM 2018. Lecture Notes in Computational Science and
Engineering, to appear (2019), Springer.
Software
Other publications
- E. Larsson, Book Review: A Primer on Radial Basis Functions with Applications to the Geosciences, SIAM Review, 59 (2017), pp. 688-689.
- A. Bracciali and E. Larsson, Editorial: Data-Intensive Modelling and Simulation in Life Sciences and Socio-economical and Physical Sciences, Data Sci. Eng., 2 (2017), pp. 197-198.
- C. Grelck, E. Niewiadomska-Szynkiewicz, M. Aldinucci, A. Bracciali,
and E. Larsson, Why High-Performance Modelling and Simulation for Big Data
Applications Matters, in High-Performance Modelling and Simulation for Big Data
Applications, J. Kołodziej and H. González-Vélez, eds., Lecture Notes in Computer Science, 11400 (2019), Springer, Cham, pp. 1-35.
Technical reports and preprints
- E. Larsson and S. Holmgren,
A parallel domain decomposition method for the
Helmholtz equation, Report No. 2000-006, Dept. of
Information Technology, Uppsala Univ., Uppsala, Sweden, 2000.
(Overlaps with article 4.)
- B. Fornberg, E. Larsson, and N. Flyer,
Stable computations with Gaussian radial basis functions in 2-D
, Report No. 2009-020, Dept. of
Information Technology, Uppsala Univ., Uppsala, Sweden,
2009. (Overlaps with article 12.)
- E. Sundkvist and E. Larsson,
Implementation of a Collocated Boundary Element Method for
Acoustic Wave Propagation in Multilayered Fluid Media,
Report No. 2011-016, Dept. of
Information Technology, Uppsala Univ., Uppsala, Sweden,
2011.
- A. Heryudono and E. Larsson, FEM-RBF: A geometrically flexible, efficient numerical solution technique for partial differential equations with mixed regularity,Marie Curie FP7
Technical Report, August 16 2012.
- A. Zafari, E. Larsson, M. Righero, M. A. Francavilla, G. Giordanengo, F. Vipiana, and G. Vecchi,
Task Parallel Implementation of a Solver for Electromagnetic Scattering Problems
Report No. 2016-015, Dept. of Information Technology, Uppsala Univ.,
Uppsala, Sweden, 2016.
- I. Tominec, M. Nazarov, E. Larsson, Stability estimates for radial basis function methods applied to time-dependent hyperbolic PDEs, arXiv:2110.14548 [math.NA], (2021).
- M. Gonthier, L. Marchal, S. Thibault, E. Larsson, C. Nettelblad, Locality-aware batch scheduling of I/O intensive workloads, RR-9497, ENS Lyon; Inria Bordeaux; Uppsala
Universitet, (2022), 25 pp., hal-03993118.
- F. Bernal, A. Safdari-Vaighani, E. Larsson, A Radial Basis Function Partition of Unity Method for Steady Flow Simulations, arXiv:2302.04604 [math.NA], (2023).