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A GALERKIN RADIAL BASIS FUNCTION METHOD FOR THE
SCHRÖDINGER EQUATION∗

KATHARINA KORMANN† AND ELISABETH LARSSON‡

Abstract. In this article, we consider the discretization of the time-dependent Schrödinger equa-
tion using radial basis functions (RBFs). We formulate the discretized problem over an unbounded
domain without imposing explicit boundary conditions. Since we can show that time stability of the
discretization is not guaranteed for an RBF-collocation method, we propose to employ a Galerkin
ansatz instead. For Gaussians, it is shown that exponential convergence is obtained up to a point
where a systematic error from the domain where no basis functions are centered takes over. The
choice of the shape parameter and of the resolved region is studied numerically. Compared to the
Fourier method with periodic boundary conditions, the basis functions can be centered in a smaller
domain which gives increased accuracy with the same number of points.
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1. Introduction. The simulation of quantum dynamical processes by the time-
dependent Schrödinger equation (TDSE) reveals the dynamics of chemical bonds and
reactions. Two main challenges when numerically solving the TDSE are the curse
of dimensionality and the unboundedness of the domain. The number of degrees of
freedom in a quantum mechanical system is about three times the number of particles.
Hence, the number of equations describing the TDSE discretized with a grid-based
method will increase exponentially with the number of particles. Adaptivity has been
used in both finite element [9, 31] and finite difference methods [40, 24] in order to
reduce the number of grid points. Another direction is to reduce the number of basis
functions needed to describe the system by exploiting classical properties of the sys-
tem. In its simplest form a semiclassical method approximates the initial wave packet
with a number of complex Gaussians, so-called coherent states, whose positions and
momenta are then propagated along classical trajectories [25]. More sophisticated
variants have been developed over the years (see, e.g., [2, 51, 57, 12]). While semiclas-
sical methods enable computations for comparably large systems, many times complex
quantum mechanical phenomena can not—or can only by sophisticated additional
modeling—be detected. To some extent, coherent states resemble Gaussian radial
basis functions (RBFs) (which however do not include a phase), which are studied
within the literature on RBF approximations of partial differential equations (PDEs)
(see [5, 56, 13] and references therein). In RBF approximation methods the width
of the Gaussians is chosen to minimize the approximation error [46, 6, 35], whereas
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in semiclassical methods the width is coupled to properties of the physical prob-
lem. RBFs yield highly accurate approximations for smooth solutions (cf., e.g., [56,
Chap. 11] and [45]), similarly to pseudospectral methods (see [15, 33, 53, 23, 11] for
spectral methods applied to the TDSE). Contrary to the latter method, however,
RBFs are mesh tolerant [36, 10]. This offers generality in node placement when go-
ing to higher dimensions where pseudospectral methods are limited to tensor product
grids. Admittedly, this comes with the price that fast transform methods are generally
not available. In addition to this flexibility, the resemblance to semiclassical meth-
ods might be a starting point for hybrid methods designed to simulate complicated
quantum phenomena in larger molecules.

RBF discretizations of PDEs are mostly implemented as collocation methods [30],
the reason being difficulties in accurately computing the integrals in Galerkin meth-
ods. For time-dependent PDEs, it is, however, common that stability problems arise.
In [43], the existence of spurious eigenvalues due to the introduction of boundary con-
ditions was reported. We demonstrate that such instabilities arise also in our setting
due to a variable coefficient term in the TDSE. Stability can instead be obtained us-
ing a Galerkin formulation. A preliminary study can be found in [32]. The integrals
are evaluated analytically which becomes possible since we do not impose explicit
boundary conditions. For this formulation, we show stability and convergence. Also,
we numerically analyze how the parameters in our method should be chosen and how
sensitive the approximation is to variations in the parameters. In a comparison with
the Fourier and Hermite pseudospectral methods and RBF collocation, we demon-
strate the high accuracy of our method. We concentrate on the Schrödinger equation
in this article but the approach potentially applies for instance to problems described
by the Fokker–Planck equation in finance, systems biology, and plasma physics.

RBF interpolation using a Galerkin ansatz in an unbounded domain was also
used in [27]. Sarra [48] demonstrated that collocation with Gaussian RBFs for infinite-
domain problems can be efficiently implemented when restricting the node distribution
to a uniform mesh for the example of the Gross–Pitaevskii equation. RBFs have
been used for the solution of the Schrödinger eigenvalue problem (see, e.g., [7, 28,
37]). In [8], a two dimensional time-dependent Schrödinger equation with Dirichlet
boundary conditions was discretized using RBF collocation, but no stability analysis
was provided. RBFs were also applied for the solution of the equations from quantum
fluid dynamics in [29].

The outline of the article is as follows. In the next section, we introduce RBF
approximation of the TDSE both for collocation and Galerkin methods. We also
explain the boundary treatment and temporal propagation with an exponential inte-
grator. Section 3 considers stability and in section 4 we show exponential convergence
provided that the solution is small enough outside the domain where the basis func-
tions are centered. The choice of the computational domain and the shape parameter
are studied in section 5, and a comparison of our method to RBF collocation and
the popular Fourier method as well as a Hermite pseudospectral approximation is
provided in section 6. Section 7 concludes the article.

2. Radial basis function approximation of the TDSE. The TDSE is given
as

(2.1) i�
∂

∂t
Ψ(x, t) = ĤΨ(x, t), Ψ(x, 0) = Ψ0,

where Ĥ = T̂ ( ∂
2

∂x2
1
, . . . , ∂

2

∂x2
d
) + V̂ (x) is the molecular Hamiltonian for d degrees of

freedom, consisting of the kinetic (T̂ ) and the potential (V̂ ) energy operator of the
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system. Equation (2.1) is solved for the wave function Ψ ∈ L2(H
1(Rd) × J), ∂

∂tΨ ∈
L2(H−1(Rd) × J), where J = (0, tfinal] and 0 < tfinal < ∞, with some given Ψ0 ∈
H1(Rd). Here, L2 denotes the space of square integrable functions and H1 the space
of functions that are square integrable and have square integrable first derivatives.
The dual space of H1(Rd) is denoted by H−1(Rd).

The shape of the potentials V̂ can be highly diverse. There are a number of
functions that are often used in simulations since they model typical energy config-
urations. On the other hand, it is also common that the value of the potential is
known only at a number of discrete points. In the latter case, we consider it suitable
to use RBF interpolation to approximate the potential. Then, the Galerkin matrices
can easily be evaluated analytically.

In this paper, we will consider two different potentials. First, we examine the
harmonic oscillator where we have a quadratic potential,

V (x) =
d∑

k=1

1

2
mkω

2
kx

2
k.

This model is rather simple but nevertheless of importance in quantum dynamics since
it models the shape of more complicated potentials close to a stable equilibrium [22,
Chap. 2.3]. Analytical solutions can be constructed in this example for verification of
the numerical results. A family of solutions is given by

ψ(x, t) = C exp

(
−

d∑
k=1

βk(xk − xk,t)
2 +

i

�

d∑
k=1

pk,t(xk − xk,t) +
i

�

d∑
k=1

γk,t

)
,

where xk,t = xk,0 cos(ωkt) + pk,0/(mkωk) sin(ωkt), βk = mkωk

2� , pk,t = pk,0 cos(ωkt)−
xk,0mkωk sin(ωkt), and γk,t =

1
2 (pk,txk,t − pk,0xk,0 − �ωkt). If not stated otherwise,

we consider the problem in one dimension and start at the origin with p1,0 = 2, m = 1,
ω = 1. Second, we consider the modified Hénon–Heiles potential in two dimensions,

(2.2) V (x1, x2) =
x21
2

+
x22
2

+ σ

(
x21x2 −

x32
3

)
+
σ2

16

(
x21 + x22

)2
,

with a positive parameter σ. The Hénon–Heiles potential appeared originally in as-
trophysics and was introduced in this modified form to quantum dynamics as a model
of coupled oscillators [34].

As an example of a time-dependent potential, we consider the interaction with
a time-dependent field in the Hénon-Heiles potential (cf. [50]). A dipole-interaction
term of the form

(2.3) Vtd(x1, x2, t) = μ0

(
x1 − 1

2
x1x2

)
E0 sin

2

(
π
t

τ

)
cos
(
ω0

(
t− τ

2

))
is added to the potential (2.2). The parameters are set as μ0 = 1, E0 = 1, ω0 ≈ 1.285,
and τ ≈ 206.7.

A radial basis function approximation [5, 56, 13] is based on a radial function
ϕ(r), r ∈ R+, a set of center points X = {c1, . . . , cN} ⊂ Rd, and a shape parameter
ε. The approximant is then defined as

(2.4) ψ(x) =

N∑
j=1

λjϕε(‖x− cj‖),
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where ϕε(r) = ϕ(εr) and λj ∈ C are coefficients. Also, the shape parameter can be
varied. In particular, we define the interpolant If of some function f to be the function
of the form (2.4) where the coefficients are determined such that If (cj) = f(cj) for
all cj ∈ X .

Moreover, let us denote by q the separation radius

q :=
1

2
min

c,d∈X,c �=d
‖c− d‖,

i.e., half the smallest distance between center points. For a compact, connected region
Ω ∈ R

d, we define the fill distance h for Ω relative to X to be the maximum distance
of a point from Ω to the set X ,

(2.5) h := sup
x∈Ω

min
c∈X

‖x− c‖.

2.1. Collocation approach. In order to discretize the TDSE based on radial
basis function collocation, one may take the ansatz (2.4) with λj = λj(t) for the
solution. Inserting this ansatz into the TDSE (2.1) and evaluating the TDSE at given
evaluation points qj gives the collocation discretization

A
d

dt
λ = − i

�
Hλ,

where

Aj,k = ϕε(‖qj − ck‖), Hj,k = −
d∑
i=1

�2

2mi

∂2

∂x2i
ϕε(‖qj − ck‖) + V (qj)ϕε(‖qj − ck‖).

Let us also introduce the matrices Λ = diag(V (q1), . . . V (qN )) and S with

Sj,k = −
d∑
i=1

�2

2mi

∂2

∂x2i
ϕε(‖qj − ck‖).

Then, it holds that H = S+ΛA. Note that if the sets of center and evaluation points
coincide, the matrices A and S are symmetric.

2.2. Galerkin approach. An alternative approach is to base the approximation
on the weak form of the TDSE,

(2.6) i�

(
Φ,

∂

∂t
Ψ

)
=

d∑
i=1

�2

2mi

(
∂

∂xi
Φ,

∂

∂xi
Ψ

)
+ (Φ, VΨ) for all Φ ∈ H1(Rd).

By (·, ·), we denote the L2(R
d) inner product. Approximating (2.6) in the finite dimen-

sional subspace spanned by the basis functions in (2.4) and letting Ψ be approximated
by ψ yields the Galerkin discretization of the TDSE

(2.7) M
d

dt
λ = − i

�
Gλ,

where

(2.8)

Mj,k =

∫
Rd

ϕε(‖x− cj‖)ϕε(‖x− ck‖) dx,

Gj,k =

∫
Rd

d∑
i=1

�2

2mi

∂

∂xi
ϕε(‖x− cj‖) ∂

∂xi
ϕε(‖x− ck‖)

+ ϕε(‖x− cj‖)V (x)ϕε(‖x− ck‖) dx.
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In order to evaluate the stiffness matrix G and the mass matrix M for the
Galerkin approximation, we need to compute integrals over Rd. This requires that
the chosen RBFs and their first derivatives are square integrable. Moreover, the
product induced by the potential has to be finite. Common RBF functions, like mul-
tiquadrics, inverse multiquadrics, inverse quadratics, thin plate splines, and piecewise
polynomials, are not square integrable on the whole Rd or have at least nonvanishing
moments. Gaussians as well as compactly supported basis functions like Wendland
functions [54], on the other hand, are square integrable and have finite moments.

The Gaussian basis is an RBF that is suited for a Galerkin approximation in
infinite domains. The ansatz function is given as

(2.9) ϕε(r) =

(
2ε2

π

) d
4

exp
(
− (εr)

2
)
.

Gaussians are in H1(Rd) and all moments are finite. Moreover, one can find analytical
expressions for the moments. Hence, both the mass and stiffness matrices can be
evaluated analytically as long as the potential is a polynomial or itself interpolated
by Gaussian RBFs. In the appendix, we give the analytical expressions for some
moments and the negative Laplacian. For an example of how Wendland functions
can be used in a Galerkin approach, see [55].

2.3. Boundary conditions. In its general form the TDSE is posed in the whole
space and the requirement Ψ ∈ H1(Rd) implicates decay towards infinity. The integra-
bility assumption replaces explicit boundary conditions. For numerical simulations,
it is common to truncate the computational domain such that the probability for the
particle to leave the computational domain is below a certain (low) tolerance over
the whole simulation time. In this case periodic or homogeneous Dirichlet boundary
conditions are common. The former condition suffers from unphysical leakage from
one side of the domain to the other and the latter from (small) reflections from the
boundary. Which formulation is chosen depends on the ease of implementation for the
chosen discretization method. For instance, periodic boundary conditions are typi-
cally selected in combination with Fourier-pseudospectral methods [15, 33]. While this
works quite well for models of bound states, the computational domain might get too
large when dissociative problems are modeled. In this case, various kinds of absorbing
boundary conditions are commonly used [1]. Alternatively, spectral methods can be
formulated in the whole R

d with Hermite basis functions that decay sufficiently fast
towards infinity [11]. This allows for a formulation of the discrete problem without
explicit boundary conditions.

In the case of RBF-collocation discretizations, boundary conditions can yield
stability problems since they destroy the symmetry properties of the operator (cf. [43]),
and for RBF-Galerkin discretizations, highly accurate numerical quadrature methods
may be required to evalute integrals over nontrivial domains. For that reason, we
prefer to choose basis functions that decay sufficiently fast and to not impose boundary
conditions on our discretization matrix. Then, the RBF interpolant will automatically
have the property that the solution is square integrable. Of course, we still need
to place the center points in such a way that we resolve the solution in the domain
where the probability distribution is concentrated. From numerical experiments it was
observed that a failure to resolve the significant part of the solution can lead to fast
oscillations close to the boundary of the resolved domain. In the convergence analysis
presented in section 4 we will consider boundary effects in more detail. Note that the
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Galerkin approach is also more suited for a formulation without explicit boundary
conditions since the method includes the inner products of the basis functions in the
whole domain while collocation only considers the evaluation points.

2.4. Temporal propagation. After discretizing in space, we have to solve the
system of ordinary differential equations (2.7). For the time-dependent Schrödinger
equation there are very efficient explicit propagation methods that are based on the
exponential form

(2.10) λ(t+Δt) = exp

(
− i

�
M−1GΔt

)
λ(t).

If the Hamiltonian is time independent, this is an exact formula for the solution.
Otherwise, the Magnus expansion [3] gives a series expansion expression based on
the exponential form that can be truncated for numerical purposes. The matrix
exponential times a vector can be efficiently evaluated based on the Lanczos algorithm
[26]. If we propagate λ̃ = Rλ, where R is the Cholesky decomposition of the mass
matrix, M = R∗R, we moreover avoid the computation of the inner product induced
byM in the Krylov iterations. This was also discussed in [32]. When the mass matrix
becomes very ill-conditioned, we employ a modified Cholesky decomposition1 with a
regularization parameter of the order of the machine precision to ensure positive
definiteness.

3. Eigenvalue stability. The Hamiltonian operator Ĥ is real and symmetric.
Hence, its eigenvalues are all real. Combined with the imaginary unit, the differential
operator is self-adjoint and has purely imaginary eigenvalues. This gives rise to several
characteristic properties of the equation, e.g., L2 norm conservation of the solution
and reversibility in time.

One difficulty when using radial basis functions for time-dependent problems is
that the differentiation matrices often have unstable eigenvalues (cf. [43]). Usually,
the problem occurs due to boundary conditions. For the TDSE, we do not impose
any boundary conditions. However, stability issues arise due to the potential energy.
In order to analyze the stability we need the following lemma.

Lemma 3.1. Let W,U ∈ Rn×n be two (real) symmetric matrices with U having
full rank. Then the generalized eigenvalues μ,

μUv =Wv,

are purely real.
Proof. Multiplying by v ∈ Cn\{0} from the left gives the following expression for

μ,

μ =
v∗Wv

v∗Uv
.

Since W ∗ =W and U∗ = U , the imaginary part of μ becomes

(3.1) �μ =
μ− μ∗

2i
=

1

2i

v∗(W −W ∗)v
v∗Uv

= 0.

1We have used the MATLAB implementation by Brian Borchers available through http://www.
mathworks.com/matlabcentral/fileexchange/47.
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Fig. 3.1. Eigenvalue spectra for RBF-collocation discretization of the harmonic-oscillator
Hamiltonian with 16 basis functions placed uniformly. The eigenvalues for q = 5

16
, ε = 2 and

ε = 1, q = 3
8
are real.

Lemma 3.1 applies to the Galerkin problem because both the matrices G and M
defined in (2.8) are real symmetric. The discretization M−1G has thus real eigenval-
ues, just as the continuous Hamiltonian operator.

Let us now consider collocation as introduced in section 2.1. In this case, the
potential causes an asymmetry in the discrete Hamiltonian H . Hence, Lemma 3.1
does not apply. Indeed, we can get spurious imaginary parts in the eigenvalues of

Hv = μAv.

We consider (3.1) for this case. By splitting the kinetic and potential part of the
Hamiltonian, H = S + ΛA, and using that S is symmetric we get

2i�μ = (μ− μ∗) =
v∗(H +H∗)v

v∗Av
=
v∗(Q−Q∗)v

v∗Av
,

where Q = ΛA. We observe that Q̃ := Q −Q∗ = [Λ, A] is antisymmetric. Hence, Q̃
is an orthogonal matrix with pairs of purely imaginary or zero eigenvalues.

An eigenvalue μ is thus real if and only if v∗Q̃v = 0 holds for the corresponding
eigenvector, i.e., if v is a linear combination of eigenvectors of Q to eigenvalue zero
and the sum of eigenvectors to each pair of purely imaginary eigenvalues.

It is clear that Q̃ is zero if the potential is constant or the matrix A is diagonal.
In numerical studies of the eigenvalues, we have observed that it depends on the value
of the shape parameter ε and the center point distribution (number of points, size
of the region where points are centered/separation radius, and the kind of distribu-
tion) whether or not the discretization is eigenvalue stable. For a fixed center point
distribution, the eigenvalues become purely imaginary for ε large enough. This is
illustrated in Figure 3.1(a) for the example of a one dimensional harmonic oscilla-
tor with 16 nodes placed uniformly with separation radius q = 5

16 . Also, eigenvalue
stability can be achieved for increased separation radius (see Figure 3.1(b)).

3.1. Eigenvectors. The evolution operator of the continuous TDSE is unitary.
This ensures norm conservation of the solution. Let us consider the discrete evolution
operator for the RBF coefficients in its exponential form U = exp(− i

�
U−1WΔt) with

U = M , W = G for Galerkin and U = A, W = H for collocation (cf. (2.10)). If the
eigenvalues of U−1W are real, the norm of U depends on the eigenvector matrix. To
study the eigenvectors, we need the following lemma.
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Lemma 3.2. Let W,U ∈ Rn×n be real symmetric matrices and let U have rank n.
Then the eigenvector matrix Q of U−1W is unitary in the U norm, i.e., Q∗UQ = In.

Proof. Since U is real and symmetric, we can find its Cholesky decomposition
U = R∗R. Consider the eigenvalue problem μq = U−1Wq and replace U−1 by the
Cholesky decomposition. Next we multiply by R from the left. This gives

μRq = R−∗Wq = R−∗WR−1Rq.

Hence, Y = RQ is the eigenvector matrix of the symmetric matrix R−∗WR−1 and
hence orthogonal. For Q we therefore find

In = Y ∗Y = Q∗R∗RQ = Q∗UQ.

The lemma applies to the Galerkin discretization and implies that the evolution
operator is unitary in the M norm. This means that the M norm of the RBF coeffi-
cients is conserved over time. Finally, we have that

λ∗Mλ = ψ∗ψ = ‖ψ‖22,

and the total probability is conserved as in the continuous case. For the collocation
matrix on the other hand, first the discrete Hamiltonian matrix H is in general not
symmetric. Second, even if it is, the norm will be based on the interpolation matrix
A which does not provide the conservation property. As for the eigenvalues, we again
observe that the Galerkin method nicely mimics the properties of the continuous
problem.

4. Convergence. Wendland [55] has reported convergence rates of the Galerkin
method based on RBFs for a linear second-order elliptic equation in a bounded do-
main. We want to extend this theory to show convergence for the case of the time-
dependent Schrödinger equation posed in an unbounded domain. Our reasoning pro-
ceeds in three steps: First, we need an estimate for the quality of RBF interpolation.
Next, we consider an elliptic problem in an unbounded domain, and finally we intro-
duce the time dependence. The latter two steps are inspired by [52] and would work
for any interpolation estimate. The quality of the interpolation thus translates to
the quality of the PDE approximation. Convergence for RBF interpolation has been
studied by numerous authors. However, for Gaussian basis functions this topic is not
yet fully explored for general function spaces. We discuss possible estimates and the
underlying assumptions in section 4.1.

4.1. Estimates for interpolation. The estimates for convergence of the solu-
tion to the TDSE is based on an estimate for the quality of interpolation for Gaussian
RBFs. Estimates for RBF interpolation are usually shown in the native space norm
of the corresponding basis function. For a Gaussian ϕε the native space is defined as

NG(R
d) =

⎧⎪⎨⎪⎩f ∈ C(Rd) ∩ L2(R
d) : ‖f‖NG :=

∫
Rd

∣∣∣f̂(ω)∣∣∣2
|ϕ̂ε(ω)| dω <∞

⎫⎪⎬⎪⎭ ,

where ˆ denotes the Fourier transform and ϕ̂ε(ω) = (2ε
2

π )d/4 exp(−π2‖ω‖2

ε2 ). Let Ω ⊂
Rd be an open, bounded domain with C1-boundary that includes the set X and let
h be the fill distance (2.5). The domain should also satisfy an interior cone condition
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with an angle ν. According to Theorem 6.4 in [45], it holds for the interpolant If of
a function f ∈ N (Ω) that

(4.1) ‖Dσ(f − If )‖L2(Ω) ≤ 2eC log(h)/
√
h‖f‖N (Ω),

where Dσ denotes the derivative with multi-index σ and C is a constant depending
on σ, ν, d but not on h or f . Note that this estimate does not take into account
the conditioning of the interpolation. Depending on the node distribution the condi-
tion number can increase severely as h decreases and limit the accuracy that can be
achieved in finite precision arithmetic (see [44, 49]).

Even if we pose the problem in R
d, we still need to choose where to place the

nodes, and hence which part of the domain is properly resolved. Let us denote by ΩX
the convex hull of X and let hX be the fill distance of ΩX with respect to X . Then,
define Ω ⊃ ΩX to be an open domain with Lipschitz-continuous and C1 boundary
such that its fill distance equals hX . For uniform distributions, we will use the domain
length L, defined as 2 d

√
Nq, i.e., two times the separation radius times the number of

grid points per dimension, as the characteristic parameter for Ω.
If we want to use this estimate for our convergence proof, we have to assume that

both the solution and its temporal derivative are part of the native space during the
whole simulation time. Since the native space of Gaussian RBFs is quite small, the
shape parameters that can be chosen to obtain convergence for a specific solution is
restricted. Therefore, several authors have studied the possibility of finding estimates
in Sobolev space norms instead [42, 21, 39]. In [21, 39], it is assumed that the Fourier
transform of the basis function satisfies the condition

c1 (1 + ‖ω‖2)−2σ ≤ ϕ̂ε(ω) ≤ c2 (1 + ‖ω‖2)−2σ
for all ω ∈ R

d.

However, this assumption requires an isomorphism between the native space of the
basis functions and a Sobolev space. Hence, the theory does not extend to Gaussian
basis functions.

Convergence for analytic functions that are not in the native space was considered
by Platte [42], and it is shown that for equidistant node distributions, in one dimen-
sion, the convergence behavior of Gaussians follows that of polynomial interpolation.

Let us take a look at the native space. In order for a function to be within the
native space of the Gaussian (2.9), the square root of its Fourier transform needs to

decay faster than exp(−π2‖ω‖2

ε2 ). This means that the native space becomes smaller
with decreasing ε (that is, for flatter basis functions). An important class of functions
that are part of the native space are the band-limited functions.

Let us consider the special case that f is a complex Gaussian, i.e.,

f(x) = exp
(−γ1‖x− x0‖2 + i(x− x0)γ2 + γ3

)
.

Then, the Fourier transform is given by

f̂(ω) =

(
π

γ1

)d/2
exp

(
−π

2‖ω − γ2
2π‖2

γ1
− 2πix0ω + γ3

)
.

So f ∈ NG holds if γ1 < 2ε2. For the harmonic oscillator with a coherent state chosen
as its initial value, the solution will be a complex Gaussian with γ1 constant over
time. Therefore this is a suitable example for studying convergence and the influence
of the native space. Figure 4.1 shows the error as a function of the fill distance for
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Fig. 4.1. Error as a function of the fill distance for various values of the shape parameter.
One dimensional harmonic oscillator with coherent initial state, propagation over one period with
p = 0.1, x0 = 0 initially. The points are spread out equally over a large interval of length 50.

various values of ε varying from 0.45 to 0.55. The value of γ1 is set to 0.5. This
means that the solution is part of the native space for ε > 0.5. The same is true for
the corresponding time derivatives. We can see that spectral convergence is obtained
independent of the value of the shape parameter, especially also for ε = 0.5, 0.45 for
which the solution is not within the native space. However, the smaller the shape
parameter is, the earlier ill-conditioning appears.

4.2. Assumptions. We consider a general form of a time-dependent Schrödinger
equation

(4.2) −
d∑

i,j=1

∂

∂xi

(
bij(x)

∂Ψ

∂xj

)
(x, t) + c(x, t)Ψ(x, t) − iΨt(x, t) = 0, x ∈ R

d, t ∈ J,

where J = (0, tfinal], bi,j ∈ C∞(Rd), i, j = 1, . . . , d, and B = (bij) is symmetric
positive definite, and c ∈ C∞(Rd × J). The associated bilinear form is defined as

a(Φ,Ψ; t) =

∫
Rd

d∑
i,j=1

(
∂

∂xj
Φ(x, t)

)∗
bij(x)

∂

∂xi
Ψ(x, t) + Φ(x, t)∗c(x, t)Ψ(x, t) dx.

We are looking for a weak solution Ψ to

(4.3) a(Φ,Ψ; t)− i(Φ,Ψt) = 0 for all Φ ∈ U, t ∈ J,

where U = {ϕ ∈ H1(Rd); ‖ϕt‖H1(Rd) < ∞}. Note that the assumption that the H1

norm of the time derivative is bounded is not necessary in general but will be needed
for the convergence proof. The initial value Ψ(x, 0) = Ψ0(x) is a given function from
U .

We want to find an approximate solution ψN in a finite dimensional subspace UN
of U . This finite dimensional subspace is defined by N radial basis functions that are
centered at N pairwise distinct points X ⊂ Rd. Let ψN be defined as the solution of
(4.4)
a(ϕ, ψN )− (ϕ, ψNt) = (ϕ, f) for all ϕ ∈ UN , t ∈ (0, tfinal], ψN (0) = ψ0 = IΨ0 ,

where the subscript t denotes the temporal derivative. Note that we do not consider
temporal discretization here.
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In order to show convergence, we have to assume that c is bounded from below,
i.e., that there exists a cmin = mint∈J minx∈Rd c(x, t). If cmin is negative, we can
transform the problem adding the term (δ− cmin)Ψ(x, t) for a small positive constant
δ. Then, the solution of the original problem at time t is given by the solution of the
transformed problem times a factor exp(i(δ− cmin)t). Therefore, we can assume c > 0
in the following without loss of generality. For fixed time t, a then defines a norm on
H1(Rd) which we denote by ‖ · ‖Et(Rd) in the following. Also, it holds that

(4.5) a(Ψ,Ψ) ≥ α‖Ψ‖2H1(Rd) for all Ψ ∈ U,

for a constant α > 0 depending on the lower bound of the coefficients of the bilinear
form a. Let us denote by aΩ(·, ·) the bilinear function restricted to the domain Ω. For
a bounded set Ω, we also have

(4.6) |aΩ(Φ,Ψ)| ≤ β‖Ψ‖H1(Ω)‖Φ‖H1(Ω) for all Φ,Ψ ∈ U,

with constant β > 0 depending on the upper bound of the coefficients restricted to Ω.
Let Ψ be a function solving (4.3) for a given initial condition. If c is time in-

dependent, it holds that ∂
∂ta(Φ,Ψ) = 0. This means that the energy of the sys-

tem is conserved. When c becomes time dependent, the situation is more intri-
cate. In this case, we have to make additional assumptions: Let us assume that
c(x, t) = c1(x) + c2(x, t) with | ∂∂tc2(x, t)| ≤ γ1 for some constant γ1 > 0. Then, we
have that a(Ψ(t),Ψ(t)) ≤ a(Ψ0,Ψ0) + tfγ1‖Ψ(t)‖2L2(Rd) for 0 ≤ t ≤ tf . Define γ such

that a(Ψ0,Ψ0) ≤ (γ− tfγ1)‖Ψ0‖2L2(Rd). Since the L2 norm of a solution of the TDSE

is conserved, we then have

(4.7) |a(Ψ,Ψ)| ≤ γ‖Ψ‖2L2(Rd) ≤ γ‖Ψ‖2H1(Rd),

where γ depends on the coefficients of the equation and on the initial value. The
same reasoning applies to the Galerkin approximation in the subspace UN . Let us
therefore assume that γ is chosen such that the estimate (4.7) also applies to ψN .
As a consequence the constant will also depend on IΨ0 . At first sight, this might be
bothersome since IΨ0 depends on the discretization. On the other hand, a suitably
chosen basis will anyway ensure the quality of the interpolation of the initial function.

The assumption that the time derivative of c2(x, t) is bounded independent of
x is quite restrictive. However, the increase in energy is also bounded on a fixed
time interval for potentials that are growing for ‖x‖ → ∞ as long as the growth
rate is smaller than the decay rate of the solution—and the basis functions in the
approximate case. For instance, this is the case for the Hénon–Heiles example with
dipole for which we present results in section 6.

4.3. Galerkin RBF methods in unbounded domains: Elliptic problems.
Let us consider the elliptic equation

(4.8) −
d∑

i,j=1

∂

∂xi

(
bij
∂Ψ(x)

∂xj

)
+ c(x)Ψ(x) = f(x), x ∈ R

d,

where f ∈ H−1(Rd) and c(x) = c(x, τ) for some fixed value of τ . A weak solution to
(4.8) solves

(4.9) a(Φ,Ψ) = (Φ, f) for all Φ ∈ U.
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Moreover, we define the RBF-Galerkin approximation ψN ∈ UN as the solution of

(4.10) a(φ, ψN ) = (φ, f) for all φ ∈ UN .

Both Ψ and ψN satisfy a relation of type (4.7) with γ depending on f . Especially, if
f = iΨt(x, τ) the parameter γ can be found as discussed in section 4.2.

Lemma 4.1. Let Ψ be the solution of (4.9), ψN the solution of (4.10), and Ω the
open bounded domain around X defined in section 4.1. Then,

(4.11) ‖Ψ− ψN‖H1(Rd) ≤ C infφ∈UN

(‖Ψ− φ‖H1(Ω) + ‖Ψ− φ‖Eτ (Rd\Ω)

)
.

Proof. For any φ ∈ UN , it holds that a(Ψ − ψN , φ) = 0 (in particular, this holds
for φ = ψN ). Hence, we have for φ ∈ UN

‖Ψ− ψN‖2H1(Rd)

(4.5)

≤ 1

α
a(Ψ− ψN ,Ψ− ψN ) =

1

α
a(Ψ − ψN ,Ψ− φ)

≤ 1

α
‖Ψ− ψN‖Eτ(Rd)‖Ψ− φ‖Eτ (Rd)

(4.6)

≤ β

α
‖Ψ− ψN‖H1(Rd)‖Ψ− φ‖Eτ (Rd).

Next, we split the energy norm into the part in Ω and the part exterior to the domain
and use (4.7) to find

‖Ψ− ψN‖H1(Rd)≤
β

α

(
γ‖Ψ− φ‖H1(Ω) + ‖Ψ− φ‖Eτ (Rd\Ω)

)
.

Since φ was an arbitrary element of UN , we have shown the assertion.
According to estimate (4.1), we have

(4.12) ‖Ψ− IΨ‖H1(Ω) ≤ Cexp(h)‖Ψ‖N (Ω),

where Cexp(h) is a combination of exponential terms in log(h)/
√
h. Then, it holds

that

‖Ψ− ψN‖H1(Rd)

(4.11)

≤ C infφ∈UN

(‖Ψ− φ‖H1(Ω) + ‖Ψ− φ‖Eτ (Rd\Ω)

)
≤ C ‖Ψ− IΨ‖H1(Ω) + C‖Ψ− IΨ‖Eτ (Rd\Ω)

(4.12)

≤ Cexp(h)‖Ψ‖N (Ω) + C‖Ψ− IΨ‖Eτ (Rd\Ω).(4.13)

Here and in the following C denotes a positive constant, not necessarily the same at
different occurrences.

To sum up, we see that the Galerkin approximation converges with an exponential
rate for the part within the domain Ω. Due to the fact that the problem is posed in
an unbounded domain, we get an additional systematic error whose size is dependent
on how well the solution is centered in the domain covered by the basis functions. It
is important also how small the interpolant is outside Ω. In [18], it has been shown
that the coefficients of a Gaussian RBF interpolation on an infinite lattice decay
exponentially for the cardinal function. This indicates that the expansion coefficients
exhibit some locality. So, if Ψ is small close to the boundary of Ω, we can expect the
weights of the basis functions centered close to the boundary in Iψ to be small, too.



A2844 KATHARINA KORMANN AND ELISABETH LARSSON

4.4. Galerkin RBF methods in unbounded domains: Time-dependent
problems. Now, we turn to the case of the time-dependent equation (4.2) and we
consider the semidiscretized system (4.4). Let us introduce the Ritz projection RN
onto UN , defined for w ∈ U by

(4.14) a(χ,RNw; t) = a(χ,w; t) for all χ ∈ UN .

According to the Riesz representation theorem, there is an f ∈ H−1(Rd) such that

a(χ,w; t) = (χ, f) for all χ ∈ U.

Hence, (4.14) becomes an elliptic problem of the form (4.10).
Theorem 4.2. Let Ψ ∈ U be the solution of (4.3) and ψN ∈ UN the solution of

(4.4). Further assume Ψ|Ω,Ψt|Ω ∈ N (Ω). Then, it holds for t ∈ [0, tfinal] that

(4.15)

‖ψN(t)−Ψ(t)‖H0(Rd)

≤ Cexp(h)‖Ψ0‖N (Ω)

+ C‖Ψ0 − IΨ0‖E0(Rd\Ω) + 2Cexp(h)

∫ t

0

‖Ψt(τ)‖N (Ω) dτ

+ C

∫ t

0

‖Ψt(τ) − IΨt(τ)‖Eτ (Rd\Ω) dτ + C‖Ψ(t)− IΨ(t)‖Et(Rd\Ω).

Proof. First, we split the error into two terms

ψN (t)−Ψ(t) = θ(t) + ρ(t), where θ = ψN −RNΨ, ρ = RNΨ−Ψ.

Since RNΨ is the solution of an elliptic problem of the type studied in the previous
section, we know by (4.13) that

‖ρ(t)‖H0(Rd) ≤‖ρ(t)‖H1(Rd) ≤ Cexp(h)‖Ψ(t)‖N (Ω) + C‖Ψ(t)− IΨ(t)‖Et(Rd\Ω)

≤Cexp(h)‖Ψ0(τ)‖N (Ω) + Cexp(h)

∫ t

0

‖Ψt(τ)‖N (Ω) dτ

+ C‖Ψ(t)− IΨ(t)‖Et(Rd\Ω).(4.16)

So let us turn to the θ part. Let χ ∈ UN . Then,

(χ, θt) + ia(χ, θ; t) = (χ, ψN,t) + ia(χ, ψN ; t)− (χ,RNΨt)− ia(χ,RNΨ; t)

= −(χ,RNΨt)− ia(χ,Ψ; t) = −(χ,RNΨt −Ψt).

Setting χ = θ, we have

(4.17) (θ, θt) + ia(θ, θ; t) = −(θ, ρt).

Summing (4.17) and its complex conjugate gives

2‖θ‖H0(Rd)

d

dt
‖θ‖H0(Rd) = −(ρt, θ)− (θ, ρt) ≤ 2‖ρt‖H0(Rd)‖θ‖H0(Rd),

and hence d
dt‖θ‖H0(Rd) ≤ ‖ρt‖H0(Rd) or

(4.18) ‖θ(t)‖H0(Rd) ≤ ‖θ(0)‖H0(Rd) +

∫ t

0

‖ρt(τ)‖H0(Rd) dτ.
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Assuming Ψt|Ω ∈ N (Ω) and Ψt ∈ H1(R
d), we can find as for ρ(t) that

‖ρt(t)‖H0(Rd) ≤Cexp(h)‖Ψt(t)‖N (Ω) + C‖Ψt(t)− IΨt(t)‖Et(Rd\Ω).

Moreover, we estimate θ(0) by

‖θ(0)‖H0(Rd) = ‖ψ0 −RNΨ0‖H0(Rd) ≤ ‖ψ0 −Ψ0‖H0(Rd) + ‖Ψ0 −RNΨ0‖H0(Rd)

≤Cexp(h)‖Ψ0‖N (Ω) + C‖Ψ0 − IΨ0‖E0(Rd\Ω).

In the second inequality, we have used (4.13) for the first term and (4.16) for the
second. Hence, (4.18) becomes
(4.19)
‖θ(t)‖H0(Rd) ≤Cexp(h)‖Ψ0‖N (Ω) + C‖Ψ0 − IΨ0‖E0(Rd\Ω)

+ Cexp(h)

∫ t

0

‖Ψt(τ)‖N (Ω) dτ + C

∫ t

0

‖Ψt(τ) − IΨt(τ)‖Eτ(Rd\Ω) dτ.

Combing (4.16) and (4.19) gives the assertion.
The result of Theorem 4.2 shows that the quality of the solution depends on three

factors:
(i) the quality of the interpolation of the initial value on the domain Ω,

Cexp(h)‖Ψ0‖N (Ω);
(ii) the approximation error accumulated over the time interval with exponential

decay in terms of the fill distance, 2Cexp(h)
∫ t
0
‖Ψt(τ)‖N (Ω) dτ ;

(iii) a systematic error due to the domain truncation including both the wave
packet and the interpolant outside Ω: C‖Ψ0−IΨ0‖E0(Rd\Ω)+C‖Ψ(t)−IΨ(t)‖Et(Rd\Ω)+

C
∫ t
0
C‖Ψt(τ) − IΨt(τ)‖Eτ (Rd\Ω) dτ .

If we keep the domain Ω constant and decrease the fill distance h, we therefore expect
the error to decay exponentially up to a certain point where it flattens out since the
systematic error due to domain truncation takes over. As mentioned earlier, numerical
ill-conditioning also has a negative effect on the convergence behavior as the number
of basis functions increases.

It is natural to distribute the nodes on a domain Ω such that Ψ|Rd\Ω is very small.
Hence, the systematic error is dominated by the energy norm of IΨ rather than Ψ. The
part of the RBFs that is significantly larger than zero extends further into the outside
domain Rd\Ω the flatter the basis functions are, i.e., the smaller the shape parameter.
On the other hand, we can observe in practical computations that the Galerkin ap-
proximant will also approximate the solution in Rd\Ω to some extent. For instance,
for a fixed number of nodes, better results can be obtained if the nodes are clustered
on a smaller domain as the shape parameter decreases. However, this behavior is
specific to the Galerkin approximation. Therefore, we believe that the estimation of
the systematic error in (4.15) is pessimistic since it is based on the interpolant.

Remark. For basis functions with native spaces that are isomorphic to a Hilbert
space of order k, like, for instance, Wendland functions, it is possible to show conver-
gence of the order hk for solutions that are sufficiently smooth, up to the point where
a systematic error takes over.

4.5. Numerical evidence. To verify our convergence results numerically, we
study the accuracy of an RBF approximation of the one-dimensional harmonic os-
cillator. We set x0 = 0, p1,0 = 2, and m = ω = 1. We compute the error after
one oscillation at time 2π. First, we compare the convergence for various values of ε
for L = 14, i.e., for a large domain where the domain truncation error is small com-
pared to other errors in floating point computations. The log-log plot Figure 4.2(a)
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Fig. 4.2. Convergence plots for harmonic oscillator propagated over one period.
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Fig. 4.3. Convergence as a function of the domain size.

reveals exponential convergence up to a point where ill-conditioning takes over. In
Figure 4.2(b), we have plotted the error curves for ε = 1.5 and various values of L.
Again, we see the exponential convergence but the smaller L is, the earlier the sys-
tematic error takes over and the error curves flatten out. As the fill distance gets very
small, we can again see that the error is increasing due to ill-conditioning. Hence, our
numerical results verify the theoretical results developed in this section.

Figure 4.3 shows how the systematic error goes down as a function of the domain
size for the error after propagation as well as for the interpolation of the initial value,
when the fill distance is fixed. We report the values for h ≈ 0.15 where the curves
have flattened out. Numerically, we observe exponential convergence also in L for the
Galerkin approximation of the solution of the PDE and the interpolant of the initial
value.

5. Parameter selection. When solving the TDSE with an RBF-Galerkin ap-
proach, we have a number of parameters that influence the accuracy of the discretiza-
tion method. The parameters we are concerned with are the total number of basis
functions N , the shape parameter ε, and the domain Ω in which the center points
are placed (cf. the convergence proof in section 4). Moreover, the distribution of the
points within the domain Ω plays an important role. The aim of this section is to
numerically analyze how the choice of parameters influences the solution and how
sensitive the discretization is to the choice of parameters. All errors reported in the
paper are measured in the �2 sense.

The question of how to choose the shape parameter and the node distribution
optimally has been studied extensively, but there are no definitive answers. The place-
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ment of nodes can, for instance, be optimized with a greedy algorithm as proposed by
Ling and Schaback [36]. However, this is a costly procedure and it does not take the
shape parameter into account. In our example, two effects regulate the optimal node
distribution: On the one hand, it is suitable to concentrate the points in regions where
the solution is large, i.e., to adapt the bases to the position of the solution. On the
other hand, RBF approximations can give improved results in the case the nodes are
clustered towards the boundary due to the Runge phenomenon and other boundary
related effects [20, 44, 19]. For many problems, a Chebyshev distribution of nodes is
therefore a good choice [44]. In our case, these two effects are acting conversely since
the boundary of the domain is chosen such that the solution is small in this area.
For this reason, spreading the nodes on an equidistant grid gives comparably good
results for our sample problems. However, we expect this to be less suitable for more
advanced problems with less regular structure and in higher dimensions.

The computational cost for computing an RBF approximation is directly coupled
to the number of basis functions. However, for the shape parameter the relation
to the cost is indirect through the conditioning of the involved matrices. Since the
support of the radial basis functions is global, the discretization matrices are dense. In
practice the overlap of two basis functions with remote center points is very small and
in a numerical setting truncation might be possible. The effect of truncation in the
discretization has been studied in the context of the electronic Schrödinger equation
with combined Gaussians and polynomials; see [38, 47]. However, we do not consider
truncation in this work and aim at choosing the optimal value of the shape parameter
in terms of accuracy for a given number of basis functions.

We want to consider the problem of choosing the size of the domain and the
(scaled) shape parameter in such a way that we achieve the most accurate result in
floating point arithmetic given the number of basis functions. We define the scaled
shape parameter as α = εhavg, where havg is the average distance between two node
points. Note that we use the same scaled shape parameter for all basis functions. This
problem can be phrased as an optimization problem. The overall structure of the ob-
jective function, the error in the numerical solution as a function of the parameters α
and L, is quite simple. However, there are small local variations that make things quite
complicated because they give rise to large numbers of local minima. Hence, applying
an optimizing routine for smooth functions will not be very successful. Instead, we
choose to use the derivative free routine patternsearch2 based on coordinate search
implemented in the global optimization toolbox of MATLAB. First of all, we want to
consider how the choice of α influences the result for a domain of size L = 20 where
the error due to domain truncation is insignificant. We consider the example of the
harmonic oscillator in one dimension for a coherent state with p1,0 = 2 and x0 = 0.
The lines marked with stars in Figure 5.1 show the optimal scaled shape parameter
as a function of the fill distance and the corresponding error after propagation. We
can see that α should be decreased with the fill distance. The increasing values of
α for the smallest values of the fill distance are not conclusive because we have then
reached the point where the error from the temporal propagation is no longer small
in comparison to the spatial errors. Since we will generally not apply an optimization
routine before solving a particular problem, we have also added the maximum error
attained with a scaled shape parameter in the interval [αopt − 0.1, αopt + 0.1] around
the optimal value αopt in Figure 5.1(b). It can be seen that the quality of the method

2A more sophisticated approach would be to use a derivative-based algorithm in combination
with filtering.
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Fig. 5.1. Optimized scaled shape parameter for RBF-Galerkin discretization of the harmonic
oscillator in a large domain. Propagation is over one period.

is increasingly sensitive to the shape parameter with decreasing fill distance. It is
generally more critical to choose a shape parameter that is too small, especially if the
value is already quite small, since this is the most ill-conditioned regime.

Of course, the optimal choice of these values depends on the characteristics of
the PDE and its solution: The approximation error for both the solution itself and
the operator applied to the solution are of major importance. Generally, it can be
said that α should be increased with the variation (e.g., oscillations) in the solution
function [35]. This can be observed when comparing the optimal shape parameters
for various values of p1,0 in Figure 5.1(a).

Next, we consider both α and L and study the coherent state with p1,0 = 2 and
x0 = 0. The curves marked with circles in Figure 5.2 show the parameters optimized
for an RBF-Galerkin approximation with equidistant nodes and the corresponding
error. We can separate three different regions: For five to fifteen nodes, α is decreasing
and so is the fill distance. Then, we have another region with fast convergence where
the fill distance is kept almost constant and the additional nodes are used to expand
the domain. The scaled shape parameter is increasing but at a relatively slow pace.
Finally, propagation errors start to dominate at around 45 nodes. This means for
very coarse meshes it is preferable to choose rather localized basis functions. As the
number of nodes is increased both the domain size should be increased and the fill
distance reduced. Eventually, the solution is resolved and it is preferable to increase
the computational domain instead of further decreasing the fill distance. It can be
seen that the shape parameter is not varying too much in the second region which
simplifies the choice.

We have also done the experiment with a Chebyshev distribution of nodes; see the
lines marked with squares in Figure 5.2. Compared to equidistantly distributed nodes
the results are comparable in the first region while the convergence for Chebyshev
points is slower in the second region. Once the solution is somehow resolved, it is
hence preferable to place points on a larger domain rather than clustering them on
the boundary. This could be related to not-a-knot boundary treatment for problems
in bounded domains (cf. [17, 14]).

Again, we want to perform a perturbation analysis, now with respect to both
parameters. We choose a perturbation of ±0.8 for L and ±0.05 for α. In the first case
this corresponds approximately to the change in this parameter when we decrease and
increase the number of basis functions by five in the second region. For the scaled
shape parameter, on the other hand, this is about half the total variation in the second
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Fig. 5.2. Optimized parameters for RBF-Galerkin and pseudospectral discretization of the
harmonic oscillator. Propagation over one period.
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Fig. 5.3. Perturbation analysis for scaled shape parameter and domain size, respectively.

region. We keep one of the parameters constant at a time and show the worst result
obtained in the interval in Figure 5.3. For the shape parameter, the change is not
that dramatic in this case. The choice of L clearly affects the approximation quality.

To sum up, one can say that the choice of parameters is quite important for the
quality of the method. We propose to choose the shape parameter rather a little bit
too large than too small. Especially, it is usually not advisable to set the scaled shape
parameter below 0.3. In the case when the fill distance is small enough to provide
reasonable resolution, a scaled shape parameter between 0.3 and 0.5 has shown to be
a good choice from our experience. We have also done experiments with a harmonic
oscillator in two dimensions. Since the problem and the node distribution were both
tensor products, the results are very similar.

Remark. The condition numbers of the matrices M and G are often on the or-
der of the inverse machine accuracy for the optimal parameter choices. However,
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the condition number of the transformed matrix G̃ = (R−1)∗GR−1 is only moderate.
From our numerical experiments it appears that using the modified Cholesky decom-
position, an accurate representation of G̃ can be computed up to very ill-conditioned
matrices M and G. This also shows the importance of the coordinate transformation
introduced in section 2.4. The benefit of a data-dependent basis transformation was
analyzed in [41].

6. Comparison to pseudospectral methods and RBF collocation. In or-
der to challenge the RBF approximations, we compare them with the Fourier pseu-
dospectral (PS) method [16, 15, 33] which is very common for discretizations of the
TDSE. The domain is truncated such that the solution is very small outside the com-
putational domain and then periodic boundary conditions are used. The derivatives
can be computed using FFT which gives a complexity of dnd log(n) for a d dimen-
sional grid with n points per dimension. Admittedly, PS methods can be implemented
much more efficiently than RBFs where the derivative evaluation has complexity n2d

in a naive implementation. On the other hand, RBFs work as well for geometries
that are not amenable to tensor product grids and for scattered and adaptive node
distributions.

First, we revisit the harmonic oscillator propagated over one period that we have
studied in the previous section. Figure 5.2 also shows how to optimally choose the
size of the computational domain and the resulting error for the pseudospectral dis-
cretization. It can be seen that an RBF discretization with equidistantly spaced nodes
yields results that are up to two orders of magnitude more accurate compared to the
PS result. We observe that the optimal domain size is considerably smaller for RBFs.
Hence, the separation radius is smaller for RBFs than for PS which explains the gain
in accuracy that can be seen from the figures. This is an indication that treating
the TDSE without explicit boundary conditions works quite well. However, we have
to keep in mind that the RBF discretization is sensitive to the choice of the shape
parameter and we get worse results when using nonoptimal values of ε.

We have done the same experiment for the two dimensional modified Hénon–
Heiles Hamiltonian (2.2) with σ = 0.2 and the results are illustrated in Figure 6.1.
The behavior of the parameters and the accuracy is similar to what we observed for
the harmonic oscillator problem. In order to compare our Galerkin ansatz to the
collocation method, we have also optimized the parameters for the RBF-collocation
method. Note that the optimization procedure makes sure that parameters yielding
unstable computations are avoided. Compared to RBF-Galerkin, larger values are
necessary for the domain size as well as the shape parameter. As expected this results
in less accurate approximations. Since the approximation matrices in RBF collocation
are not symmetric, the Krylov iterations are slightly more expensive. Hence, the time
stepping for the RBF-Galerkin method is a little faster than for RBF collocation.
Again, this supports the supposition that a Galerkin ansatz is superior to collocation
when approximating unbounded-domain problems.

Moreover, we also want to compare our method with a PS method based on
Hermite polynomials [4] that is well suited for unbounded domains. Since the Hermite
polynomials are eigenfunctions of the harmonic oscillator, the approximation would
be very accurate in our first experiments. The results for the modified Hénon–Heiles
potential are comparable to our RBF-Galerkin method as can be seen in Figure 6.1(c).
We have optimized the coordinate scaling of the basis functions. The optimal value
was one (or slightly above one for

√
N = 5) which is reasonable since the potential is

close to a harmonic oscillator with scaling one. For the Hermite PS method, there is
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Fig. 6.1. Comparison of RBF-Galerkin, RBF collocation, and Fourier and Hermite PS dis-
cretization of the Hénon–Heiles Hamiltonian. Propagation is over time interval of length 1.

Table 6.1

Results of the RBF-Galerkin method for time-dependent Hénon–Heiles problem. Comparison
of values optimized for time-dependent case (index td) and time-independent case (index ti).

√
N Ltd Lti αtd αti error td error ti

5 3.67 3.74 0.685 0.678 1.140E-1 1.172E-1
10 4.65 4.65 0.400 0.399 8.936E-3 8.939E-3
15 6.63 6.63 0.400 0.404 9.880E-4 9.976E-4
20 8.48 8.52 0.405 0.417 1.350E-4 1.423E-4
25 10.3 10.2 0.431 0.431 2.304E-5 2.375E-5
30 11.8 11.6 0.448 0.448 4.478E-6 4.808E-6

no fast transform, meaning that the complexity of the RBF and this PS method are
comparable. However, we suspect that the RBF method will give better results in
comparison to when the potential is less close to a harmonic oscillator and, moreover,
it is not bound to a tensor product grid as opposed to pseudospectral methods.

Finally, we have added the time-dependent term (2.3) to the Hénon–Heiles po-
tential. Again the solution is propagated over an interval of length 1. In order to
have a significant influence from the time-dependent term, we propagate over the
time interval [τ/2, τ/2 + 1]. Since the present configuration is a modification of the
previous one, we can assume some similarity in the localization and variation of the
solutions. Hence, the parameters optimized for the time-independent case should be
a good guess for the time-dependent problem. Indeed, we found very similar param-
eter values when we optimized α and L for the new problem. Comparing the error
obtained with the old and new parameter values, we can see that it is at most affected
in the third decimal. The results are summarized in Table 6.1.
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7. Conclusions. We have studied RBF-Galerkin discretizations with Gaussian
RBFs without explicit boundary conditions. Exponential convergence has been shown
theoretically and numerically as long as the nodes are scattered in a large enough
domain. Eventually, a systematic error from regions without nodes takes over. A
numerical parameter study reveals that the accuracy of the method can be sensitive
to the choice of the shape parameter. Especially, the accuracy can deteriorate fast if
too small shape parameters are used, which leads to ill-conditioning. Generally, it is
not advisable to choose the scaled shape parameter less than about 0.3. In order to
obtain the best possible result with a given number of points, the size of the domain
where the center points are clustered should be increased linearly with the number of
nodes. Typically, the domain can be chosen considerably smaller than for the Fourier
method or RBF collocation. This enables more accurate results for the same number
of grid points.

In this paper, we have only considered fixed node distributions. However, RBF
methods have the potential of being competitive in an adaptive setting where nodes
are moved, added, or deleted to accommodate the evolving solution. Especially in
high dimensions, the gain in overall problem size from being able to restrict the
computational domain to a minimum would be considerable. Truncation of the matrix
elements at some threshold is another possibility to consider in order to yield a more
memory-efficient implementation of the method.

Appendix A. Expressions for mass and stiffness matrices. In this section,
we collect expressions for the Galerkin matrices for Gaussians of the form (2.9). We
allow for variable ε which can be useful when the nodes are spread out unevenly.

The element Mjk of the mass matrix is

∫
Rd

ϕεj (‖x− cj‖)∗ϕεk(‖x− ck‖) dx =

(
2εjεk
ε2j + ε2k

)d/2
exp

(
− ε2jε

2
k

ε2j + ε2k
‖cj − ck‖2

)
.

The negative Laplacian yields the following stiffness-matrix elements:

∫
Rd

∇ϕεj (‖x− cj‖)∗∇ϕεk(‖x− ck‖) dx =Mjk

ε2jε
2
k

ε2j + ε2k

(
2d− 4

ε2jε
2
k

ε2j + ε2k
‖cj − ck‖2

)
.

A monomial in component � gives
(A.1)∫

Rd

ϕεj (‖x− cj‖)∗xp(�)ϕεk(‖x− ck‖) dx =Mj,k

	p/2
∑
q=0

β
(p)
(q)

(
ε2jcj,(�) + ε2kck,(�)

)p−2q(
ε2j + ε2k

)p−q ,

where the coefficients up to degree six are given by β(0) = 1, β(1) = 1, β(2) =
(1, 12 )

T , β(3) = (1, 32 )
T , β(4) = (1, 3, 34 )

T , β(5) = (1, 5, 154 )T , β(6) = (1, 152 ,
45
4 ,

18
8 )

T .
To extend the result to a general polynomial involving several coordinate directions,
we can compute one factor given by the sum over q in (A.1) for each appearing
monomial. In the Galerkin matrix, the factors are then multiplied and/or added in
the same way as the monomials in the polynomial.
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Considering the case when the potential is interpolated by RBFs, we need to
integrate a combination of three Gaussians, leading to∫

Rd

ϕεj (‖x− cj‖)∗ϕε�(‖x− c�‖)ϕεk(‖x− ck‖) dx

=

(
ε2jε

2
kε

2
�

πε̂2

)d/4
exp

(
−ε

2
jε

2
k

ε̂2
‖cj − ck‖2 −

ε2jε
2
�

ε̂2
‖cj − c�‖2 − ε2kε

2
�

ε̂2
‖ck − c�‖2

)
,

where ε̂2 = ε2j + ε2k + ε2� .
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