
A task parallel implementation of a scattered node
stencil-based solver for the shallow water equations∗

Martin Tillenius and Elisabeth Larsson
Dept. of Information Technology

Uppsala University, Box 337
SE-751 05 Uppsala, Sweden

{martin.tillenius,elisabeth.larsson}@it.uu.se

Erik Lehto and Natasha Flyer
National Center for Atmospheric Research

P.O. Box 3000
Boulder, CO 80307-3000, USA

{lehto,flyer}@ucar.edu

ABSTRACT
The shallow water equations (SWE) provide a basic model
for atmospheric flow and are used as a standard benchmark
problem for climate simulation codes. Solving the SWE
globally is computationally challenging due to the prob-
lem size and the need to resolve local features at different
scales. The problem size can be partly addressed by par-
allel computing, whereas the local adaptivity is a method-
ological problem. Radial basis function-generated finite dif-
ference methods (RBF-FD) have been proposed as a com-
petitor with great potential to the established discontinu-
ous Galerkin and pseudo-spectral methods. In this work,
we consider the parallel programming aspects of this prob-
lem. The RBF-FD method results in (unstructured) sparse
matrix-vector operations, and is hence completely bandwidth
bound. The basic algorithm consists of (explicit) time-step-
ping, which is data-parallel in the sense that the same op-
eration is performed for all data, but also inflicts frequent
(local) synchronization points. The problem has been imple-
mented using a dependency-aware task-based programming
model. We have used the library SuperGlue which provides a
run-time system for dynamic scheduling of dependent tasks.
For the problem sizes we have used, the algorithm scales well
up to about 6 cores.

Categories and Subject Descriptors
D.1 [Programming techniques]: Concurrent program-
ming—parallel programming ; G.1.8 [Numerical Analysis]:
Partial differential equations—Hyperbolic equations

General Terms
Algorithms, performance

∗This work was supported by the Swedish Research Council
through the Linnaeus centre of excellence UPMARC, Upp-
sala Programming for Multicore Architectures.

1. INTRODUCTION
Dependency-aware task-based parallel programming models
are emerging as one of the most promising approaches to
achieve high performance in scientific applications at a rea-
sonable programming effort. Some of the most widely spread
general purpose frameworks for task parallel programming
are OmpSs [3] and StarPU [1]. The research on features of
task parallel programming is active, and in two local efforts,
we explore alternative formulations. In [9, 8] we employ
data versions for dependency tracking, instead of the more
common directed acyclic graphs (DAGs). The programming
model in [6] combines abstractions for both data and work
partitioning.

Typical benchmark problems for task parallel programming
are dense linear algebra operations such as the Cholesky fac-
torization. These are amenable to parallelization on multi-
core architectures because they are compute-bound. In this
work, we instead target a full partial differential equation
(PDE) solver, which generates sparse unstructured matrices.
The main operations of the solver are sparse matrix-vector
multiplications which become bandwidth-bound. With a
straightforward implementation they are expected to scale
badly on multicores.

The numerical method, RBF-FD, that we are targeting is
relatively new and there is no available parallel software.
Therefore, we have a double interest in showing that RBF-
FD methods can be implemented efficiently in parallel, as
well as showing that task parallel approaches can be suc-
cessful also for, from the multicore point of view, very chal-
lenging scientific applications. A parallel implementation
(not using tasks) of an RBF-FD method for the SWE on
multiple CPUs and GPUs can be found in [2], and a GPU
implementation of a global RBF method is described in [7].

2. THE SHALLOW WATER PROBLEM
The SWE are non-linear partial differential equations (PDE)
that describe flow for example in the atmosphere. The
Cartesian form of the SWE is given by

∂u

∂t
= −(u · ∇)u− f(x× u)− g∇h,

∂h

∂t
= −∇ · (hu),

where u = (u, v, w) is the wind field, x = (x, y, z) is the
location, f is the Coriolis force, h is the geopotential height,
and g is the gravity.

Whenever a new method or implementation is proposed for
climate simulations involving the SWE, it is required to pass
a number of SWE benchmark problems [11]. Figure 2, which
is an illustration from [4] shows the solution to the test case
“Flow over an isolated mountain”.

In global climate simulations, the computational domain is
the surface of the earth. The equations can be formulated in
spherical coordinates, which, however, introduces unphysi-
cal singularities at the poles. We choose instead to work in
Cartesian coordinates, which means that the equations need
to be projected onto the curved surface. An approach for
this was derived in [5] and used also in [4].

3. THE NUMERICAL METHODS
Many numerical methods that are used for solving PDEs
are mesh-based. However, the surface of a sphere cannot
be covered by a uniform or regular mesh that is singularity-
free. This makes meshfree methods an attractive alternative
for simulations over the earth. Here we use the RBF-FD
method from [4], which relies only on scattered nodes, and
allows for local refinement.

Assume there are N > n scattered nodes. A differential
operator D is approximated at the location xc by using a
weighted combination of the function values uk, k = 1, . . . , n
at the n nearest neighboring nodes. That is,

(Du)
∣∣
x=xc

≈
n∑

k=1

wkuk, (1)

where the weights wk are determined by requiring the ap-
proximation to be exact when the solution can be exactly
represented by the basis underlying the approximation, which
here consists of radial basis functions centered at the scat-
tered nodes. Assuming that u(x) ≈

∑n
k=1 λkφ(‖x− xk‖) ≡∑n

k=1 λkφk(x) yields the following linear system of equations
for the weights
φ1(x1) φ1(x2) · · · φ1(xn)
φ2(x1) φ2(x2) · · · φ2(xn)

...
...

. . .
...

φn(x1) φn(x2) · · · φn(xn)

w1

w2

...
wn

 =

Dφ1(xc)
Dφ2(xc)

...
Dφn(xc)

 .
Figure 1 provides a graphical representation of one differ-
entiation stencil. To solve the actual PDE, the stencils are
used for approximation of the spatial PDE operator at each
node point and the results are assembled into a global dif-
ferentiation matrix. For the time-derivative, the classical
fourth order Runge-Kutta method is used. The SWE are of
hyperbolic type, which motivates the choice of an explicit
time-stepping method. However, stability cannot be guar-
anteed in the scattered node setting and therefore a hyper-
viscosity operator of order four is also incorporated into the
scheme. This represents a small amount of diffusion, which
acts as stabilizer without significantly altering the solution
values.

4. THE SEQUENTIAL MATLAB CODE
The first implementation of the RBF-FD SWE solver was
done in MATLAB. However, as reported in [4], even the
pilot implementation was 4–10 times faster than the latest

Figure 1: This is an illustration of a 75 node stencil.
The differential operator is evaluated at the node
marked with a square. The size of the markers indi-
cates the magnitude of the stencil weights and the
color indicates the signs. The nodes marked with
green rings (further away) are not included in the
stencil.

C++ discontinuous Galerkin solver developed at the Na-
tional Center for Atmospheric Research (NCAR), Boulder,
CO, USA.

The main elements of the code consist of first setting up the
necessary matrices and then performing the time stepping
in a loop as shown in the listing below.

% Build differentiation matrices
% and hyperviscosity operator
[DPx , DPy , DPz , L] = rbfmatrix_fd ();

for i=1: timesteps
% Runge -Kutta
F1 = dt*rhs(H);
F2 = dt*rhs(H + 0.5*F1);
F3 = dt*rhs(H + 0.5*F2);
F4 = dt*rhs(H + F3);
H = H + (1/6)*(F1 + 2*F2 + 2*F3 + F4);

end

Profiling of the MATLAB program shows that the majority
of the time (74% for the tested problem size) is spent in the
evaluation of the right hand side, i.e, the rhs() function.
Therefore, this is the part of the program that we target
initially.

Further examining the computations in the right hand side
function, we find that over 90% of the time is spent in sparse
matrix-vector multiplications between differentiation matri-
ces and intermediate solution vectors. Hence, to parallelize
this code efficiently amounts to handling sparse unstructured
matrix-vector multiplications, which is a classical example
of bandwidth bound operations that are hard to get to scale
on multicore processors.

5. THE PARALLEL C++ CODE
We consider the time-stepping loop only and start by per-
forming basic optimizations of the sequential code. For ex-
ample, different differentiation matrices that have the same
access patterns in the algorithm are stored together in the
same structure. Furthermore, by noting that each instance
of the solution value is of length four (u, v, w, h), we were
able to employ AVX (Advanced Vector Extensions to the

−150 −100 −50 0 50 100 150

−50

0

50

5000

5200

5400

5600

5800

Day 0 Day 15

Figure 2: A solution to the shallow water test case “Flow over an isolated mountain”. Left: The initial
condition with laminar flow. Right: After two weeks, the mountain (dashed circle) has caused global scale
perturbations in the flow.

← ←

Row-wise 2D

Figure 2: Two choices of blockings to divide the
algorithm into tasks. The data that a task needs to
touch is shaded.

x86 instruction set) SIMD instructions in the sparse matrix-
vector multiplications (SpMV), which are significantly more
efficient than performing four single instruction operations.
The overall speedup from the MATLAB implementation to
the sequential optimized C++ code was 3.3 times.

For the parallel implementation, we use the SuperGlue li-
brary [9, 8] for dependency-aware task-based parallel pro-
gramming, which has been developed by the first author. In
the SuperGlue run-time system, tasks are scheduled dynam-
ically. This reduces the burden of the programmer signifi-
cantly, it allows for flexibility in where tasks are executed,
and the run-time overhead has shown to be negligible. An
important principle in our view of task parallelism is that
tasks depend on data, not on other tasks. This allows us to
add dependencies without having to synchronize with other
tasks. We use a system with data versioning, which could be
described as tasks depending on futures, then when the fu-
ture is realized, the task can execute. It should be noted that
we do not duplicate data. The versions replace each other as
they become available. Other properties of the SuperGlue
implementation is that dependencies are deduced at run-
time, there is one ready task queue per worker thread, load-
balancing is achieved by task-stealing, and waiting tasks are
queued at the required data.

A computational problem can be divided into tasks in differ-
ent ways. Too small tasks make the overhead from schedul-
ing visible, whereas too large tasks are hard to schedule effi-
ciently and may lead to reduced parallelism. Figure 2 shows
two alternative ways of blocking the matrix in order to de-
fine tasks. The choice of blocking determines which data
each task needs to access, which in turn has impact on the
performance. The row-wise blocking has the advantage of

producing tasks with an equal amount of work, since the
number of nonzeros in each row equals the stencil size. The
task are also larger than in the 2D-blocking case. However,
each task needs to access the full vector. In the 2D-blocking
case, we create tasks that only write to a single block of the
output vector, in order to maximize parallelism. This leads
to smaller tasks and different amounts of work per task, but
also creates more potential parallelism. When the blocks
are small enough, we can use 16 bit indices instead of 32 bit
indices within the blocks, to save memory bandwidth.

6. EXPERIMENTAL RESULTS
We present experimental results for two different problem
sizes N = 6400 and N = 25 600. The first problem should be
considered as very small, which makes it even more difficult
to run efficiently in parallel. In both cases, the stencil size is
n = 31. The simulation is carried out for one day (real time),
which corresponds to 144 time steps with 10 minute steps.
The actual execution time is a few seconds. Figure 3 shows a
section of the execution traces for each problem. For the very
small problem, the best result is achieved when using row
blocking, with the same number of block rows as the number
of cores. This results in a very regular schedule even though
it is dynamically created. For the larger problem size, the
2D-blocking with more diagonal blocks than cores is most
successful. This results in a more chaotic schedule. However,
in both cases, the achieved parallelism is high. That is, the
schedule is tight and the amount of idle time is small, less
than 8% for the small problem and less than 5% for the large
problem.

Even though the scheduling looks very good, we need to look
at the actual numbers to find out if the algorithm scales.
Table 1 shows the speedup over the serial C++ code. For
the small problem, the result for 6 cores is really good, but
the problem is too small to run on a larger system than
that. The larger problem uses more memory, hence the lower
speedup at 6 cores, but it scales better.

As discussed earlier, the main reason we do not get lin-
ear speedup is the bandwidth contention. To understand
in more detail how this affects performance, we break down
the execution in different parts and then compute the total
time spent in each part in the sequential case and in the par-
allel case. Figure 4 shows the increase in computational time

Row-wise blocking with 6× 1 blocks, run on 6 cores

2D-blocking with 15× 15 blocks, run on 12 cores

Time

Figure 3: Parts of the execution traces for two dif-
ferent examples. Each triangle represents a task.
Different colors indicate different types of tasks.

Table 1: Scaling at different problem sizes. Speedup,
percentage of linear speedup, and best block config-
uration.
Cores N = 6400 N = 25600

1 1.0 100.0% (1× 1) 1.0 100.0% (1× 1)
6 5.2 86.7% (6× 1) 4.5 75.2% (6× 1)

12 5.9 49.2% (12× 1) 6.3 52.5% (15× 15)

for different configurations, and in fact, this reflects the in-
creased time to access memory when several cores are using
the memory bandwidth concurrently. The two main parts
of the execution time represent the application of the dif-
ferentiation matrices and the hyperviscosity operator. The
latter is computationally heavier and therefore scales slightly
better.

How to schedule in order to decrease the resource contention
is discussed in [10]. However, this approach only improves
the situation if there are tasks that do not need the resource
in question that can be interleaved with the resource bound
tasks. This is not the case here, since all the heavy tasks are
similar in nature.

Problem size N = 6400

1 CPU, 1×1 100% 100%

6 CPUs, 6×1 107% 104%

Problem size N = 25600

1 CPU, 1×1 100% 100%

6 CPUs, 6×1 129% 118%

12 CPUs, 15×15 186% 177%

Time

Differentiation Hyperviscosity Other RHS R-K

Figure 4: The total time spent in the different com-
putational tasks. The increase in time in the parallel
cases is due to resource contention.

7. CONCLUSIONS
We have shown that we can use our task based framework to
parallelize a real application problem solved by the RBF-FD
method, and that we can achieve reasonable speedup even
though the problem is sparse and bandwidth limited.

Compared with the original MATLAB code we have achieved
a speedup of more than 20 times through the combination
of code optimizations (3.3×) and parallelization (6.3×). Fu-
ture work involves much larger problems, distributed mem-
ory systems, and hybrid parallelizations.

8. REFERENCES
[1] C. Augonnet, S. Thibault, R. Namyst, and P.-A.

Wacrenier. StarPU: a unified platform for task
scheduling on heterogeneous multicore architectures.
Concurrency Computat. Pract. Exper., 23(2):187–198,
2011.

[2] E. F. Bollig, N. Flyer, and G. Erlebacher. Solution to
PDEs using radial basis function finite-differences
(RBF-FD) on multiple GPUs. J. Comput. Phys.,
231(21):7133–7151, 2012.

[3] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta,
L. Martinell, X. Martorell, and J. Planas. OmpSs: a
proposal for programming heterogeneous multi-core
architectures. Parallel Processing Letters,
21(2):173–193, 2011.

[4] N. Flyer, E. Lehto, S. Blaise, G. B. Wright, and
A. St-Cyr. A guide to RBF-generated finite differences
for nonlinear transport: shallow water simulations on
a sphere. J. Comput. Phys., 231(11):4078–4095, 2012.

[5] N. Flyer and G. B. Wright. A radial basis function
method for the shallow water equations on a sphere.
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.,
465(2106):1949–1976, 2009.

[6] E. H. Rubensson and E. Rudberg. Chunks and tasks:
a programming model for parallelization of dynamic
algorithms. arXiv:1210.7427 [cs.DC], 2012.

[7] J. Schmidt, C. Piret, N. Zhang, B. J. Kadlec, D. A.
Yuen, Y. Liu, G. B. Wright, and E. O. D. Sevre.
Modeling of tsunami waves and atmospheric swirling
flows with graphics processing unit (GPU) and radial
basis functions (RBF). Concurrency Computat. Pract.
Exper., 22:1813–1835, 2010.

[8] M. Tillenius. Leveraging Multicore Processors for
Scientific Computing. Licentiate thesis, Department of
Information Technology, Uppsala University, Sept.
2012.

[9] M. Tillenius and E. Larsson. An efficient task-based
approach for solving the n-body problem on multicore
architectures. In PARA 2010: State of the Art in
Scientific and Parallel Computing. University of
Iceland, Reykjav́ık, 2010, 4 pp.

[10] M. Tillenius, E. Larsson, R. M. Badia, and
X. Martorell. Resource aware task scheduling. In Proc.
HiPEAC: PARMA Workshop. ACM Press, New York,
2013, 6 pp.

[11] D. L. Williamson, J. B. Drake, J. J. Hack, R. Jakob,
and P. N. Swarztrauber. A standard test set for
numerical approximations to the shallow water
equations in spherical geometry. J. Comput. Phys.,
102(1):211–224, 1992.

