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Option Pricing using Radial Basis Functions

U. Pettersson,(1) E. Larsson,(2) G. Marcusson,(3) andJ. Persson(4)
Abstract: In this paper, we have implemented a radial basis function (RBF) based method
for solving the Black–Scholes partial differential equation. The application we have cho-
sen is the valuation of European call options based on several underlying assets. We have
shown that by appropriate choices of the RBF shape parameterand the node point place-
ment, the accuracy of the results can be improved by at least an order of magnitude. We
have also looked at how and where to implement boundary conditions in more than one
dimension.
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1 Introduction

The financial markets are becoming more and more complex, with trading not only of
stocks, but also of numerous types of financial derivatives.The market requires updated
information about the values of these derivatives every second of the day. This leads to a
huge demand for fast and accurate computer simulations.

In this study, we take a special interest in European call options based on several
underlying assets. The values of such options can be determined by solving the Black–
Scholes equation. The number of assets then corresponds to the number of dimensions in
the partial differential equation. “The curse of dimensionality” makes this task increas-
ingly difficult in higher dimensions and it is necessary to find fast methods with very low
memory requirements.

RBF approximation is a promising candidate method. With infinitely smooth RBFs
the method can be spectrally accurate, meaning that the required number of node points
for a certain desired accuracy is relatively small. The meshfree nature of the method
makes it easy to use in higher dimensions and also allows for adaptive node placement.
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The RBF approach has been explored previously by other authors [4, 3, 7, 1]. Our
specific angle in this context is an investigation of what canbe achieved by optimizing
the method parameters. Furthermore, we look at how boundaryconditions should be
implemented and where they are needed.

2 The multi-dimensional model problem

2.1 The Black–Scholes equation

The Black–Scholes equation is a time-dependent linear partial differential equation. Nor-
mally, it is posed as a final value problem. For ease of notation and computation, we here
use a version that has been transformed to an initial value problem and also scaled to have
dimensionless variables [6]. The form is8<: ∂

∂t̂
P(t̂;x) = LP(t̂;x); t̂ 2 R+ ; x2 Rd+ ;

P(0;x) = Φ(x); x2 Rd+ ; (1)

where

LP= 2r̄
d

∑
i=1

xi
∂P
∂xi

+ d

∑
i; j=1

[σ̄σ̄�℄i j xix j
∂2P

∂xi∂x j
�2r̄P: (2)

The coefficient ¯r is the scaled short interest rate, andσ̄ is the scaled volatility. An example
of a contract function for a European basket option is given by

Φ(x) = max

 
0; 1

d

d

∑
i=1

xi� K̄

! ; (3)

where the scaled strike price in our case isK̄ = 1.

2.2 Boundary conditions

For computational purposes, we need to restrict the problemto a finite domain. Because
we are using a meshfree method, we have the opportunity to choose the artificial far-field
boundary as we like. With the contract function above, it makes sense to use a boundary
surface of the type∑d

i=1xi = C, where the constantC is chosen to bring the surface far
enough from the origin. On this surface, we can use the asymptotic solution

P(t̂;x)! 1
d

d

∑
i=1

xi� K̄e�2r̄ t̂ ; kxk! ∞: (4)

The near-field boundary can be seen as the single pointx= 0, and there we enforce

P(t̂;0) = 0: (5)

We have not specified any conditions for the parts of the boundary surface that are given
byx j � 0 for somej. It has actually been shown that, mathematically, this is not needed [5].
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2.3 Measuring the error

When measuring the error in the RBF approximation it is important to remember the real-
life background of the problem we are solving. In option trading the region of interest
is where the mean stock price is close to the strike price. When the mean stock price is
much lower or higher than the strike price, the probability of the stock price reaching the
strike price is very low. Hence in these situations the option is worth either nothing, or
the difference between the mean stock price and the strike price. We define the region

of interest to be allx for which 1
d ∑d

i=1xi 2 h K̄
3 ; 5K̄

3

i ; and propose a financial error norm

given by the maximum error over this region at the final timet̂ = T, i.e., the exercise time
of the option.

3 RBF approximation

We approximate the solution of (1) with a time-dependent linear combination of RBFs
given by

u(t̂;x) = N

∑
k=1

λk(t̂)φ(εkx�xkk) = N

∑
k=1

λk(t̂)φk(x): (6)

The equation then becomes

N

∑
k=1

λ0
k(t̂)φk(x) = N

∑
k=1

λk(t̂)L φk(x); (7)

When we solve the PDE, we work with function values at the nodepoints. That is, we
solve for the vectoru(t̂) = (u(t̂;x1); : : : ;u(t̂;xN))T given by

u(t̂) = Aλ(t̂); (8)

whereAi j = φ j(xi) andλ(t̂) = (λ1(t̂); : : : ;λN(t̂))T .

4 Time-stepping

For the time evolution of the problem, we use the BDF–2 method[2] with a constant time
stepk. Let t̂n = kn and letun� u(t̂n). Then the method can be written

α0un+α1un�1+α2un�2

k
= F n;

whereα j are constant coefficients andF n = ( f n
1 ; : : : ; f n

N)T approximates the differential
operator in space at the node points. For pointsxi where we enforce the Black–Scholes
equation, (7) and (8) lead to

f n
i = biλ

n = biA
�1un; (9)

wherebi = (L φ1(xi); : : : ;L φN(xi)):
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It is important to implement boundary conditions in such a way that they are in-
corporated into the time scheme and not adjusted afterwards. For Dirichlet conditions
u(t̂;xi) = g(t̂), this can easily be done by defining

f n
i = α0g(t̂n)+α1g(t̂n�1)+α2g(t̂n�2)

k
: (10)

Assuming that the initial boundary values are correct, thisyields the desired result. Fi-
nally, combining (9) and (10), we get the overall time-stepping scheme(I � k

α0
BA�1)un = k

α0
gn� kα1

α0
un�1� kα2

α0
un�2;

where

Bi;1:N = � 0; xi Dirichlet point,
bi; xi Black–Scholes point,

gn
i = � f n

i ; xi Dirichlet point,
0; xi Black–Scholes point.

Remark 1:Sometimes in the literature,d�1 dimensional problems are solved at the
boundaries where the PDE collapses. These are the boundaries where we do not use
any special conditions. Our reasons are both the mathematical ones given in [5], and the
fact that if we time-step these points along with the rest, weautomatically use the lower
dimensional differential equation where it is appropriate. This should provide the correct
time evolution everywhere.

Remark 2:For second order finite difference methods, linear extrapolation conditions
are often used as numerical boundary conditions, but for RBFs this simply does not make
any sense.

5 Numerical experiments

We have used multiquadric RBFs in all the experiments. The far-field boundary surface
was given by allx for which 1

d ∑d
i=1xi = 4K̄. The parameters were set to ¯r = 5=9, σ̄ = 1 in

one dimension, and̄σ= 1 on the diagonal and̄σ= 1=6 off the diagonal in two dimensions.
The time-step was chosen small enough to not affect the result and the final time was
T = 0:045, corresponding to 1 year.

5.1 Node distribution

Because our interest is in the financial norm of the error, we can gain accuracy by using
a denser node distribution in the region of interest and a sparser distribution outside this
region. In other words we gain accuracy in the region where wewant an accurate solution
by lowering the accuracy in the region where the solution is of little interest (see Figure 1).
This strategy improves the result by one order of magnitude for both the one-dimensional
and the two-dimensional problem, without increasing the computational cost.

5.2 Choosing the shape parameter value

The optimal shape parameter value for an RBF method has a non-coincidental connection
to the problem at hand. It is therefore likely that a formula for the best choice can be
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Figure 1: Errors for uniform (dashed) and non-uniform (solid) node distributions in 1D.
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Figure 2: Error as function ofε for differentN. The stars showε = 1+N=20.

found. However, in practise, the global optimum of the shapeparameter value is often
hidden by ill-conditioning. This means that we must at the present time settle for finding
a choice of the shape parameter that gives good results for any number of points, although
it might not be the optimal choice theoretically. We have found that in one dimension the
formulaε = 1+N=20, gives a rather good result for the values ofN that we have tested
(see Figure 2). For two-dimensional problems it seems that the best results are obtained
for the smallest possibleε-value for which the problem is not too ill-conditioned.

5.3 Accuracy in space

One of the main advantages of the RBF method is that it can givespectral accuracy. This
has been shown theoretically for some types of problems and numerically for a wider
range of problems. We have tested the accuracy in space for the one-dimensional Black–
Scholes problem, but have unfortunately found that the accuracy does not seem to be
spectral but rather algebraic (see Figure 3). The error is approximatelyE(N) � 59N�3.
There may be compound reasons for this, but one likely sourceis the discontinuous deriva-
tive in the initial data. An analysis of the results for a European put option in [7] shows a
similar convergence rate.
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Figure 3: The error as a function ofN (logarithmic axes).

6 Work in progress

We have not shown any high dimensional results here. We have some two-dimensional
results and will produce more before the conference. Higherdimensions will be looked
into later. A thorough comparison of the computational costs and memory requirements
of the RBF method and the finite difference method described in [6] is under way, but
not yet finished. We are also looking at ways to recover the spectral accuracy, including
multiscale approximation and least squares.
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