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Option Pricing using Radial Basis Functions

U. Petterssoft) E. Larsson? G. Marcusson® andJ. Perssof

Abstract: Inthis paper, we have implemented a radial basis functiddH{Fbased method

for solving the Black—Scholes partial differential eqoati The application we have cho-
sen is the valuation of European call options based on séuederlying assets. We have
shown that by appropriate choices of the RBF shape pararaetgthe node point place-
ment, the accuracy of the results can be improved by at leastder of magnitude. We

have also looked at how and where to implement boundary tondiin more than one

dimension.

Keywords:Radial basis function, Black—Scholes equation, multiehsional, boundary
conditions.

1 Introduction

The financial markets are becoming more and more complek, tatling not only of
stocks, but also of numerous types of financial derivatiidge market requires updated
information about the values of these derivatives evergisgof the day. This leads to a
huge demand for fast and accurate computer simulations.

In this study, we take a special interest in European caiboptbased on several
underlying assets. The values of such options can be detedny solving the Black—
Scholes equation. The number of assets then corresporfusmaimber of dimensions in
the partial differential equation. “The curse of dimensilty” makes this task increas-
ingly difficult in higher dimensions and it is necessary talffast methods with very low
memory requirements.

RBF approximation is a promising candidate method. Witmitély smooth RBFs
the method can be spectrally accurate, meaning that the@edgumber of node points
for a certain desired accuracy is relatively small. The rfreghnature of the method
makes it easy to use in higher dimensions and also allowsifaptare node placement.
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The RBF approach has been explored previously by other esufp3, 7, 1]. Our
specific angle in this context is an investigation of what barachieved by optimizing
the method parameters. Furthermore, we look at how bounztarglitions should be
implemented and where they are needed.

2 The multi-dimensional model problem

2.1 The Black—Scholes equation

The Black—Scholes equation is a time-dependent lineaiapdifferential equation. Nor-
mally, it is posed as a final value problem. For ease of notatia computation, we here
use a version that has been transformed to an initial vallggm and also scaled to have
dimensionless variables [6]. The form is
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The coefficient is the scaled short interest rate, anis the scaled volatility. An example
of a contract function for a European basket option is giwen b
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where the scaled strike price in our cas&is: 1.

2.2 Boundary conditions

For computational purposes, we need to restrict the probbemfinite domain. Because
we are using a meshfree method, we have the opportunity twsetthe artificial far-field
boundary as we like. With the contract function above, it asagense to use a boundary
surface of the typgid:lxi = C, where the constar@ is chosen to bring the surface far
enough from the origin. On this surface, we can use the asytiogblution
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The near-field boundary can be seen as the single geifd, and there we enforce
P(f.0) =0. (5)

We have not specified any conditions for the parts of the bagnsurface that are given
by xj = 0 for somej. It has actually been shown that, mathematically, this isireded [5].
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2.3 Measuring the error

When measuring the error in the RBF approximation it is intgoairto remember the real-
life background of the problem we are solving. In option ingdthe region of interest
is where the mean stock price is close to the strike price. Whe mean stock price is
much lower or higher than the strike price, the probabilitjhe stock price reaching the
strike price is very low. Hence in these situations the apigworth either nothing, or
the difference between the mean stock price and the strike.pWWe define the region
of interest to be alk for which %ij:lxi € {%, %] , and propose a financial error norm
given by the maximum error over this region at the final tinseT, i.e., the exercise time
of the option.

3 RBF approximation

We approximate the solution of (1) with a time-dependergdincombination of RBFs
given by

N N
u(f,x) = 5 A oellx—xd) = S MOo(x). (6)
K=1 K=1
The equation then becomes
N o N
S MO = T MO LK), (7)

When we solve the PDE, we work with function values at the noaiats. That is, we
solve for the vectou(f) = (u(f,x,),...,u(f,xy))" given by

u(t) = An(D), (8)
whereAi; = @;(x) andA(f) = (A1 (D),....An(D)T.

4 Time-stepping

For the time evolution of the problem, we use the BDF-2 mefBpdith a constant time
stepk. Letf" = knand letu" ~ u(f"). Then the method can be written

aou" + au" 1 4 apu 2
K

=N

whereq; are constant coefficients amd” = (f,..., f{)T approximates the differential
operator in space at the node points. For paxnishere we enforce the Black—Scholes
equation, (7) and (8) lead to

f? = bA" = AU, 9)

whereb = (L@1(%), .-, LON(X)).-
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It is important to implement boundary conditions in such aywlaat they are in-
corporated into the time scheme and not adjusted afterwdtds Dirichlet conditions
u(t,x) = g(f), this can easily be done by defining

n 0og(f™ +o19(f" 1) + azg(f"2)
_ - _

Assuming that the initial boundary values are correct, yieéds the desired result. Fi-
nally, combining (9) and (10), we get the overall time-sieggscheme

fi (10)

k k ki ki
(l _ —BA_l)gn — _gn _ ﬂgn—l _ ﬂgn—Z7
Oo Oo Oo Oo
where
Bi 1 = 0, x; Dirichlet point, . o' — f", x; Dirichlet point, .
b b, X Black—Scholes point, * 0, x; Black—Scholes point.

Remark 1:Sometimes in the literaturd,— 1 dimensional problems are solved at the
boundaries where the PDE collapses. These are the bounddrere we do not use
any special conditions. Our reasons are both the matheathaties given in [5], and the
fact that if we time-step these points along with the restaw®matically use the lower
dimensional differential equation where it is appropridtbis should provide the correct
time evolution everywhere.

Remark 2:For second order finite difference methods, linear extamm conditions
are often used as numerical boundary conditions, but forRBiS simply does not make
any sense.

5 Numerical experiments

We have used multiquadric RBFs in all the experiments. Thédal boundary surface
was given by alk for which % 59 1% = 4K. The parameters were setrte-5/9,0 = 1 in
one dimension, and = 1 on the diagonal and = 1/6 off the diagonal in two dimensions.
The time-step was chosen small enough to not affect thetrasdlthe final time was
T = 0.045, corresponding to 1 year.

5.1 Node distribution

Because our interest is in the financial norm of the error, aregain accuracy by using
a denser node distribution in the region of interest and asspalistribution outside this
region. In other words we gain accuracy in the region whergveugt an accurate solution
by lowering the accuracy in the region where the solutiori igtte interest (see Figure 1).
This strategy improves the result by one order of magnitodedth the one-dimensional
and the two-dimensional problem, without increasing thagotational cost.

5.2 Choosing the shape parameter value

The optimal shape parameter value for an RBF method has aginoidental connection
to the problem at hand. It is therefore likely that a formwa the best choice can be
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Figure 1: Errors for uniform (dashed) and non-uniform @ptiode distributions in 1D.

10 °F

10°F

10
Figure 2: Error as function of for differentN. The stars show = 1+ N/20.

found. However, in practise, the global optimum of the shp@eameter value is often
hidden by ill-conditioning. This means that we must at thespnt time settle for finding
a choice of the shape parameter that gives good resultsyaenanber of points, although
it might not be the optimal choice theoretically. We haverfdthat in one dimension the
formulag = 1+ N/20, gives a rather good result for the valuedNathat we have tested
(see Figure 2). For two-dimensional problems it seems tleabéest results are obtained
for the smallest possibkevalue for which the problem is not too ill-conditioned.

5.3 Accuracy in space

One of the main advantages of the RBF method is that it canspieetral accuracy. This
has been shown theoretically for some types of problems antkrically for a wider
range of problems. We have tested the accuracy in spacegfontdimensional Black—
Scholes problem, but have unfortunately found that the racgyudoes not seem to be
spectral but rather algebraic (see Figure 3). The errorpsoxmatelyE (N) ~ 59N 3,
There may be compound reasons for this, but one likely sasitbe discontinuous deriva-
tive in the initial data. An analysis of the results for a Bugan put option in [7] shows a
similar convergence rate.
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Figure 3: The error as a function bf (logarithmic axes).

Work in progress

We have not shown any high dimensional results here. We awne $wo-dimensional
results and will produce more before the conference. Hidimaensions will be looked
into later. A thorough comparison of the computational s@std memory requirements
of the RBF method and the finite difference method describgé]iis under way, but
not yet finished. We are also looking at ways to recover thetsgleaccuracy, including
multiscale approximation and least squares.

References

[1]

2]

[3]

[4]

Fasshauer G. E., Khalig A. Q. M., Voss D. A., Using mesafepproximation for
multi-asset American option problems, J. Chinese Ingifirigineers 27 (2004), pp.
563-571.

Hairer E., Ngrsett S. P., Wanner G., Solving ordinaryedténtial equations I, 2nd
ed. Springer-Verlag, Berlin 1993.

Hon Y. C., A quasi-radial basis functions method for Aman options pricing,
Comput. Math. Appl., 43 (2002), pp 513-524.

Hon Y. C., Mao X. Z., A radial basis function method for giwlg options pricing
model, J. Financial Engineering, 8 (1999), pp.1-24.

[5] Janson S., Tysk J., Feynman—Kac formulas for Black—fshtype operators,

[6]

preprint (2004).

Persson J., von Sydow L., Pricing European multi-aspgbos using a space-time
adaptive FD-method, Comput. Vis. Sci., submitted (2003).

[7] Wu Z., Hon Y. C., Convergence error estimate in solvingeflbboundary diffusion

problem by radial basis functions method, Engrg. Anal. Rbuglem., 27 (2003),
pp. 73-79.



