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1. Introduction

Recent destabilization of weather patterns is already causing unpleasant consequences
for the humanity of the present world. That brings a sound reason to strengthen cur-
rent research being done on numerical methods that help specialists from the field of
geophysics to predict both, short- and long-term weather dynamics. The resulting algo-
rithms should be as accurate as possible, but at the same time slim in terms of runtime
and fully employable in terms of running them on several computing resources in paral-
lel.

Definition 1.1 Let x = (x, y, z) be an arbitrary location on the surface of the Earth (sphere),
t denote the time, u = u(x, t) represent the wind field, h = h(x, t) the geopotential height,
f = f(x) the Coriolis force and g the gravitational constant.

The shallow-water equations in Cartesian coordinate system then read as:

ut = −P
î

(u · P∇)u+ (x× u)f + gP∇h)
ó

ht = −P∇ · (hu),

where P is a projection operator onto the spherical surface [6].

The shallow-water equations observed on the surface of the sphere serve as one of the
most used benchmarking models of climate. Many already existing numerical approaches
for its solution are available and new ones are being developed frequently, but their com-
putational complexity is often high since they are based on global dependencies between
discretization elements. For the same reason, their potential for parallelization is poor.
Our mission is to develop a parallel simulation tool from scratch, tackling the spatial dis-
cretization using a localized version of the family of Radial basis function methods for
solving partial differential equations called Radial basis function – partition of unity method
(RBF-PUM). The investigations so far indicate a high accuracy when dealing with smooth
problems for an acceptable computational cost invested. However, no parallel approach
for using RBF-PUM on PDEs has yet been investigated, but the literature briefly suggests
the method to be embarrasingly parallel for interpolation problems [2], which is a base
for PDE problems. In this sense, we use a shared memory task-based parallel framework
Superglue [21], which has so far shown good results when applied to similiar problems.
Finally, the spatial solution is in time forwarded by an explicit method, the 4th order
Runge-Kutta. The solutions with respect to accuracy and runtime which are obtained us-
ing our RBF-PUM framework are compared to an already existing implementation using
Radial basis functions generated finite differences (RBF-FD) [22] [5].

The main questions that are to be addressed throughout this work are:

• Is RBF-PUM appropriate for approaching nonlinear hyperbolic problems in combi-
nation with explicit time-stepping schemes?

• Are there any benefits delivered in comparison with similiar methods which were
already applied to the shallow-water equations?
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1. Introduction

• How does RBF-PUM in combination with explicit time-stepping scale when imple-
mented as a parallel algorithm?

In Chapter 2 we give an introduction to RBF-PUM which is our main method in question,
but also to RBF-FD since it serves as a reference when performing the comparison. Both
of these methods are based on a global RBF method (RBF-Direct), also described in this
chapter.

Chapter 3 gives an introduction to the task-based parallel paradigm and to the paral-
lel framework SuperGlue.

Chapter 4 deals with the space discretization of the shallow-water equations using RBF-
PUM. Here, the differential operators are expanded in continuous and RBF-PUM sense.
We also provide observations on how to form an open cover on the sphere, which hyper-
viscosity approach we choose and link the overlap of patches to the stability criteria. At
the end, we outline the sequential algorithm of the derived numerical scheme.

Chapter 5 handles the strategy for parallel implementation of the sequential algorithm
described at the end of Chapter 4, i.e. how the problem is split into tasks with certain
dependencies. We also present a dense form for performing local matrix-vector products.

Chapter 6 checks how the implemented numerical scheme performs with respect to ac-
curacy. Results are compared to RBF-FD [5] [22].

Chapter 7 tests how does the implemented parallel simulation tool perform with respect
to runtime and scalability. Again, the results are compared to results obtained using RBF-
FD [22].

In Chapter 8 we draw the conclusions based on Chapter 6 and Chapter 7. Lastly, we
outline the possibilities for future research in Chapter 9.

4



2. Numerical methods

This chapter describes the family of Radial basis function methods which are appropri-
ate for approximation of partial differential equations. Global RBF approximation is per-
formed using RBF-Direct, while RBF-FD and RBF-PUM are its localized versions. The
focus within this work is mainly put on RBF-PUM, but also on RBF-FD since this is the
method upon which we compare our RBF-PUM solutions.

2.1. Global RBF approximation (RBF-Direct)

The basic tool is going to be an interpolant to data obtained at scattered points xk ∈
R
d, k = {1, 2, ..., N} formulated as,

s(x) =
N∑

k=1

ckφ(||x− xk||), (2.1)

where || · || is an Euclidean norm on R
d and φk = φ(||x− xk||) is a chosen (conditionally)

positive definite radial function.

Definition 2.1 Let φ : Rd → R. Then φ(x) = φ(||x||) is called a radial function.

Remark 2.2 We extend the latter definition denoting that x are nodes distanced from a node xi:
φ(||x−xi||) = φ(x−xi). This is the final notation going to be used for the rest of this document.

Taking (2.1) and substituting s(x)
∣
∣
∣
x=xk

= f(xk), x ∈ R
d, k = {1, 2, ..., N} where f(xk) are

known values evaluated in scattered points xk, gives us a linear system of equations:

Ö

φ(||x1 − x1||) φ(||x1 − x2||) . . . φ(||x1 − xN ||)
...

. . .
...

φ(||xN − x1||) φ(||xN − x2||) . . . φ(||xN − xN ||)

è

︸ ︷︷ ︸

A

Ö

c1
...
cN

è

︸ ︷︷ ︸

c

=

Ü

f(x1)
...

f(xN )

ê

︸ ︷︷ ︸

f

, (2.2)

It was shown in [19] that for φk = φ(||x−xk||) being positive definite functions, the matrix
A ∈ R

N×N is positive definite meaning A is non-singular and therefore a unique solution
to (2.2) exists. Moreover A is proven to also be non-singular for certain cases of using
conditionally positive definite functions [16].

We shall refer to the interpolation method described above as RBF-Direct.

2.1.1. Properties of RBF-Direct

The RBFs we are interested in for applying to our problems are usually infinitely smooth
and such functions posses a shape parameter ε which is of great importance when it
comes to stability and convergence.
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2. Numerical methods

Definition 2.3 Let the shape parameter ε → 0. Then we refer to the regime of resulting φ(x −
xk) = φ(||x− xk||) as a nearly flat basis function regime.

When the RBFs are in the near-flat regime then the matrix from (2.2) becomes ill-conditioned
[9]. These problems can be avoided using certain methods (RBF-QR [15], Contour-Pade
[11], RBF-RA [27]). On the other hand, the advantage of such a regime is in the method be-
ing more accurate up to some point. For certain infinitely smooth basis functions (Gaus-
sians, Multiquadrics,..) the method achieves spectral accuracy [17].

We posed all of our equations to be appropriate for scattered points. That is a great ad-
vantage of RBF over some conventional methods only working with equidistant points.
Besides, RBF interpolation is immune to certain problems regarding dimensionality, which
is a much wanted property since, for example, interpolation using polynomial basis when
using distinct nodes leads to a singular linear system (Mairhuber-Curtis theorem [2]).

That leaves us with the weakness of the method being ill-conditioned and in addition
not very practical for applications, considering that computational complexity is high
due to A being dense. This downside has been tackled using localized methods such as
RBF-FD (finite differences approach) and RBF-PUM (partition of unity approach).

2.1.2. On polynomials and RBF

There exists an alternative formulation of (2.1) where a multivariate polynomial compo-
nent up to some degree h is added to the interpolant,

s(x) =
N∑

k=1

ckφ(||x− xk||) +
p
∑

j=1

bjqj(x), (2.3)

where bj are coefficients and qj are monomials forming the basis ordered in lexicographic
order. For example, the highest degree h = 1 and number of dimensions d = 2 yield a
linear basis q = {1, x, y} consisting of p = 3 multivariate monomials. This approach
makes interpolation exact for the order of the highest degree of the resulting polynomial.
In order to guarantee a unique solution to (2.3), we have to produce the following p

additional constraints. Keeping in mind the example of the basis from above we write:
∑N

k=1 ck =
∑N

k=1 xkck =
∑N

k=1 ykck = ... =
∑N

k=1 qj(xk)ck = 0. In this spirit we present
the matrix-vector notation of an interpolation problem based on (2.3),

Ç

A Q

QT 0

åÇ

c

b

å

=

Ç

f

0

å

, (2.4)

where c = {c1, ..., cN}, b = {b1, ..., bp}, f = {f1, ..., fN} and submatrix Q ∈ R
N×p has

elements Qij = qj(xi).

That brings at least two beneficial properties [4]; improved accuracy at domain bound-
aries [8] and (for only including a 0-th degree monomial) improved accuracy of derivative
approximations, particularly avoiding oscillatory representations of constant data.

2.1.3. Approximation of the differential operators

Let a linear differential operator L act on u(x) in the following manner:

Lu(x) = g(x), x ∈ R
d. (2.5)

(2.6)

6



2.2. RBF-generated finite differences (RBF-FD)

Denoting xc, c = {1, 2, ..., N} as a “center point” we start seeking an approximation to L

using ansatz,

u(xc) =
N∑

k=1

ck φ(||xc − xk||)
︸ ︷︷ ︸

:=A(c,:),A∈RN×N

. (2.7)

Applying a differential operator L on (2.7) we obtain,

Lu(xc) =
N∑

k=1

ck Lφ(||xc − xk||)
︸ ︷︷ ︸

:=B(c,:),B∈RN×N

. (2.8)

We have to make a few additional observations. Expressing (2.7) and (2.8) in a matrix-
vector notation gives us:

f = Ac,

Lf = Bc,

in the same order. We observe that both equations use the same c. By plugging c = A−1f

to the second equation, we get:

Lf = Bc = BA−1f.

Since f represents u(x)|x=xc , we can deduce that BA−1 has to represent the “behavior”
of differential operator L. We can write:

D = BA−1, (2.9)

where D is a global differentiation matrix.

2.2. RBF-generated finite differences (RBF-FD)

The main idea behind localization of RBF using Finite differences is to calculate the solution

u(x)
∣
∣
∣
x=xc

, ∀xc ∈ Ω to a PDE with certain boundary conditions using neighboring points

only, and not all the center points as it is done using RBF-Direct.

Definition 2.4 Let n be a scalar value which represents a number of neighboring points around
xc with xc included. In the further procedure we aim for n ≪ N , where N is defined as the
number of all scattered center points xc.

The general framework for approximating a differential operator in xc remains the same
as in section 2.1.3 (all definitions also apply here), the only difference is that we now deal
with n instead of N scattered points.

We are on a mission to produce n weights specific for approximation of L in every xc.
These weights are organized in the local differentiation matrix d. Using proper indexing,
the weights are then put into the global differentiation matrix D which is highly sparse and
offers an opportunity to decrease the computational cost when solving Df = g.

Remark 2.5 The local differentiation matrix in RBF-generated finite differences case lives in R
n

i.e. it is a vector.
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2. Numerical methods

2.2.1. FD weights

Analogously to the well known Finite Difference method—where a differential operator is
discretized such that the approximation is accurate for the highest-possible level of-
polynomials—we are going to construct an approximation of operator L to be accurate
for the RBFs φk = φ(||x− xk||) which are involved in the stencil approximation. We refer
to [7] and write:

Lφ(||xc − xk||) =
n∑

k=1

akφ(||x− xk||). (2.10)

This gives us the following system of equations [5]:

Ö

φ(||x1 − x1||) φ(||x1 − x2||) . . . φ(||x1 − xn||)
...

. . .
...

φ(||xn − x1||) φ(||xn − xx||) . . . φ(||xn − xn||)

è

︸ ︷︷ ︸

A

Ö

a1
...
an

è

︸ ︷︷ ︸

a

=

Ö

Lφ(||xc − x1||)
...

Lφ(||xc − xn||)

è

︸ ︷︷ ︸

z

,

(2.11)
with dense matrix A ∈ R

n×n, weights a ∈ R
n and the approximated linear operator

z ∈ R
n. Matrix A and vector z are known, therefore, the RBF-FD weights a shall be

a = A−1z.

Remark 2.6 We can use these weights for approximation of L in only 1 point (xc). In order
to produce all the weights—which would then describe the approximation of operator L in every
center point—one has to solve N such small systems.

It is common to make the approximation of L also accurate for a certain degree of poly-
nomials in the same way and for the same reasons as indicated in chapter 2.1.2.

2.2.2. Global representation

For the purposes of further investigation, we want to produce a matrix D of size N ×
N , where the generated weights a are going to be put to a proper row with the proper
column index.

Definition 2.7 We define Γc as a subset of global indices {1, 2, ..., N} such that it contains in-
dices of neighboring elements of xc, c = {1, 2, ..., N} including the index of xc. Γc is usually
obtained by a kd-tree algorithm.

Definition 2.8 Let ãc ∈ R
N , c = {1, 2, ..., N} be a global representation of ac ∈ R

n for a
corresponding center point xc. That yields that ãc is partially filled with zeros. The non-zero
values are the weights ac(i), i = {1, 2, ..., n} which are put to proper places ãc(j), j ∈ Γc.

With the use of latter two definitions, we can acquire the matrix D.

Definition 2.9 Let D ∈ R
N×N be a matrix into which the vector of weights ac is filled row-wise

according to center points xc: D(c, :) = ac. We shall denote this matrix as a global differentia-
tion matrix.
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2.3. Radial basis function partition of unity method (RBF-PUM)

2.2.3. Solutions to PDEs

We consider the following PDE:

Lu(x) = g(x), x ∈ Ω ⊂ R
d, (2.12)

u(x) = b(x), x ∈ ∂Ω ⊂ R
d.

L acting on u(x) is approximated by the differentiation matrix D acquired above. The
remaining work to do is to impose the boundary conditions (Dirichlet in this example) to
D by setting the Dck which belong to the boundary to 1 and correcting the corresponding
rhs components gc to bc. When this is set the solution u(x) ∈ Ω can be obtained directly
by solving

Df = g. (2.13)

2.2.4. Properties

We are going to avoid any formalism in this part, since RBF-FD only serves us as a refer-
ence with which RBF-PUM is to be compared, but also due to the fact that some proper-
ties were obtained from numerical experiments.

As already mentioned before, the matrix D has a lot of zero elements (usually up to
99%) which is nice in terms of reduced computational costs and memory requirements.
RBF-FD produces a matrix with Nn non-zero values, while RBF-Direct produces a dense
D. Using sparse formats the memory requirement becomes O(N) vs O(N2). Within
convection problems (which is our case of interest), the computational cost of applying
D to perform a time step (matrix-vector product) for RBF-Direct case is O(N2) being
obviously much more than Nn ∝ O(N) within RBF-FD. It is true, however, one has
to obtain N inverses to matrices A in order to obtain the stencils ac which form D and the
overall cost for it is Nn3 ∝ O(N), but we treat this segment as a reusable preprocessing
stage when convective PDEs using explicit time-stepping are approached.

The price for decreased computational cost is usually a lowered order of accuracy and
RBF-FD is no exception. There are several empirical rates available. For example, [5]
provides the (algebraic) convergence rate of approximately O(

√
n) for implementation of

the shallow water equations on the sphere, which is not as good as the spectral O(
√
N)

originating from RBF-Direct applied to the same problem [6]. A curious reader might
want to look in [23], where the exact convergence properties were derived using Taylor
expansion for n ≤ 6. Furthermore, the authors have shown that the value of optimal ε
does not depend on the distance between center points xc.

2.3. Radial basis function partition of unity method (RBF-PUM)

The Partition of Unity method [1] has lately been adopted for purposes of localizing RBF-
Direct. The underlying idea is to subdivide the global domain to many small subdomains
and to approximate the solution on every subdomain separately in the RBF-Direct fash-
ion. In order to produce a global approximation domain using the subdomains, we apply
compactly supported functions on them and sum them up, i.e., we form the partition of
unity. The result is a method which produces a sparse system matrix and in some cases
preserves the good convergence properties of RBF-Direct.
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2.3. Radial basis function partition of unity method (RBF-PUM)

Remark 2.12 Having a look at Figure 2.1 we notice that n
(j)
ǫ → N gives us Ωj → Ω, meaning,

the bigger overlap between patches brings smaller locality (more populated global matrices).

To construct an interpolation on a single patch, we use (2.1) from RBF-Direct and write:

sj(x) =

nj∑

k=1

c
(j)
k φ(||x− xk||), x ∈ Ωj . (2.14)

We refer to sj(x) as a local interpolant. The equivalent matrix-vector representation reads:

A(j)c(j) = s(j), (2.15)

where, similarly as in (2.2) but now in a local sense, A
(j)
ik = Φ(||xi−xk||)

∣
∣
∣

(nj)

{i,k}=1
, c(j) ∈ R

nj

and for interpolating data given as fj(x) , s(j) = f (j) ∈ R
nj .

2.3.2. Towards global interpolation

We shall now use the local interpolants in such a way that they will together form a global
interpolation,

s(x) =
M∑

j=1

wj(x)sj(x), x ∈ Ω, (2.16)

where M is the number of patches covering the whole domain, sj(x) is an interpolant
defined on Ωj and wj : Ωj → R are compactly supported Ck, k ≥ 0 weight functions
forming the partition of unity i.e.:

M∑

j=1

wj(x) = 1, x ∈ Ω. (2.17)

Due to the properties of wj pointed out above we observe that wj(xi) = 0, ∀xi 6∈ Ωj

which gives a reduced number of summands in the (2.17) and (2.16),

∑

xi∈Ωj

wj(xi) = 1. (2.18)

The weight functions are often defined using Shepard’s method [2],

wj(x) =
Φj(x)

∑M
k=1Φk(x)

, (2.19)

where Φj(x) are compactly supported functions on Ωj . We evaluate these functions such
that:

Φ

(

||x−Xj ||
Rj

)

= Φ(||x−Xj ||), (2.20)

where Xj is the center of j-th patch and Rj is the radius measured from Xj to the closure
of Ωj . That assures us they are compactly defined on Ωj .

Remark 2.13 Φj(x) can be arbitrarily chosen as long as they are positive, provide compact sup-
port and are b-times differentiable if we are going to approximate a linear operator L of order
b.

11



2. Numerical methods

We can now indicate that using the partition of unity on a set of local interpolation
problems the global approximation space can be formed. Using (2.16), (2.17) and the fact
that the value f(xi) is to be used within the local interpolant such that sj(xi) = f(xi), we
write:

s(xi) =
M∑

j=1

wj(xi)sj(xi)

=
M∑

j=1

wj(xi)f(xi)

= f(xi)
M∑

j=1

wj(xi)

= f(xi) · 1 = f(xi).

The continuity of global solution is assured by letting sj(xk) = si(xk), ∀x ∈ Ωj ∩ Ωi.

2.3.3. Solutions to PDEs

Similarly to the approach described in subsection 2.2.3 we consider the PDE (2.12) and
look for an approximation ũ(x) to solution u(x) using similiar approach as in (2.16)
for sets of known points f(x) and g(x). Using s(xi) = f(xi), ∀xi ∈ Ω and s(xi) =
g(xi), ∀xi ∈ ∂Ω we write:

Lũ(xi) =
M∑

j=1

L
î

wj(xi)ũj(xi)
ó

= f(xi), ∀xi ∈ Ω, (2.21)

ũ(xi) =
M∑

j=1

wj(xi)ũj(xi) = g(xi), ∀xi ∈ ∂Ω,

where ũj(xi) denotes a local approximation on a patch Ωj , j = {1, .., nj} given in (2.14).

Remark 2.14 One should keep in mind that application of L to ũ(xi) has to be expanded using
the Leibniz rule. For a quick demonstration let us consider L = ∆. Then ∆

î

wj(xi)ũj(xi)
ó

=
∆wj(xi)ũj(xi) + 2∇wj(xi) · uj(xi) + wj(xi)∆uj(xi).

We introduce the matrix-vector notation of the equations above. Defining some con-
structs is inevitable.

Definition 2.15 Let P (j) : Rnj×nj → R
N×N be a local permutation operator for which it holds,

[

P (j)(A(j))
]

ik
= 0, ∀{xi, xk} 6∈ Ωj , (2.22)

[

P (j)(A(j))
]

ik
= A

(j)
lh , ∀{xi, xk} ∈ Ωj ,

where A(j) is a local matrix based on local approximation described in 2.15, [i, k] = {1, ..., N}, [l, h] =
{1, ..., nj}, j = {1, ...,M}.
By using this definition we can obtain the final global matrix D summing up the new P (j)

matrices:

D =
M∑

i=1

P (j)
(

A(j)
)

. (2.23)
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2.3. Radial basis function partition of unity method (RBF-PUM)

In other words, the permutation operator takes a local nj × nj matrix as an argument
and creates a global N × N matrix initially filled with zeros. The local indeces {i, j} are
then mapped to the global ones {l, h} such that relation between local and global approx-
imation domain is maintained. Furthermore, the local elements that are mapped to the
same {l, h}—that means that they are contained in more than one patch—are summed
up. The concrete implementation of P depends on what kind of index ordering (for ex-
ample snake-wise ordering) we choose and what kind of geometry are we dealing with
(for example a sphere).

Definition 2.16 Analogously to Definition 2.15, let p(j) : Rnj → R
N be again a local permu-

tation operator being appropriate for obtaining global representation of local vectors usually used
in global assembly of local right-hand-sides. Using a local vector f (j) = (f(x1), ..., f(xnj

)), j =
{1, ...,M} the following holds:

p(j)(f (j))i = 0, ∀xi 6∈ Ωj , (2.24)

p(j)(f (j))i = (f (j))h, ∀xi ∈ Ωj ,

where i = {1, ..., N}, h = {1, ..., nj}, j = {1, ...,M}.

Using Definition 2.16, the final global vector f is then obtained by,

f =
M∑

i=1

p(j)
(

f (j)
)

. (2.25)

Definition 2.17 Let the weight matrix W (j) ∈ R
nj×nj be defined such that its diagonal elements

become W
(j)
ii = wj(xi), xi ∈ Ωj , i = {1, ..., nj}, j = {1, ...,M}.

Turning the focus back to the first equation of (2.21), we would like to find the global
matrix-vector form in the spirit of the latter three definitions. Assuming that local matri-
ces A(j) already exist and that L(W (j)A(j)) gives a matrix-based expansion of the linear
operator L acting on this product (see Remark 2.14), we write:

DLc = f, (2.26)

where,

DL =
M∑

j=1, x∈Ω
P (j)

[

L(W (j)A(j))
]

c = (c1, ..., cN )

f =
M∑

j=1, x∈Ω
p(j)

[

f (j)
]

, f (j) = f(xi) ∀xi ∈ Ωj (2.27)

Similarly to this formulation, one can also construct a global linear representation for the
second equation of (2.21), which satisfies the boundary conditions:

D =
M∑

j=1, x∈∂Ω
P (j)

[

W (j)A(j)
]

b = (b1, ..., bN )

g =
M∑

j=1, x∈∂Ω
p(j)

[

g(j)
]

, g(j) = g(xi) ∀xi ∈ ∂Ωj . (2.28)
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The matrix-vector equivalent of both equations is then given as,












DL

D























c

b












=













f

g













. (2.29)

We declare this system as the complete one in order to solve the PDE (2.16) using RBF-
PUM.

2.3.4. Properties

Having a look Section 2.3.2 and Section 2.3.1 we notice that the involved local matrices
are of size nj × nj . It takes Mn3

j operations to assemble the global matrix using the local
matrices with respect to (2.16) and (2.14). The assembly of local matrices is embarrasingly
parallel and so is the matrix-vector multiplication required to perform one timestep when
approaching time-dependent PDEs in the method of lines style.

Despite the much better computational complexity of RBF-PUM in comparison with
RBF-Direct, the accuracy still looks promising. It was theoretically shown in [18] that
the accuracy preserves the spectral scaling for the case when the number of patches M

is fixed and the number of nodes N varies. However, the accuracy becomes high-order
algebraic when the number of patches M varies and the number of nodes N is fixed.

Within RBF-PUM we still distinguish between center and evaluation points. That
means that we can construct approximants for a certain number of center points, solve
the resulting linear system and then pick an arbitrary number of evaluation points where
we would like to evaulate the solution. This is not the case when using RBF-FD and we
consider that as a drawback since one always has to solve the linear system if one wants
to compute the solution in a point which is not the center point.

14



3. Parallel methods

3.1. Task-based parallelism

Our aim is to present and use a relatively novel way of constructing parallel programs
on shared memory architectures. It is called task-based parallelism. A programmer is faced
with an easier job developing the parallel code, especially when it comes to dealing with
concurrency mechanisms i.e., analysing dependencies between statements and imple-
menting the resulting memory lock/unlock schemes. As a consequence, one is given an
opportunity to put less effort to scheduling issues and more effort to the problems of pri-
mary importance. The task-parallel framework used in this work is going to be Superglue
[21].

3.1.1. The SuperGlue framework

SuperGlue [21] is a shared memory framework which uses data versioning for performing
dependency-aware task-based parallelization. It is essential to present a brief motivation
on why to use such frameworks as SuperGlue is.

Parallel programs are commonly constructed using the fork-join model of OpenMP,
which works such that the user explicitly defines regions where the parallel work by sev-
eral threads1 is to be performed. The synchronization of threads is performed by barriers.
The paper [14] discusses fork-join models applied for linear algebra problems, which are
of our particular interest, and concludes that calling parallel subroutines from a sequen-
tial algorithm limits scalability. It suggests that implementing the algorithm as an explicit
parallel code which calls sequential subroutines improves performance since it reduces
the synchronization points. Furthermore, the same paper also concludes that when the
order of computations is decided at runtime [21], this leads to better performance.

SuperGlue avoids the aforementioned bad scenarios because it allows the user to write
the code without local synchronization points using prescheduled tasks which call se-
quential subroutines. The handles associated with tasks help the user to avoid perform-
ing the sometimes painful procedure of dependence analysis.

3.1.2. Tasks and handles

A task is an abstraction that describes a small subproblem of the problem, i.e., the dy-
namics that has to be performed in order to obtain a partial solution. It is up to the user
to describe the task and it is crucial that one pays a full attention to that, also keeping in
mind the granularity; in the spirit of task-based parallelism that means that one must not
identify tasks which would work on either too small or too big amount of data (again,
see the example below).

Example 3.1 Let our problem be the matrix-vector product (MVP). We would like to find a cer-
tain number of subproblems that together describe the problem. We consider Ax = f, A ∈

1When using the shared memory architecture, the number of threads usually represents the number of
cores of the CPU performing the computations.
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3. Parallel methods

R
n×n, x ∈ R

n, f ∈ R
n. Writing the product out for the first component of the result gives

f
1
= A1,1x1 +A1,2x2 + ...+A1,nxn,

or in general form

f
i
= Ai,1x1 + ...+Ai,nxn =

n∑

i=1

Ai,1xi,

or with other words, the i-th component of an MVP is a dot product A(i, :) · x(:). We denote such
a dot product as a subproblem of our MVP problem. It is legit to ask ourselves now whether we
can step a level lower and find a subsubproblem by factorizing the subproblem.

Let A(i, :) = g(:). We immediately target two crucial operations in g · x. These are multi-
plication of corresponding components of two vectors gixi and reduction-style summation of the
resulting n products.

We can denote these two operations as subsubproblems of an MVP. In this particular case, usage
of subsubproblems would yield too fine granularity which would cause overhead due to too many
memory locks and unlocks. It would also cause SuperGlue to perform slower since dependence
analysis would take much more time. It is therefore more appropriate to use several dot products
as subproblems and describe one task per one subproblem.

Within SuperGlue the tasks are submitted at runtime. Only one thread has the permis-
sion to access a certain task. The execution order is defined by the sequence in which the
tasks are submitted and the internal dependency analysis, which is (from the user per-
spective) governed by handles. The user has to define handles in order to protect shared
data maneuvered by the tasks. There exist three types of accesses that can be associ-
ated with handles: read, write and add. These describe the type of access to every crucial
variable used in a task. We closely refer to [21] and write:

• The read type means that the task has to wait for all previous write or add accesses
to finish. After that several tasks can read the same handle concurrently.

• The write type forces the task to wait for all previous accesses to finish before it can
execute the write operation. The order of write accesses is fixed.

• The add type is a sloppier version of write type, since it performs exactly the same
but the order of add accesses is not fixed. It can be for example beneficial to use
when implementing the reduction-style tasks.

Remark 3.2 If one is faced with a problem where it is known that there will not be any concurrent
accesses to a variable, specification of the access type for it can be omitted. When the number of
such handles tends towards a high number, this makes the framework run faster.

Example 3.3 In order to show how the tasks and handles are used, we present a hello-world
example accompanied with a counter which counts how many times the phrase was printed. Every
thread is going to print the “hello world” to the screen and at the same time increase the counter
by 1. The nature of this problem is such that it can not be broken down into subproblems since
the thread printing the string must also increase the value of variable. A reader can grasp how to
produce a parallel program using SuperGlue, reading comments of the following code:

1 # i n c l u d e ” sg / s u p e r g l u e . hpp”
2 # i n c l u d e <i o s t r e a m>

3
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4 s t r u c t Options : p u b l i c DefaultOptions<Options> {} ; / / We i n h e r i t t h e d e f a u l t ←֓
o p t i o n s from t h e SG framework .

5

6 s t r u c t PrintAndIncreaseTask : p u b l i c Task<Options> { / / The t a s k d e f i n i t i o n . ←֓
Again , Opt ions a r e i n h e r i t e d from SG .

7 i n t *counter ;
8 / / C o n s t r u c t o r . We d e f i n e h a n d l e s and t h e i r t y p e s h e r e .
9 PrintAndIncreaseTask ( i n t *counter_ , Handle<Options> &handle_counter ) : ←֓

counter (counter_ ) {
10 register_access (ReadWriteAdd : : add , handle_counter ) ; / / We s p e c i f y t h e add←֓

t y p e f o r h a n d l e c o u n t e r .
11 }
12 / / The dynamics o f a t a s k s h o u l d a lways be d e s c r i b e d in t h e run ( ) member . ←֓

We a r e go ing t o p r i n t and i n c r e m e n t .
13 v o i d run ( ) {
14 std : : cout << ” h e l l o wor ld \n” ; / / P r i n t .
15 ++*counter ; / / I n c r e a s e .
16 }
17 } ;
18

19 i n t main ( ) { / / Runtime .
20

21 i n t *counter = new i n t ; / / We d y n a m i c a l l y a l l o c a t e 1 memory s l o t f o r t h e ←֓
c o u n t e r .

22 Handle <Options> handle_counter ; / / We i n i t i a l i z e t h e h a n d l e f o r c o u n t e r .
23 SuperGlue<Options> sg ; / / The team o f worker t h r e a d s i s c r e a t e d h e r e . By ←֓

d e f a u l t number ( t h r e a d s ) =number ( c o r e s ) .
24 i n t n = 1 0 ; / / L e t t h e number o f h e l l o w o r l d p r i n t s be n .
25

26 / / T h e r e f o r e , we have t o c r e a t e n t a s k s .
27 f o r ( i n t i=0; i<n ; i++)
28 sg .submit ( new PrintAndIncreaseTask (counter , handle_counter ) ) ;
29

30 sg .barrier ( ) ; / / E x p l i c i t s y n c h r o n i z a t i o n o f t h r e a d s .
31 / / Now we can p r i n t t h e c o u n t e r . I f e v e r y t h i n g i s f i n e , th en c o u n t e r = n .
32 std : : cout << *counter ;
33

34 r e t u r n 0 ;
35 }
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4. RBF-PUM applied to the shallow-water
equations

The goal of this chapter is to provide key steps that have to be performed in order to con-
struct the RBF-PUM method for approximation of solutions to partial differential equa-
tions on the sphere. Such knowledge is usually not provided in the formulations like the
ones given in the previous chapters, nevertheless, it plays an important role if one wants
to—like we do—implement the computational framework from scratch.

4.1. RBF-PUM on the sphere

4.1.1. Properties of the open cover appropriate for partition of unity approach

The very first thing required is to form an open cover (OC) as defined in 2.10. The follow-
ing question arises straight away; the OC is defined in the continuous space, but what do
we have to be careful about when representing it on the computer (discrete space)? Let us
construct an artificial OC consisting of two overlapping open subsets Ω := Ω1 ∩ Ω2. The
intersection of two open subsets obviously exists when they share at least one member.
Since the subsets are open, the members on their closure are not contained in them and
that means the open subsets must have at least an infinitesimally small overlap in order
to share members. But what about in the discrete sense? The same way of thinking ap-
plies, but one must take into account that there is no continuoity inside the subsets. That
means the overlap must be big enough so that it contains at least one discrete member.

Furthermore, since our open cover lives in the discrete world, the question of whether
the member is contained in an open subset if it lies on its closure is valid. The answer to
it is positive since the machine precision ǫd is governing the quality of an open interval
represented on the computer. In the case when the closure is defined by the radius of R,
we can always argue that points contained in radius R± ǫd fall inside the subset.

Lastly, is the discrete open cover formed if the union of open subsets only contains all
of the nodes which represent the domain we are discretizing (see Figure below)? The
answer is again positive since such behaviour corresponds to the definition of an open
cover. But the next question is whether such a discrete open cover is sufficient to perform
the RBF-PUM, i.e., what happens if all of the nodal members are contained in the union
but the union does not cover the whole domain in the continuous sense (see Figure 4.1,
left image)? Let us look into equations (2.19, 2.20). The partition of unity weight functions
are defined using the radius measured from the center of a patch to its closure. In the
case when one wants to use the evaluation nodes that are placed outside of the closure
of the discrete OC, but are contained inside the closure of the undiscretized domain, the
weight functions would be undefined in such regions and the partition of unity would
not be formed. We conclude that construction of the elementary discrete open cover is
not enough. The patches must not only contain all of the center nodes such that they
together form a union, but must also cover the whole space bounded by the domain (see
Figure 4.1, right image).
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which we solve for y and obtain two solutions,

F1/2(z) =
aAb− bdz ∓

√

−a2
Ä

− 2aAdz + d2z2 + b2(−R2 + z2) + a2(A2 −R2 + z2
ä

a2 + b2
.

(4.3)
We can bound z by demanding real solutions to F1/2(z) i.e.:

− a2
Ä

− 2aAdz + d2z2 + b2(−R2 + z2) + a2(A2 −R2 + z2
ä

≥ 0, (4.4)

thus, z ∈ [z1, z2], where

z1/2 =
2aAd∓

»

4a2A2d2 − 4(a2 + b2 + d2)(a2A2 − a2R2 − b2R2)

2(a2 + b2 + d2)
. (4.5)

Remark 4.2 The implementation on the computer should be done in a way that z is sampled as
z ∈ [z1, z2]. After that y can be computed by concatenating F1/2(z) such that y = [F1(z);F2(z)]
and finally x = F (y, z). The powers of the vectors (independent variables in non-discretized form)
(x, y, z) have to be implemented as component-wise products: z2 → (z⊙z), y2 → (y⊙y), x2 →
(x⊙ x).

The case of xp = (0, b, d), {b, d} 6= 0.

We follow a procedure similiar to the previous case, but this time we set a = 0. This
means that ax = 0 and therefore we obtain the plane defined as a function of (y, z):
Σp = Σp(y, z), which allows us to immediately obtain

Σp(z) = y =
b2
√
−r2 +R2 + d(d

√
−r2 +R2 − z

√
b2 + d2)

b
√
b2 + d2

. (4.6)

By plugging it into the equation of the sphere—enforcing Σp∩S
2—we obtain F (x, z) = 0,

which we solve for z and get

F (x) =
b2d

√
−r2 +R2 + d3

√
−r2 +R2 −

»

b2(b2 + d2)2(r2 − x2)

(b2 + d2)( 32)
. (4.7)

As in the previous case for z, we now obtain the constraints for x by demanding the real
solution:

x1/2 = ∓r. (4.8)

Again, same Remark 4.2 also holds for this case, but now we evaluate vectors in the
sequence x, z, y.

The case of xp = (0, 0, d), d = ∓r

The most simple case is when we are facing only one non-zero component of xp. That
gives us the following relation:

Σp = z = d. (4.9)

We plug z = d to the equation of the sphere and obtain F (x, y) = 0, which we solve for x
and obtain,

x1/2 = ∓
»

−y2 − d2 +R2. (4.10)

by demanding the real solution, we obtain constraints on y,

y1/2 = ∓
√

R2 − d2. (4.11)

Remark 4.2 holds for this case as well, but the vectors have to be evaluated in the se-
quence z, y, x.
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All of the other cases.

We do not have to compute new expressions for the four cases which are left. We use a
simplified approach by performing the proper substitution based on the three examples
described above.

• Let xp = (ã, 0, d̃), we seek for solution x̃, ỹ, z̃. We perform substitutions a = 0, b = ã

and d = d̃. Using the case of xp = (0, b, d), {b, d} 6= 0 to perform computations, the
solution is x̃ = y, ỹ = x, z̃ = z.

• Let xp = (ã, b̃, 0), we seek for solution x̃, ỹ, z̃. We perform substitutions a = 0, b = b̃

and d = ã. Using the case of xp = (0, b, d), {b, d} 6= 0 to perform computations, the
solution is x̃ = z, ỹ = y, z̃ = x.

• Let xp = (ã, 0, 0), we seek for solution x̃, ỹ, z̃. We perform substitutions a = 0, b = 0
and d = ã. Using the case of xp = (0, 0, d), d 6= 0 to perform computations, the
solution is x̃ = z, ỹ = x, z̃ = y.

• Let xp = (0, b̃, 0), we seek for solution x̃, ỹ, z̃. We perform substitutions a = 0, b = 0

and d = b̃. Using the case of xp = (0, 0, d), d 6= 0 to perform computations, the
solution is x̃ = y, ỹ = z, z̃ = x.

4.1.3. The discrete open cover

Now that we know what the parametric equation of the patches looks like, we can start
to form the open cover. We present two approaches. The first one is based on [13] and
the second one is constructed using the properties of the chosen nodes and performing
the nearest neighbors search using the kd-tree algorithm.

We closely refer to [13] and write: let r be the radius of a patch, n the number of nodes
in a patch, N a number of all nodes on the sphere, M a number of patches and q an
overlap factor. Then M and r are computed as,

r ≈ 2

…

n

N
(4.12)

M ≈
⌈

q
N

n

⌉

. (4.13)

An alternative approach is based on properties of quasi-uniformly distributed nodes.
Taking into consideration the maximum determinant and minimum energy nodes, we
notice that an arbitrary point xk always has 6 or 7 neighbors that are located in the region
with radius ζj + δj , j = {1, ...,M}, δj being some small value. In order to obtain ζj + δj
we have to find the maximal distance measured from 6 (xi, i = {1, ..., 6}) or 7 (xi, i =
{1, ..., 7}) such neighbors to every center of the patch xk, k = 1, ...,M : ζj+δj = max ||xi−
xk||. If we use this distance as the rj =

ζj+δj
2 , the union between k-th and the neighboring

patches is guaranteed. Unfortunately numerical experiments show that computing the
maximal distance between every patch center and 6 neighboring centers does not form a
proper discrete open cover as described at the begining of this section. However, using
7 neighboring centers has formed a correct open cover in all of the examined cases. The
downside of using 7 neighbors is that the overlaps between adjacent patches are too big.
We tackle this problem by observing the distance between 6 neigboring centers max ||d6||
and 7 neighboring centers max ||d7|| separately. Obtaining the radius of the j-th patch as
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a distance somewhere in between these two distances should make the overlaps smaller,
but still form the discrete open cover appropriate for RBF-PUM. We write:

r(j) = max ||d6||+ ω(max ||d7|| −max ||d6||), ω ∈ (0, 1), (4.14)

where max ||df || := ||xi − xk||, i = {1, .., f}, k = {1, ...,M} is the maximum distance
measured from point xk to its f closest neighbors xi. When calculating the radius as
above, we consider f = {6, 7}. The proposed approach costs us O(M log(M)) operations
using the kd-tree algorithm. We consider that as acceptable since the bottleneck of RBF-
PUM is based on obtaining the inverses of local interpolation matrices A(j) which costs
O(Mn3) operations.

Figure 4.2.: Left: A discrete open cover of the unit sphere with N = 2025 maximum de-
terminant nodes and M = 128 patches which are based on minimum energy
center points. The open cover is based on the nearest neighbor search ap-
proach using ω = 0.5. The sphere and the nodes (without patches) were
drawn using the spherepts library [26]. Right: The corresponding global dif-
ferentiation matrix which has 2.09% non-zero elements.
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4.2. The continuous shallow water equations

We present the RBF-PUM based spatial discretization of the target model which we dis-
cuss in this work; the shallow water equations (SWE). Let x = (x, y, z) be an arbitrary
location on the sphere, t denote the time, u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) repre-
sent the wind field, h = h(x, t) the geopotential height, f = f(x) the Coriolis force and g

the gravity. We then write down the SWE as follows,

ut = −P
î

(u · P∇)u+ (x× u)f + gP∇h)
ó

(4.15)

ht = −P∇ · (hu),
where the projection operator P [5] is added on top of the model and takes care that the
computed gradients are the surface gradients on the sphere by projecting the gradient
evaluated in x to the plane tangent to the sphere in x. It is given as,

P =

Ö

1− x2 −xy −xz

−xy 1− y2 −yz

−xz −yz 1− z2

è

=

Ö

px
py
pz

è

. (4.16)

Before starting with the discretization, we have to expand the operators. Let ∇ =
(∇x,∇y,∇z), where ∇i =

∂
∂i . The first component of the matrix-vector product P∇ then

gives us
[

P∇
ó

~i
= (1− x2)∇x − (xy)∇y − (xz)∇z = px · ∇. (4.17)

Similarly to the first component, we also obtain the other two components of P∇ and
write P∇ = (px · ∇, py · ∇, pz · ∇), which we use when we expand the operator (u · P∇):

(u · P∇) = u1(px · ∇) + u2(py · ∇) + u3(pz · ∇). (4.18)

The~i component of the advection operator (u · P∇) acting on u will then be:
[

(u · P∇)u
]

~i
= u1(px · ∇)u1 + u2(py · ∇)u1 + u3(pz · ∇)u1. (4.19)

In the same way one can also write down the ~j and ~k components.
Focusing now on the second equation of (4.15), we expand the dot product P∇· (hu) =

P∇ · (hu1, hu2, hu3) as follows:

P∇ · (hu) = (px · ∇)(hu1) + (py · ∇)(hu2) + (pz · ∇)(hu1) (4.20)

= (px · ∇)hu1 + h(px · ∇)u1 + (py · ∇)hu2 + h(py · ∇)u2 + (pz · ∇)hu3 + h(pz · ∇)u3

= u1(px · ∇)h+ u2(py · ∇)h+ u3(pz · ∇)h+ h
Ä

(px · ∇)u1 + (py · ∇)u2 + (pz · ∇)u3
ä

= (u · P∇)h+ h(P∇ · u).
We are now prepared to write the fully expanded version of (4.15). Having a quick look
at it we notice that all of the summands in the first equation are R

3 vectors. We can
therefore afford to break down the equation in 3 equations, each representing one spatial
component. By performing that, our life is going to become easier when programming
the discretized version of the system on the computer. We use (4.19, 4.17, 4.20) and write:
Ö

(u1)t
(u2)t
(u3)t

è

= −P

Ö

u1(px · ∇)u1 + u2(py · ∇)u1 + u3(pz · ∇)u1 + (x× u)~if + g(px · ∇)h
u1(px · ∇)u2 + u2(py · ∇)u2 + u3(pz · ∇)u2 + (x× u)~jf + g(py · ∇)h

u1(px · ∇)u3 + u2(py · ∇)u3 + u3(pz · ∇)u3 + (x× u)~kf + g(pz · ∇)h

è

ht = −
î

u1(px · ∇)h+ u2(py · ∇)h+ u3(pz · ∇)h+ h
Ä

(px · ∇)u1 + (py · ∇)u2 + (pz · ∇)u3
äó

,

(4.21)
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4.3. The semi-discrete shallow water equations

and conclude that there are two operators which have to be discretized:

uj(pi · ∇), j = {1, 2, 3}, i = {x, y, z},

and

(pi · ∇), i = {x, y, z}.
Since they are similiar, we can at first discretize the second one and then extend it so that
it will correspond to the first one.

4.3. The semi-discrete shallow water equations

Referring to (4.21) we have a look at the operator (px · ∇) and apply it to the equation
(2.16) in order to obtain the differentiation matrix which approximates ∇x.

Let us expand the differential operator acting on the product using the Leibniz rule,

(px · ∇)s(x) =
M∑

j=1

(px · ∇)
î

wj(x)sj(x)
ó

(4.22)

=
M∑

j=1

(px · ∇)wj(x)sj(x) + wj(x)(px · ∇)sj(x)
ó

,

where the expansion of (px · ∇) is the same as in (4.17). Our current goal is to obtain the
above equation in the matrix form. We start by constructing some useful definitions.

Definition 4.3 Let us recall Definition 2.17. We extend W (j) to W (j,d), d = {x, y, z} where its

diagonal components are defined as W
(j,d)
ii , i = {1, ..nj} = ∇dw(xi). With other words, W (j,x)

represents differentiatied weight function with respect to x, evaluated in the points which belong
to the j-th patch.

Definition 4.4 Using (2.8) we at first extend B ∈ R
N×N (the global derivative matrix) to B(j) ∈

R
nj×nj (the local derivative matrix), and then B(j) to B(j,d), where its elements B

(j,d)
i,k are defined

as B
(j,d)
i,k = ∇dΦ(||x(j)i − x

(j)
k ||), d = {x, y, z}, i = {1, .., nj}, k = {1, .., nj}.

The local interpolation matrix A(j) and the local permutation operator R(j) are given in
Equation (2.15) and Definition 2.15 respectively. By referring to (2.9), one can deduce that
the local differentiation matrix which approximates a local differential operator (4.18) is

(u · P∇)

∣
∣
∣
∣
Ωj

=
(

u1(px · ∇) + u2(py · ∇) + u3(pz · ∇)
)

Ωj

≈ D(j) = K(j)A−1(j). (4.23)

Note that K(j) is some local matrix operator, which expands the local differential operator
D(j) as,

D(j)A−1(j) =
Ä

u
(j)
1 ⊙K(j,x) + u

(j)
2 ⊙K(j,y) + u

(j)
3 ⊙K(j,z)

ä

︸ ︷︷ ︸

K(j)

A−1(j). (4.24)

Here, written in generalized form, ui = (ui(x1), .., ui(xnj
)), i = {1, 2, 3} is a vector repre-

senting the function ui : R
3 → R evaluated in xk and K(j,d)A−1(j), d = {x, y, z} is a local
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4. RBF-PUM applied to the shallow-water equations

approximation to (pd ·∇), i = {1, 2, 3}, d = {x, y, z}. According to that, every discretized
component of the projected gradient P∇ can be obtained from:

(pd · ∇)(j) ≈ K(j,d)A−1(j) =
Ä

diag(p
1d
)F j,x + diag(p

2d
)F j,y + diag(p

3d
)F j,z

ä

A−1, (4.25)

where pid, i = {1, 2, 3} are components of pd, d = {x, y, z} from (4.16) and F (j,d) is the
matrix-vector based expansion of ∇d acting on the wj(x)sj(x) product in the same fashion
as in (4.22). Using Definition 4.3 and Definition 4.4 we write:

F (j,d) = W (j,d)A(j) +W (j)B(j,d). (4.26)

That brought us to the level where we can obtain the semi-discrete version of (4.21):
Ö

(u1)t
(u2)t
(u3)t

è

= −P

Ö

D(j)u1 + f ⊙ (x× u)~i + g ⊙K(j,x)A−1(j)h

D(j)u2 + f ⊙ (x× u)~j + g ⊙K(j,y)A−1(j)h

D(j)u3 + f ⊙ (x× u)~k + g ⊙K(j,z)A−1(j)h

è

ht = −
î

D(j)h+ h⊙
Ä

K(j,x)u1 +K(j,y)u2 +K(j,z)u3
äó

,

(4.27)

which is not final yet since models which are of pure hyperbolic nature—such as ours—
are prune to instabilities when advanced in time by numerical explicit time-stepping al-
gorithms which we aim to use in the further chapters.

4.3.1. The A
−1 hyperviscosity approach

Semi-discretized schemes such as (4.27) lead to a system of ODEs written in general terms
as ut = −Du, where the discretized hyperbolic operator D may trigger high Fourier
frequencies which are of numerical origin and have to be damped in order to obtain the
stable propagation in time. To do that, the usual approach is to add an artificial diffusion
of high order (hyperviscosity) to the right-hand-side of the equation using some high-
order Laplacian ∆k, which damps only the non-physical frequencies of D and leaves the
physically relevant ones intact.

We choose to diverge from the classical approach using ∆k, since a simpler approach
was introduced in [10] which does not require a decision on which order of Laplacian k

is the most appropriate one in order to get stability and at the same time does not make
the nearly pure advection too damped. This approach has been succesfully tested on the
sphere and is based on the inverse of RBF interpolation matrix.

Definition 4.5 Let A(j) be a positive-definite local RBF interpolation matrix with elements A
(j)
i,k =

||xi − xk||, x ∈ Ωj ⊂ S
2. Recalling (2.19) and Definition 2.17 the local discrete hyperviscosity

operator H(j) is given as H(j) = W (j)A(j,−1).

We rewrite (4.27) by adding a hyperviscosity term, scaled by a very small factor of µ:
Ö

(u1)t
(u2)t
(u3)t

è

= −P

Ö

D(j)u1 + f ⊙ (x× u)~i + g ⊙K(j,x)A−1(j)h

D(j)u2 + f ⊙ (x× u)~j + g ⊙K(j,y)A−1(j)h

D(j)u3 + f ⊙ (x× u)~k + g ⊙K(j,z)A−1(j)h

è

− µ

Ö

H(j)u1
H(j)u2
H(j)u3

è

ht = −
î

D(j)h+ h⊙
Ä

K(j,x)u1 +K(j,y)u2 +K(j,z)u3
äó

− µH(j)h.

(4.28)

It is noted in [10] that the magnitudes of the eigenvalues of A follow a pattern based on
even powers of the shape parameter ε.
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4.3. The semi-discrete shallow water equations

order of magnitude O(ε0) O(ε2) O(ε4) O(ε6) O(ε8) ...

number of eigenvalues 1 3 5 7 9 ...

Let a magnitude of k-th k = {1, .., n} eigenvalue of A(j) ∈ R
n×n be |λk| and let ε → 0.

According to the table listed above, many |λk| will be small, while few of them will be
large. It can be shown that corresponding eigenvectors get more oscillatory when |λk|
decreases [10]. Now, considering the inverse, the eigenvalues of A(j,−1) are the inverses
of |λk|: |γk| = 1

|λk| and furthermore, since A(j) is positive-definite, they are also positive.

The pattern that holds for |γk| is then —

order of magnitude O( 1
ε0
) O( 1

ε2
) O( 1

ε4
) O( 1

ε6
) O( 1

ε8
) ...

number of eigenvalues 1 3 5 7 9 ...

—which means that for ε → 0, there will be many large eigenvalues and few of them
which will be small. The same pattern, given in the table, will also hold for how oscil-
latory the corresponding eigenvectors are. Therefore, by adding a term −µH(j)u to the
right-hand-side of the convective PDE ut = −Du we leave all of the physically relevant
modes intact but suppress nearly all of the high-oscillatory modes. Experiments showing
that were performed in [10].

4.3.2. Observations on the overlap of patches

Problems of the hyperbolic nature such as the shallow-water equations are, demand a
special attention with respect to the characteristics of the wind field. The numerical
scheme based on the explicit time-stepping and a certain spatial discretization, has to
work in a way to not approximate the solution advanced in time based on the informa-
tion from the opposite direction of the wind field. When using RBF-PUM in combination
with explicit time-stepping methods, one has to be aware of that since the open cover of
the domain Ω can be obtained using a mild overlap of patches Ωj , which, as we argue in
this section, yields a non-sufficient wind support.

Wind support criteria

Numerical experiments specifically for RBF-PUM applied to the shallow-water equations
show that we are able to get a sufficient wind support (and by that stability) only when
the overlap factor q (average number of patches to which a single node belongs) is suffi-
ciently large, that is, when the definition below applies.

Definition 4.6 Let Qj , j = {1, ..,M} be a set of neighbouring patches to a patch Ωj . Let r

be the number of patches that belong to Qj and Qjk, k = {1, .., r} a single patch k from the
neighbourhood j. Then the condition for the sufficient wind support of RBF-PUM applied to a
hyperbolic PDE on a sphere in combination with explicit time-stepping is,

r⋂

k=1

Qjk 6= ∅ ∀j. (4.29)

Having been put on the surface of a sphere, we can not say when this requirement is
fulfilled due to non-uniformity of the nodes, however, we notice that when using Mini-
mum Energy nodes, every node has either r = 6 or r = 7 neighbours with a quasi-uniform
distance. This means the overlap requirement will start to hold when every node in-
side Ωj will be—on average—also contained inside more than q = 3 patches from the
corresponding set of neighboring patches Qj . To be on the safe side, we use q = 4 and
q = 3.807 for our numerical experiments.
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4. RBF-PUM applied to the shallow-water equations

Reasoning for the wind support criteria

Reasoning for the overlap requirement can be given from the down- and up-wind per-
spective. Considering an open cover of domain Ω with a mild overlap of patches Ωj , some
of the nodes inside Ωj get a down-wind support and some of them get up-wind support.
This does not lead to stability, since we would like to have a uniform wind support all
over the domain. In case when the overlap between Ωj , j = {1, ..,M} is sufficiently large
(Definition 4.6), we can not talk about diverse wind support anymore, since there are no
nodes which would only be supported by a single patch. That gives a globally connected
domain and by that a unique wind support.

RBF-PUM compared to RBF-FD

Since our goal is to compare RBF-PUM and RBF-FD implementations between each other,
we present an analogy between them in the spirit of wind support criteria which is—in
contrast to RBF-PUM—naturally imposed in RBF-FD and also the standard Finite differ-
ence method.

In certain cases, every patch can be looked upon as a stencil, since similarly to Finite
difference method, a derivative in one point is calculated upon its neighbors which are
members of a stencil or analogously to our case, members of a patch. There is, however,
one very important difference between a stencil and a patch. According to Taylor series
expansion, with other words considering FD method using polynomial basis functions,
a stencil is naturally derived such that a derivative in k-th node is always approximated
based on a weighted value of k− 1-th node, k− 1-th node is always approximated based
on a weighted value of k − 2-nd node and so on. Considering the one-dimensional case
and a stencil of size n this means that consecutive rows in a differentiation matrix D

will be shifted for ⌈n2 ⌉ columns, making D a skew-symmetric matrix. By that we also
notice that a derivative in a node k is based upon ⌈n2 ⌉ number of nodes in a stencil that
approximated a derivative in a node k − 1.

Considering a single non-overlapped patch Ωj and its arbitrary point x ∈ Ωj , we ap-
proximate a derivative in x based on all members of Ωj including x itself. Let us now
construct a small overlap with Ωj−1 crossing Ωj on the left and Ωj+1 crossing Ωj on the
right, where Ωj−1 ∩ Ωj+1 = ∅. We again look at x ∈ Ωj and again notice that a derivative
in x is based on all members contained in Ωj , however, since Ωj ∩ Ωj−1 6= ∅ and at the
same time Ωj ∩ Ωj+1 6= ∅ we observe that a derivative in x ∈ Ωj is also approximated
based on information from Ωj−1 and Ωj+1. This brings us to the point where we can
deduce that drawing an analogy between Finite Differences and RBF-PUM can help us
in understanding the behavior of RBF-PUM. The key difference between them when it
comes to overlapping of stencils or overlapping of patches is that we have an ability to
form an arbitrary overlap of Ωj and its neighboring patches, while, as already denoted
above, neighboring RBF-FD stencils have a natural overlap of ⌈n2 ⌉. That is the reason
there are no stability problems with respect to the wind direction when RBF-FD is used.

The overlap within RBF-FD is acknowledged during weight calculation, which has no
influence on the runtime (matrix-vector multiplications) when an explicit time-stepping
method is applied to the semi-discretization. On the other hand, the overlapping for RBF-
PUM is significant during the runtime of explicit time-stepping since we continuously
compute local results for each patch separately and then average them in the partition
of unity sense in order to get a global representation. That means the cost of RBF-PUM
in comparison with RBF-FD is expected to be q-times larger when the setup is based on
explicit time-stepping. Taking into account the stability criteria presented above, this
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4.4. Linearized shallow water equations

means the cost is q > 3-times larger.

4.4. Linearized shallow water equations

In order to perform stability tests we write down the linearized shallow-water equations
around the initial condition by referring to [6]. The approximate solutions û and ĥ are
given as:

û = uinit + δuf +O(δ2)

ĥ = hinit + δhf +O(δ2),

where uinit, hinit are initial conditions and uf , hf are the intermediate solutions in time.
We can plug in this expansion to (4.21) and obtain the linearized system:

Ö

(uf,1)t
(uf,2)t
(uf,3)t

è

= −P

Ö

uf · P∇uinit,1 + uinit · P∇uf,1 + (x× uf )~if + g(px · ∇)h
uf · P∇uinit,2 + uinit · P∇uf,2 + (x× uf )~jf + g(py · ∇)h

uf · P∇uinit,3 + uinit · P∇uf,3 + (x× uf )~kf + g(pz · ∇)h

è

(hf )t = −
î

uf · P∇hinit + uinit · P∇hf + hfP∇ · uinit + hinitP∇ · uf
ó

.

(4.30)

Remark 4.7 Since we now talk about a linear system, one can discretize the above system of
equations and express it in a matrix format in order to obtain the eigenvalues of a single linear
right-hand-side differential operator acting on uf and hf .

4.5. Sequential algorithm

In order to formulate (4.27) on the computer, one must also take care of the discretization
in time. We choose to combine the spatial discretization with a well known explicit time-
stepping method, the 4th order Runge-Kutta method. Putting the focus on the most
expensive routines of the program, we use the integrated profiler of Matlab and observe
that the time-stepping algorithm takes over 80% of the runtime needed to perform the
simulation for 400 timesteps. Furthermore, inside RK4, the most costly routine is the
one which evaluates the right-hand-side of the semi-discrete problem ut = −Du. We
denote it by evalRHS. This brings a motivation to divide the algorithm into two parts.
The preprocessing steps (part one, Figure 4.3) produce the initial conditions, reordering
of nodes, patch structure and RBF-PUM differentiation matrices. The second part (Figure
4.4) is the time-stepping algorithm.
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4. RBF-PUM applied to the shallow-water equations

1 initialize input data : N , n , M , nodes (N ) , nodes (M )
2

3 nodes (M ) <− Reorder nodes (M ) (patch center points ) such that they correspond ←֓
to snake−ordering on the sphere .

4

5 f o r j = 1 to M

6 ∂Γp <− generate a boundary of a spherical cap (patch closure )
7 patches [j ] . members <− find nodes (N ) which are bounded by ∂Γp , store global ←֓

indeces

8 end

9 nodes (N ) <− Reorder nodes (N ) (domain nodes ) such that nodes contained in one ←֓
patch are put as tightly together as possible .

10

11 f o r j = 1 to M

12 patches [j ] . members <− find new global indeces based on nodes (N ) reorder

13 patches [j ] . {Dx , Dy , Dz} <− calculate PDE operators based on RBF−PUM ←֓
differentiation matrices

14 patches [j ] . {u1 , u2 , u3 , h} <− find local members of initial condition ←֓
vectors {u1 , u2 , u3 , h}

15 end

Figure 4.3.: The preprocessing part of the algorithm.

1 initialize dt , steps , mu , initial conditions={u1 , u2 , u3 , h}
2 f o r t = 1 to steps

3 [k1 (u1 ) , k1 (u2 ) , k1 (u3 ) , k1 (h ) ] <− evalRHS (Sol ( : ) )
4 [Sol1 (u1 ) , Sol1 (u2 ) , Sol1 (u3 ) , Sol1 (h ) ] <− arraySum (Sol ( : ) , dt/2 * k1 ( : ) )
5

6 [k2 (u1 ) , k2 (u2 ) , k2 (u3 ) , k2 (h ) ] <− evalRHS (Sol1 ( : ) )
7 [Sol2 (u1 ) , Sol2 (u2 ) , Sol2 (u3 ) , Sol2 (h ) ] <− arraySum (Sol ( : ) , dt/2 * k2 ( : ) )
8

9 [k3 (u1 ) , k3 (u2 ) , k3 (u3 ) , k3 (h ) ] <− evalRHS (Sol2 ( : ) )
10 [Sol3 (u1 ) , Sol3 (u2 ) , Sol3 (u3 ) , Sol3 (h ) ] <− arraySum (Sol ( : ) , dt * k3 ( : ) )
11

12 [k4 (u1 ) , k4 (u2 ) , k4 (u3 ) , k4 (h ) ] <− evalRHS (Sol3 ( : ) )
13

14 [Sol (u1 ) , Sol (u2 ) , Sol (u3 ) , Sol (h ) ] <− arraySumRK4 (Sol ( : ) , k1 ( : ) *dt/6 , 2*k2←֓
( : ) *dt/6 , 2*k3 ( : ) *dt/6 , k4 ( : ) *dt/6)

15 end

Figure 4.4.: The time-stepping part of the algorithm.
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5. RBF-PUM in a parallel setup

5.1. Towards the parallel algorithm

Having the sequential algorithm already divided into two sections runtime-wise, we de-
cide to parallelize the most expensive part: time-stepping. By increasing the number of
time steps, the execution time of the preprocessing part does not increase since it is in-
dependent of number of time steps. Enforcing parallelism on it would therefore bring a
much smaller effect in comparison when parallelism is enforced on the time-stepping.

We are confronted with a question whether the time-stepping part is parallelizable at
all, i.e., whether we can find a sufficient number of variables which can be at least to some
extent treated independently thread-wise.

5.1.1. The idea

A look at the dependency graph in Figure 5.1 unfortunately tells us that every node
posesses a dependency with its neighboring node and furthermore, every ki, i = {1, 2, 3, 4}
also has a dependency with the final statement h. Keeping such structure as it is means
that our algorithm is not parallelizable, at least not on the level of RK4 intermediate time
steps and full time steps to which we refer as Level 0. This can partially be avoided by
dividing the global vectors into global blocks. Then, the same graph will not anymore
apply to the whole, global data structure, but to the i-th block instead, which can—with
the choice of good scheduling—result in parallelism also being possible to perform on
the Level 0. We conclude that RK4 is data-parallel.

k1 h1 k2 h2 k3 h3 k4 h

Figure 5.1.: The dependency graph of the 4th order Runge-Kutta method briefly de-
scribed in Figure 4.3 on lines (18-31).

We exploit the property of RBF-PUM which allows us to keep the data structures local
when approaching problems using explicit time-stepping schemes, avoiding the set up of
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5. RBF-PUM in a parallel setup

the global differentiation matrix (i.e. solving a problem ∂u
∂t = −Du) and also avoiding the

sparse matrix-vector product which is known to be heavily bounded in performance by
the memory bandwidth. Instead, the problem reads ∂u

∂t = −p
î

Dju
ó

where several local
and dense matrix-vector products are performed independently on the level of patches
and gathered via the permutation operator p (given in Definition 2.16) to the global right-
hand-side vector. When propagating the solution in time, the algorithm for obtaining the
RHS roughly behaves as a scatter-MVP-gather combination. We refer to the independent
matrix-vector products on the levels of patches as a parallelism on Level 1.

· =

· =

· =

+

+
+

+

+

+

+

+

+

Scatter to local structures

Local MVPs

Gather to global structure

Figure 5.2.: A closer view to the evalRHS routine: one global vector, divided to
blocksize = 3 blocks, is scattered to patches Ω{1,2,3}, more precisely either

to u
(local)
1,i,in , u

(local)
2,i,in , u

(local)
3,i,in or h

(local)
i,in , presented in Section 5.3. These are then

used within local (patch level) matrix-vector products with local differentia-

tion matrices. The local result is written to u
(local)
1,out , u

(local)
2,out , u

(local)
3,out or h

(local)
out .

At the end the result is gathered to the same vector where the input data was
read from.

5.2. Identification of tasks

As soon as the data is scattered to patches, the local matrix-vector products become inde-
pendent of each other. The expected runtime of scatter and gather routines is much lower
than of the MVP routines, so instead of putting the scatter-mvp-gather work in one task,
we choose the natural decomposition in three tasks. This way, more scatter and gather
routines will be able to run in parallel since their execution will not be contained in the
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5.3. Identification of dependencies

big runtime of the MVP routine. With other words, density of tasks will become higher
which results in more work being available for threads to be performed in parallel.

Having a look at Figures 5.2 and 4.1, the members of a patch are usually (to some
extent) clustered inside the global vector. Defining blocks of the global vector should
therefore increase the density of tasks handled by a thread, since the access restriction
(dependency) will be put on a substantially smaller amount of data, letting some other
threads access some other blocks in parallel.

Based on that we present the following tasks:

• blasMagic: performs the local matrix-vector products for a group of patches,

• scatterRHS: scatters data from blocks of a global vector to the proper local vectors
stored in the patch structure,

• gatherRHS: gathers data from a group of local result vectors stored in the patches
structure to the proper blocks of the global vector with the addition operation,

• arraySum: sums up two blocks of two global vectors,

• arraySum RK4: performs the final RK4 block-wise summation of several global
vectors.

Such decomposition of tasks should result (as mentioned before) in parallelism being
effective on two levels:

• Level 0: parallelism due to calling scatterRHS, gatherRHS, arraySum and array-
Sum RK4 routines on several blocks of the global arrays,

• Level 1: parallelism due to calling blasMagic on groups of patches.

According to Figure 5.2, level 1 contains dependencies based on scatterRHS and gather-
RHS. On the other hand, the involved dependencies on level 0 are all of the tasks listed
above. Since there are less dependencies on level 1 and since it is expected that blasMagic
routine is the longest task (in terms of runtime) among all tasks, we can assume that the
biggest contribution towards parallelism is to be obtained within this level. The contri-
bution of level 0 should be visible in the overlap between calculations of (at least) two
timesteps.

5.3. Identification of dependencies

For every task presented above we define handles and assign them data which they pro-
tect, along with the access type.

We firstly describe the index sets used for handling the data structure:

• g = {1, .., 4} denotes wind field components and geopotential height: u1, u2, u3 and
h respectively,

• i = {1, .., 4} denotes the temporal Runge-Kutta 4 evaluation of the right-hand-side
ki,

• f = {1, .., 3} denotes the temporal Runge-Kutta 4 solution Solf ,

• r = {1, .., blocks} denotes a single block of any global array.
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5. RBF-PUM in a parallel setup

Then we use these in the following description of tasks and handles:

• scatterRHS:

– read: for g = {1, .., 4}, r = {1, .., blocks}: Sol[g][r],

– add: for every patch in a patch group: u
(local)
1,k,in , u

(local)
2,k,in , u

(local)
3,k,in , h

(local)
k,in .

• blasMagic:

– read: for every patch in a patch group and for i = {1, .., 4}: u
(local)
1,i,in , u

(local)
2,i,in ,

u
(local)
3,i,in , h

(local)
i,in ,

– add: for every patch in a patch group and for i = {1, .., 4}: u
(local)
1,i,calctmp, u

(local)
2,i,calctmp,

u
(local)
3,i,calctmp, h

(local)
i,calctmp, u

(local)
1,i,calc, u

(local)
2,i,calc, u

(local)
3,i,calc, h

(local)
i,calc .

• gatherRHS:

– read: for every patch in a patch group and for i = {1, .., 4}: u
(local)
1,i,calc, u

(local)
2,i,calc,

u
(local)
3,i,calc, h

(local)
i,calc ,

– write: for g = {1, .., 4}, i = {1, .., 4} r = {1, .., blocks}: k[g][i][r].

• arraySum:

– read: for g = {1, .., 4}, i = {1, .., 4}, r = {1, .., blocks}: k[g][i][r], Sol[g][r],

– add: for g = {1, .., 4}, f = {1, .., 3}, r = {1, .., blocks}: Soltmp[g][f ][r].

• arraySumRK4:

– read: for g = {1, .., 4}, i = {1, .., 4}, r = {1, .., blocks}: k[g][i][r],

– write: for g = {1, .., 4}, r = {1, .., blocks}: Sol[g][r].

As seen from the list, we have to avoid the commutative-type add in gatherRHS and ar-
raySum in order to keep the algorithm correct. All of the other write operations can be
done independent of the order using the access add.

5.4. Strategies for performing local matrix-vector products

Matrix-vector products for evaluating the right-hand-side of the generalized problem
ut = −Du can in our case (4.28) be performed:

• in the most straightforward way i.e. in 16 evaluations of MVP (4 equations, 4 MVPs
per equation),

• in a dense form. By that they can be evaluated in a certain amount of matrix-matrix
products. For example, we can transform 16 MVPs to 4 MMPs without increasing
computational complexity and introducing additional sparsity.

The dense form can bring a better cache performance since more variables can be reused
inside one evaluation of an MMP. The equation (5.1) shows how one such MMP is per-
formed in order to obtain the gradient of wind field u and geopotential height h in the
x-direction.

Ä

Dx

ä

︸ ︷︷ ︸

∈Rn×n

Ä

uT1 uT2 uT3 hT
ä

︸ ︷︷ ︸

∈Rn×4

=
Ä

Dxu
T
1 Dxu

T
2 Dxu

T
3 Dxh

T
ä

︸ ︷︷ ︸

∈Rn×4

(5.1)
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5.4. Strategies for performing local matrix-vector products

The second decision that has to be made is what kind of routine to use for performing
MVPs or MMPs. There are several linear algebra libraries available. We decided to test
BLAS since it is known to be the most robust one, however, it is lacking optimization
features based on the newest computer architectures. This is the reason why we also
chose to look at Intel MKL, which already exploits modern vectorization resources such
as AVX.
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6. Numerical results

Specifying a configuration of the constructed numerical scheme, we validate our imple-
mentation of the RBF-PUM framework applied to the shallow-water equations on the
sphere by performing differentiation on the surface of the sphere and later test three of
the typical benchmarking problems: Flow over an isolated mountain, Rossby-Haurwitz wave
test and Propagation of a highly nonlinear wave. Our solutions are compared against solu-
tions produced by an RBF-FD framework given in [22]. Observations on accuracy are
based on [5].

6.1. Functions

Recalling Definition 2.1 and Remark 2.2, both concerning the radial (basis) functions, we
decide to use Gaussian functions as the radial basis functions for our numerical tests:

φ(||x− xk||) = e−ε2r2 , (6.1)

where ε is a shape parameter and r = r(x, xk), {x, xk} ∈ R
n is an Euclidean distance

r =
»

(x1 − xk1)2 + (x2 − xk2)2 + ...+ (xn − xkn)2.
Next, recalling (2.19) and (2.20) we choose compactly supported Wendland functions

Ψ ∈ C2 as the partition of unity weight functions:

Ψ(r) = 4(ρr + 1)(1− ρr)4+, (6.2)

where r is an Euclidean distance and ρ−1 is the radius of a patch Ωj .

6.2. Nodes

We choose two kinds of quasi-uniform points on the sphere.

• Maximum determinant [20][26] points as a set of global nodes of size N ,

• Minimum energy [3][26] points as a set of patch (spherical cap) center points of size
M .

6.3. Differentiation on the sphere

Given a C∞ test function:

f = f(x, y, z) = cos(3x2 + 5y2 + 8(z − 1)2), (6.3)

with surface gradient [25],

∇xf = 2x(3x2 + 5y2 + 8z(z − 1)− 3 sin(3x2 + 5y2 + 8(z − 1)2)), (6.4)

∇yf = 2y(3x2 + 5y2 + 8z(z − 1)− 5 sin(3x2 + 5y2 + 8(z − 1)2)), (6.5)

∇zf = 2z(3x2 + 5y2 + 8(z − 1)2(z + 1) sin(3x2 + 5y2 + 8(z − 1)2)). (6.6)

41



6. Numerical results

we compare the solution obtained using RBF-PUM surface differentiation matrices, to
the analytical solution given above in order to find out:

• what kind of effect does the overlap factor q (number of patches to which one node
belongs on average) have on the accuracy of approximation of the gradient,

• which local shape parameter ε√
N

to choose in order to get the best accuracy.

Such tests make sense to perform since the surface gradient is a basic element of the
shallow-water equations. Tests can also offer us a good starting point for configuring the
RBF-PUM framework.

Remark 6.1 Discrete RBF-PUM surface gradient is given in (4.25) and (4.26).

Figure 6.1.: Surface gradient as a function of overlap factor q and number of global nodes
N (||e||2 on the left, ||e||∞ on the right).

It can be seen from Figure 6.1 that the slope of accuracy tends to achieve an equilibrium
state at q ≈ 3 i.e. when every neighboring patch of a patch Ωj intersects Ωj in its geomet-
rical center. Based on that, we decided to choose q > 3, that is q = 4 to test the accuracy of
the surface gradient in Figure 6.2. Such q also fulfills the stability criteria given in Section
4.3.2, which in this case means we can be sure our solution to a hyperbolic problem can
be stabilized using a hyperviscosity term and also that it will at the same time have as
high accuracy as possible.

Among ε√
N

= {0.034, 0.047, 0.064} we found out that the best accuracy was obtained

when ε√
N

= 0.047 (Figure 6.2). Most importantly, we have validated that approximation

of the surface gradient has a convergent solution for all of tested ε√
N

with comparable

accuracies. Due to an interpolation matrix A (2.2) being naturally ill-conditioned, this
might not be the case for certain ε√

N
. Also, we can now be sure that the implementation

of RBF-PUM discretization is fine. Knowing that, we move on with performing tests on
shallow-water equations.

6.4. Initial conditions

Although we use Cartesian coordinate system throughout this work, the initial condi-
tions [24] are sometimes obtained in spherical coordinates and then converted to Carte-
sian coordinates.
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6.4. Initial conditions

Figure 6.2.: Convergence plots (||e||2 on the left, ||e||∞ on the right) for obtaining the sur-
face gradient as a function of global nodes N . The ratio ε√

N
is fixed as 0.047,

the overlap factor is fixed as q = 4 (based on previous observations).

6.4.1. Flow over an isolated mountain (Test case 5)

Test case 5 (TC5) [24] shows how prone a numerical scheme is to ringing of gravity waves
(also called Gibbs phenomena) throughout a 15 day simulation [5]. This is caused by two
factors: the mountain forcing term which is undifferentiable and also by using a high-
order spatial discretization.

Let a = 6.37122 · 106 m be the radius of the Earth, α = 0 the angle of rotation measured
from the equator, u(0) = 20 m

s the speed of the rotation, ω = 7.292 ·10−5 1
s the rotation rate

of the Earth, g = 9.80616 m
s2 the gravitational constant on the Earth and G0 = g · 5960 m

the initial geopotential height. The geopotential height h = h(x) and the wind field
u = (u1(x), u2(x), u3(x)) are then given as:

h(x, 0) = −
(

aωu(0) − (u(0))2

2

)

(−x sin(α) + z cos(α))2,

u1(x, 0) = u(0)(−y cos(α)),

u2(x, 0) = u(0)(x cos(α) + z sin(α)),

u3(x, 0) = u(0)(−y sin(α)). (6.7)

The C0 forcing term – Cone mountain

Let θ ∈ [0, 2π] represent longitude and φ ∈ [0, π] latitude on the sphere. Then G = G(θ, φ)
is the profile of a mountain given by:

G = G0m

(

1− r

R

)

+
, (6.8)

where G0m = 2000 m is the height of a mountain, R = π
9 , and r2 = min[R2, (φ−φc)

2+(θ−
θc)

2], (θc, φc) being longitudinal and latitudinal coordinates of the center of a mountain.

Remark 6.2 We use Cartesian coordinates for computing the initial condition. In order to com-
pute the forcing term G = G(θ, φ) on the computer, we can transform all Cartesian nodes (x) to
their spherical equivalent (θ, φ) using function cart2sph in Matlab and evaluate G using these
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6. Numerical results

Figure 6.3.: Initial conditions. First row, left: Flow over an isolated mountain (initial
geopotential height h). First row, right: Rossby-Haurwitz wave test (initial
geopotential height). Second row: Evolution of a highly nonlinear wave (ini-
tial vorticity). The worldmap was drawn using the spherepts library [26].

coordinates. Since we are dealing with a scalar field, the values of G evaluated in (θ, φ) are the
same as the ones that would be evaluated in (x).

We include the profile of the mountain in our numerical scheme by treating G as a
forcing term added to the right-hand-side of the equation for the geopotential height h in
(4.28).
The term D(j)h transforms as:

D(j)h → D(j)(h−G), (6.9)

and the term h⊙
Ä

K(j,x)u1 +K(j,y)u2 +K(j,z)u3
ä

of the same equation (4.28) becomes:

h⊙
Ä

K(j,x)u1 +K(j,y)u2 +K(j,z)u3
ä

→
→ (h−G+G0)⊙

Ä

K(j,x)u1 +K(j,y)u2 +K(j,z)u3
ä

. (6.10)

44



6.4. Initial conditions

6.4.2. Rossby-Haurwitz wave test (Test case 6)

In contrast with Test case 5, the Rossby-Haurwitz wave test (TC6) [24] is fully described in
spherical coordinates. Using a wave of wavenumber four, the initial condition is also the
solution after one revolution of the Earth, but only for the nondivergent barotropic vor-
ticity equation. In this case, the wave pattern is propagating from west to east without
change in shape. Shallow-water equations can only approximate this behaviour, con-
stantly generating instabilities in the flow.

Let again a = 6.37122 · 106 m be the radius of Earth, α = 0 angle the of rotation
measured from the equator, u(0) = 20 m

s the speed of the rotation, ω = 7.292 · 10−5 1
s

the rotation rate of the Earth, g = 9.80616 m
s2 the gravitational constant on the Earth,

K = 7.848 · 10−6 1
s , R = 4 the wave number, G0 = g · 5960 m the initial geopotential

height. This time the wind field is given in latitudinal and longitudinal components:
u = (u1(θ, φ), u2(θ, φ)). One can then write:

u1(θ, φ) = aω cos(θ) + aK cosR−1(θ)(R sin2(θ)− cos2(θ)) cos(Rφ),

u2(θ, φ) = −aKR cosR−1(θ) sin(θ) sin(Rφ). (6.11)

Geopotential height is also a function of longitude and latitude h = h(θ, φ) and is given
as:

h(θ, φ) = a2A+ a2B cosRφ+ a2C cos 2Rφ (6.12)

A =
1

2
K(2ω +K) cos2 θ +

1

4
K2 cos2R θ

î

(R+ 1) cos2(θ) + ...

... +R− 2− 2R2(−1 + cos−2 θ)
ó

B =
1

(R+ 1)(R+ 2)
2K(ω +K) cosR θ

î

R2 + 2R+ 2− (R+ 1)2 cos2 θ
ó

C =
1

4
K2 cos2R θ

î

(R+ 1) cos2 θ −R+ 2
ó

.

Remark 6.3 We omit the description of the analytic approach for transforming a vector field from
spherical to Cartesian coordinates. On the computer, the Cartesian wind field
u = (u1(x), u2(x), u3(x)) can be transformed from the spherical wind field u = (u1(θ, φ), u2(θ, φ))
using sph2cartvec function of Matlab. Geopotential height h can be computed in the same way
as the forcing term of Test case 5 in Remark 6.2 is.

6.4.3. Evolution of a highly nonlinear wave

The literature [12] describes this test as the most challenging one since it is producing
a complex vortical dynamics. As described in [5], the evolution of a highly nonlinear
wave is made with rapid energy transfer over a short period of time. That requires good
handling of sharp gradients.

Let the background flow u = u(θ) be only a function of latitude θ. We write:

u(θ) =







0 for θ ≤ θ0
umax

en
exp

[
1

(θ−θ0)(θ−θ1)

]

for θ0 < θ < θ1

0 for θ ≥ θ1

(6.13)

where umax = 80m
s , θ0 =

π
7 , θ1 =

π
2 − θ0, en = exp(−4(θ1 − θ0)

2).
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6.6. Final results: RBF-PUM compared to RBF-FD

experience from the experiments we found that when higher global node numbers N are
considered (N > 36864), it is in some cases hard to find the parameter µ in combination
with a timestep ∆t that would make the method stable. However, we were still able to
stabilize the method for many nodesets with N ≤ 36864. For that reason and due to its
simplicity we decided to use it in this thesis.

Remark 6.4 Additional experiments showed that the given hyperviscosity approach is more likely
to have a proper effect with respect to stability when applied to RBF-PUM spatial discretization
of the transport equation.

6.6. Final results: RBF-PUM compared to RBF-FD

Comparing the solution obtained using RBF-PUM to the solution obtained using RBF-FD
in [5], we target differences in visualized solutions, convergence orders and accuracies.
RBF-FD was already compared to schemes which are considered as robust and are used
at renowned institutions performing research on climate [5].

These are:

• (DG) Discontinuous Galerkin spectral element model (National Center for Atmo-
spheric Research in Colorado, USA),

• (DWD-SH) Spectral transform shallow water model based on spherical harmonics
(Deutscher Wetterdienst—German National Weather Service).

By knowing how RBF-PUM compares to RBF-FD and knowing how RBF-FD compares
to DG and DWD-SH we can get an information of how RBF-PUM compares to DG and
DWD-SH. The results of these two methods are considered as the ground truth. In cases
Flow over an isolated mountain and Rossby-Haurwitz wave test we analyze the error of geopo-
tential height h = h(x, t). In Propagation of highly nonlinear wave test case, the error is vi-
sually observed based on vorticity V = V (x, t). In all cases, we observe the normalized
error given as:

||e||2 =
||uPUM − uFD||2

||uFD||2
||e||∞ =

||uPUM − uFD||∞
||uFD||2

,

u being either h or V .

Remark 6.5 The solutions using RBF-FD were generated using a solver given in [22].

6.6.1. Flow over an isolated mountain (Test case 5)

Figure 6.5 shows the visual comparison between RBF-FD and RBF-PUM for N = 27556, n =
100. We do not observe any differences with respect to that.

Next, having a look at Figure 6.6 we observe only first order of convergence. The rea-
son for that is the presence of the mountain forcing term (6.8) which is undifferentiable,
but we still have to differentiate it when it is applied to the scheme. This causes Gibbs
phenomena (ringing gravity waves throughout space and time) which limits the scheme
in convergence and accuracy. The same order of convergence is also obtained when RBF-
FD is compared to DG and DWD-SH [5]. The best accuracy of RBF-PUM is ||e||2 ≈ 9·10−4.
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6. Numerical results

N M ε µ ∆t

6400 256 5.57 1 · 10−13 300
10000 400 6.93 1 · 10−13 300
16384 656 9.11 2 · 10−13 100
20736 830 10.06 3 · 10−13 50
27556 1103 11.46 3 · 10−13 50

N ε γN−k ∆t

6400 5.1 −0.2 ·N−8 300
10000 6.4 −0.2 ·N−8 300
16384 8.2 −0.2 ·N−8 300
20736 9.2 −0.2 ·N−8 300
27556 10.6 −0.2 ·N−8 300

Table 6.1.: Flow over an isolated mountain, the tables (left: RBF-PUM, right: RBF-FD) list
parameter configurations which were used for the study. Parameters n = 100
(number of nodes in a patch (RBF-PUM), stencil size (RBF-FD)) and tfinal =
15days (the time at which we observe the error) were fixed for both methods
and are not given in the tables. N stands for the number of global nodes,
M for the number of patches, ε for the shape parameter, µ for the amount of
hyperviscosity applied in the A−1 approach, ∆ for timestep and γN−k for the
factor γ applied to a Laplacian of ∆k, where k is its order. We use k = 8 for our
tests.

Figure 6.5.: Flow over an isolated mountain test case (TC5) after t = 15 days. RBF-PUM
solution is shown in row 1, RBF-FD in row 2. Columns show the geopotential
height h(x, 15) recorded from different angles. Note that the color scale is
kept constant for all images.

Accuracy of RBF-FD compared to DG using the same N = 27556 was ||e||2 ≈ 4 · 10−5,
and ||e||2 ≈ 2 · 10−4 when compared to DWD-SH, T426 [5]. It is shown in RBF-FD self-
convergence figures [5] that using a larger stencil size does not deliver a better accuracy
due to Gibbs phenomena, which is present because of the high order of the method (ap-
proximately 9th order for n = 101). We can therefore assume our comparison between

48



6.6. Final results: RBF-PUM compared to RBF-FD

RBF-FD using n = 31 and RBF-PUM using n = 100 to be valid. In any case, we do not
expect the accuracy of RBF-PUM to be higher if n would be lowered to n = 31, which
only confirms the validity.

Figure 6.6.: Flow over an isolated mountain test: error of RBF-PUM after t = 15 days,
with RBF-FD as a reference.

6.6.2. Rossby-Haurwitz wave test (Test case 6)

The measurements are performed based on parameters given in Table 6.2.

N M ε µ ∆t

2025 81 3.14 1 · 10−13 300
6400 256 5.57 1 · 10−13 300
10000 400 6.93 1 · 10−13 300
16384 656 9.11 4 · 10−13 50
20736 830 10.06 3 · 10−13 50
27556 1103 11.46 3 · 10−13 50

N ε γN−k ∆t

2025 2.9 −0.2 ·N−8 300
6400 5.1 −0.2 ·N−8 300
10000 6.4 −0.2 ·N−8 300
16384 8.2 −0.2 ·N−8 300
20736 9.2 −0.2 ·N−8 300
27556 10.6 −0.2 ·N−8 300

Table 6.2.: Rossby-Haurwitz wave test, the tables (left: RBF-PUM, right: RBF-FD) list pa-
rameter configurations which were used for the study. Parameters n = 100
(number of nodes in a patch (RBF-PUM), stencil size (RBF-FD)) and tfinal =
15days (the time in which we observe the error) were fixed for both methods
and are not given in the tables. N stands for number of global nodes, M for
number of patches, ε for the shape parameter, µ for the amount of hyperviscos-
ity applied to A−1 approach, ∆ for timestep and γN−k for the factor γ applied
to a Laplacian of ∆k, where k is its order. We use k = 8 for our tests.

From Figure 6.7 we see that solutions obtained using both methods look the same. We
do not notice any diffusion effect that would be caused by hyperviscosity.

Looking at Figure 6.8 we determine order of convergence to be one. That also corre-
sponds to the order obtained when RBF-FD is compared to reference solutions in [5]. The
best accuracy we obtain for RBF-PUM using RBF-FD as a reference is ||e||2 ≈ 4 · 10−3 at
N = 27556 and n = 100. On the other hand, RBF-FD at the same N and n = 101 has the
accuracy of ||e||2 ≈ 2 · 10−3 compared to DWD-SH and ||e||2 ≈ 3 · 10−3. This means the
error of RBF-PUM is larger, but still competitive with respect to RBF-FD.
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6. Numerical results

Figure 6.7.: Rossby-Haurwitz wave test case after t = 15 days. RBF-PUM solution is
shown in row 1, RBF-FD in row 2. Columns show the geopotential height
h(x, 15) recorded from different angles. Note that color scale is kept constant
for all images.

Figure 6.8.: Rossby-Haurwitz wave test: error of RBF-PUM after t = 15 days, with RBF-
FD as a reference.

6.6.3. Evolution of a highly nonlinear wave

Parameters for obtaining results within this test are given in Table 6.3. The goal is to
compare vorticities V (x, t) of both solutions after 6 days of simulation. Let
u = (u1(x, t), u2(x, t), u3(x, t)) be the wind field. Vorticity V = V (x, t) is then given as a
component-wise sum of the curl of the wind field.

V = (∇× u)~i+ (∇× u)~j + (∇× u)~k. (6.16)
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6.6. Final results: RBF-PUM compared to RBF-FD

N M ε µ ∆t

2025 81 3.14 2 · 10−13 100
6400 256 5.57 2 · 10−13 100
10000 400 6.93 2 · 10−13 100
16384 656 9.11 5 · 10−13 60
27556 1103 11.46 2 · 10−13 30
36864 1475 13.52 6 · 10−13 40

N ε γN−k ∆t

2025 2.9 −0.3 ·N−8 200
6400 5.1 −0.3 ·N−8 200
10000 6.4 −0.3 ·N−8 200
16384 8.2 −0.3 ·N−8 200
20736 9.2 −0.3 ·N−8 200
36864 11.7 −0.3 ·N−8 200

Table 6.3.: Highly nonlinear wave, the tables (left: RBF-PUM, right: RBF-FD) list parame-
ter configurations which were used for the study. Parameters n = 100 (number
of nodes in a patch (RBF-PUM), stencil size (RBF-FD)) and tfinal = 15days (the
time in which we observe the error) were fixed for both methods and are not
given in the tables. N stands for number of global nodes, M for number of
patches, ε for the shape parameter, µ for the amount of hyperviscosity applied
to A−1 approach, ∆ for timestep and γN−k for the factor γ applied to a Lapla-
cian of ∆k, where k is its order. We use k = 8 for our tests.

From Figure 6.9 we can see that solutions after 6 days look very similiar. The edges
of the wave, however, look more jagged in RBF-PUM case. It is also noticeable that
the wave is more diffused in RBF-PUM case, which is expected since it was shown in
[10] that classical ∆k approach—which is used in RBF-FD—act as a better hyperviscosity
term than A−1—which is used in RBF-PUM—does. Our experiments showed that RBF-
PUM and RBF-FD share the properties of keeping the proper wave pattern even in low
resolutions (N = 6400). According to [5], this is not the case for DG and DWD-SH.
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6. Numerical results

Figure 6.9.: Highly nonlinear wave test case after t = 6 Earth revolutions. Left: RBF-
PUM. Right: RBF-FD. Figures show the vorticity after tend = 6 days recorded
from different angles. Note that color scale is kept constant for all images.
The image is produced using N = 36864 nodes. The artefacts do not result
from the solution, but are a consequence of triangularizing the mesh during
visualization.
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7. High-performance computing results

Due to reasonable error terms inspected in the section with numerical results, we would
like to check how does RBF-PUM compare to RBF-FD with respect to sequential runtime
and parallel scalability on shared-memory architecture. That is sensible since the ratio
between runtime and accuracy could still be in favor of RBF-PUM. The tests are per-
formed on a single Uppmax-Rackham node with two Intel Xeon E5-2630 v4—Broadwell
architecture—CPUs, each offering ten computational cores.

7.1. Memory jumps

Optimization with respect to memory jumps is known to be an important requirement for
producing an efficient (parallel) algorithm. Referring to Section 5.2 we remember that our
patches are divided in patch groups and the global vectors into global blocks. That means
that a single group of patches usually works on several blocks of global vectors. In case
the selected blocks are distanced far from each other we are already facing unnecessary
memory jumps. Furthermore, since there is always an overlap of patches present due
to the nature of RBF-PUM (for our case we are obliged to form non-negligible overlap—
Section 4.3.2), that means that neighboring patches in a patch group can share blocks
from global vectors. A single patch group is therefore given an opportunity to access
fewer global blocks and by that reduce the jumping.

7.1.1. Jumps reduction

We would firstly like to achieve that members of neighboring patches inside the global
structures are ordered together tightly. This can be obtained by snake-ordering the patch
center nodes such that a patch in the northern-most position gets an index 1 (Ω1), its
closest neighbor gets an index 2 (Ω2), the closest neighbor of Ω2 (without considering Ω1)
gets an index 3 and so on. An example is given in Figure 7.1, where it can also be seen
that our snake ordering algorithm does not work perfectly for small amount of patch
centers, but does perform well when the resolution is higher. That is reasonable since
quasi-uniform nodes are likely to be more uniform when the number of nodes tends
towards infinity. At the same time less and less heuristics is needed in order to not hit a
wrong snake-neighbour.

On the second level, we would also like that members of a single patch are put to-
gether as tightly as possible. This can be done by following the patches in the snake
order performed on the first level and reordering the global structure V accordingly i.e.
V = [members(Ω1), members(Ω2), ..., members(ΩM )]. By performing that and consid-
ering patch groups instead of a single patch, we can be sure the patch group contains an
ordered set of global blocks to which a patch member has an access, but also that there
will be much less unique blocks since several patch members inside a patch group have
to access certain global blocks which are the same (overlaps). The result of patch centers
being at first snake ordered (first level) and then reordered within the second level can be
seen in Figure 7.2. We notice that when there is no ordering applied, one patch consid-
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Figure 7.1.: Rows 1 and 2 consider cases of {N = 6400, M = 256} and {N = 115718, M =
6241} respectively. Left column shows the unordered set of patch centers,
right column shows the snake-ordered set of patch centers. In this case, the
sphere and the nodes on it were drawn using spherepts library [26].

ers many more global blocks than in the ordered case which causes much more memory
jumps.

7.2. RBF-PUM benchmark

Considering our task-based parallel simulation of Flow over an isolated mountain case, us-
ing global nodes N = 155718, patch size n = 100, number of patches M = 6229 and
overlap factor q = 3.807, we compare two ways (described in Section 5.4) of computing
the right-hand-side of (4.27). The straightforward form (16 MVPs) is computed using
dgemv routines and the dense form (4 MMPs) using dgemm routines. The dgemm routine
is run in a setup using 150 patch groups and 422 global array blocks, and dgemv in a setup
using 250 patch groups and 422 global array blocks. Furthermore, both, the dgemv and
the dgemm routines are implemented using BLAS and Intel MKL libraries.

The results presented in Figure 7.3 show strong scaling and runtime curves. BLAS -
dgemm scales the best among all approaches (having a speedup of approximately 11.75

54



7.2. RBF-PUM benchmark

Figure 7.2.: Left: unordered global arrays. Right: ordered global arrays. Both cases con-
sider N = 6400, M = 256, n = 100, q = 4. Every patch Ωj has its own
identifier j (x-axis). Y-axis shows how many global blocks of length 256 are
accessed by the j-th patch.

Figure 7.3.: RBF-PUM based parallelized simulation using dgemv and dgemm routines,
invoked from BLAS and Intel MKL libraries. Left: strong scaling. Right:
runtime.

using 20 cores), however, its sequential runtime is the worst. On the other hand, MKL-
dgemm scales the worst (speedup of approximately 5.1 using 20 cores) but its sequential
runtime is the best and so is the runtime when 20 cores are used. This behaviour can be
reasoned by the fact that Intel MKL is sequentially more optimized than BLAS, since it for
example uses AVX instructions. Also, Intel MKL is expected to behave better since it is
developed for state of the art Intel architectures. Classical BLAS is a bullet-proof library,
but not fully optimized with respect to nowadays computer architectures.

Based on that we decide to further analyze MKL-dgemm by presenting contention mea-
surements and a trace of tasks.

Definition 7.1 Let Γd be a time-domain bounded by the runtime of the whole algorithm and let
T (i) = T (i)(n) ∈ Γd be the runtime of a single task i as a function of number of threads n. Then
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7.3. Final results: RBF-PUM compared to RBF-FD

Finally, we proclaim the parallel algorithm based on MKL-dgemm as our best candidate
to compete with the parallel implementation of RBF-FD.

Figure 7.5.: Contention of three most important tasks measured for simulation parame-
ters of N = 155718, n = 100, q = 3.807, M = 6229, tend = 15 days, 150 patch
groups and 422 global array blocks. Note that MKL-dgemm is used within
blasMagic task.

7.3. Final results: RBF-PUM compared to RBF-FD

We compare the performance of our most promising RBF-PUM parallel implementation
outlined in the subsection above and a parallel RBF-FD solver given in [22]. The key
differences between main computational tasks in our approach and in approach from
[22] are that the latter uses global sparse matrix-vector products, but we use the local
dense matrix-vector products in combination with scattering and gathering data to global
vectors.

Again, we consider a case of N = 155718 and n = 100 for both methods. The simu-
lation is run for 100 timesteps. Within RBF-PUM we have M = 6229 patches with the
overlap factor q = 3.807. Furthermore, the computational domain is split into 150 patch
groups (≈ 42 patches per group) and 422 global array blocks (369 elements per global ar-
ray block). The global sparse matrix within RBF-FD is split into blocks of size 2048×2048
elements.

It can be seen from Figure 7.6 that RBF-PUM scales slightly better than RBF-FD, no
matter how many cores are used. Using 20 cores, our method has a speedup of approxi-
mately 5.2, while RBF-FD has a speedup of approximately 5.0. On the other hand, when
comparing the runtimes (Figure 7.7), we see that RBF-FD solver is sequentially around
6-times faster than our solver. That can partially be reasoned by the fact that the patches
are overlapping, i.e. if there are two patches overlapping, the local solution based on
nodes which are inside the intersection will be computed twice (see Section 4.3.2). When
using q = 3.807, as in our case, that means that on average every node is shared among
3.807 patches which means there is q = 3.807-times more work performed compared
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7. High-performance computing results

Figure 7.6.: Strong scaling, comparing RBF-PUM and RBF-FD based simulations ran for
100 timesteps, using N = 155718, n = 100.

to RBF-FD. By acknowledging that we see that our implementation is still 6
3.807 = 1.58-

times slower, which is probably due to the given global sparse matrix-vector product
being more optimized with respect to the memory bandwidth than our combination of
scatter-local product-gather tasks. Furthermore, the contention reported in [22] is 1.52
for 16 threads, but our average contention for 16 threads (Figure 7.5) is slightly higher:
2.03, which just confirms that there is some space for improvements of our parallel im-
plementation, especially since global sparse matrix-vector products are in general known
to have many cache misses [22] and should as such be—from the very beginning—worse
compared to dense products. However, on the other hand, it is emphasized in [22] that
the actual matrix-vector product which is performed is much less sparse than it would
be if 16 matrices describing the right-hand-side of the discrete shallow-water equations
would not be combined into one sparse matrix.

Figure 7.7.: Runtimes (left) and relative runtimes (right) of 100 timesteps simulation using
RBF-PUM and RBF-FD, for N = 155718 and n = 100.
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8. Conclusion

Based on Section 6.6 we deduce that the accuracy of Radial basis functions partition of unity
method applied to the shallow-water equations is comparable to the accuracy of Radial
basis functions generated finite differences method, when the initial conditions of Rossby-
Haurwitz wave test and Evolution of a highly nonlinear wave are used. When Flow over an
isolated mountain is considered, then we can not talk about methods being comparable
anymore: RBF-FD is ≈ 22-times more accurate than RBF-PUM is when N = 27556 is
used. This might well be because of the different hyperviscosity approaches used within
the two methods. In order to draw the line for this inital case, more research on employ-
ing a better hyperviscosity approach within RBF-PUM has to be performed.

Section 7.3 shows that RBF-PUM can not compete with RBF-FD in terms of runtime,
simply because of the observations outlined in Section 4.3.2. Although optimization on
the memory bandwidth side could be performed in order to decrease the runtime of
RBF-PUM, it is unlikely that this could provide a sufficient improvement considering the
wind criteria which demands a large overlap of patches and as such introduces more
work compared with RBF-FD.

We answer the questions stated in Introduction (Section 1).

• Is RBF-PUM appropriate for approaching nonlinear hyperbolic problems in com-

bination with explicit time-stepping schemes?

All of the indications presented in this thesis show that RBF-PUM can be succesfully em-
ployed for approaching nonlinear hyperbolic problems, but is—as of the current research
stage—not as accurate and fast as RBF-FD is.

• Are there any benefits delivered in comparison with similiar methods which

were already applied to the shallow-water equations?

Considering initial condition Evolution of a highly nonlinear wave, one of the bene-
fits is that RBF-PUM is able to form a wave shape when used in the low-resolution setup.
Comparable methods, such as DG and DWD-SH are not able to handle that.

• How does RBF-PUM in combination with explicit time-stepping scale when im-

plemented as a parallel algorithm?

RBF-PUM scales slightly better than RBF-FD.

To conclude: regarding the numerical results, we now understand the impact of patch
overlaps on the wind support of the scheme in a much better way and can therefore
reason about the increased workload that is introduced in comparison to RBF-FD. These
observations were—to the best of our knowledge—not given in any other publication. In
addition, our parallel approach gives a good starting point for further investigations on
parallelism within RBF-PUM.
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9. Future work

One of the critical parts when it comes to the accuracy of the scheme based on RBF-
PUM is the hyperviscosity approach A−1 described in Section 4.3.1. More research could
be performed on the other approaches, for example approximating ∆k using RBF-PUM.
That would, however, require compactly supported partition-of-unity weight functions
w(x) ∈ Ck, which might be hard to obtain for higher k.

Although stabilization with respect to ill-conditioned interpolation matrices A(j) was
not considered in this thesis, an idea leading to a stabilization using RBF-QR on the
sphere (there is no such algorithm available yet) would be to employ a 2-dimensional
RBF-QR [15] on the patches projected to planes tangential to their center. Despite this
being a rough approximation since the curvature of the spherical caps is lost, it might
still be acceptable for the cases when number of patches M tends towards infinity since
this also means that the radius of a patch (spherical cap) tends towards zero, which then
vastly reduces the curvature of a cap and by that reduces the error.

RBF-PUM runtime optimization could be made with a different parallel approach,
namely using SuperGlue as a scheduler and one of the GPGPU frameworks for multi-
plication of matrix-vector products. That could greatly improve the speed of memory
access, since it is known that GPGPU have better capabilities with respect to that. A
drawback of this approach could on the other hand reflect in the large loading times that
are needed in order to transfer the data between the memories.

Lastly, another possible optimization is an improvement of dense form of the matrix-
matrix product introduced in Section 5.4. The current setup is such that a product DU

consists of D ∈ R
n×n—where D is either one of the differentiation matrices or a hypervis-

cosity matrix—and U ∈ R
n×4 which is a matrix consisting of temporal solutions u1, u2,

u3 and h. We could expand U to become Û ∈ R
n×n by adding in additional n−4

4 temporal
solutions as the matrix U columns. This would bring a big limitation on the size of patch
groups, which would then have to be of size k n

4 , k = {1, 2, ...}, but would on the other
hand, as mentioned, form at least one product of two square matrices which would bring
a possibility of better cache reusability and by that an improved runtime.
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