Problem set 4: Iterative solvers#

Note: If you miss the problem solving class, you have to submit solutions to all the exercises below in Studium before the deadline.


Exercise 1#

Consider the linear system of equations \(A\mathbf{x}=\mathbf{b}\), with

\[\begin{split} A = \begin{bmatrix} 2 & -1 & 1 \\ 1 & a & 2 \\ -1 & -1 & 3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \end{split}\]

a) Determine all values of \(a\) for which the Jacobi method is guaranteed to converge.

b) Let \(a=3\) and \(\mathbf{x}^0 = (0,0,0)^T\). Compute \(\mathbf{x}^2\) without explicitly computing \(\mathbf{x}^1\).

c) Consider the following iterative method: Given \(\mathbf{x}^0\), set

\[ \mathbf{x}^{k+1} = M\mathbf{x}^k + \mathbf{c}, \quad k=0,1,\ldots, \]

where

\[ M = I -\frac{1}{3}A, \quad \mathbf{c} = \frac{1}{3}\mathbf{b}. \]

If \(a=1\), will the method converge?