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1. INTRODUCTION

Real-time embedded systems not only exist in industry domains, such as automo-
tive electronics, avionics, telecommunication, medical systems, etc., but are deeply im-
mersed in our everyday life due to the rapid progress of mobile and embedded technol-
ogy. A real-time system should not only provide logically correct functions, but more-
over, it must meet timing requirements as stated in the system specification [Buttazzo
2004]. In hard real-time systems, such as aerospace systems, a timing error may result
in catastrophic consequences. A major task in real-time system verification is to ana-
lyze the timing behavior of the system before deployment in order to guarantee that
no timing violation occurs at run time.

A real-time system is typically composed of many tasks which cooperate to provide
the required functionality. To verify the satisfaction of the timing requirements of the
system, one must first know how long each task (or program) may execute. However,
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this is not an easy problem, because the execution time of a program may vary widely
as a result of many complex factors, such as data inputs, hardware features, execution
contexts, etc. Among all the possible execution times (represented by the yellow range
in Fig. 1), the minimum and the maximum are called the Best-Case Execution Time
(BCET) and the Worst-Case Execution Time (WCET), respectively. The main objective
of program-level timing analysis is to estimate the WCET [Wilhelm et al. 2008], which
is then used in system-level timing analysis, such as a schedulability analysis [Davis
and Burns 2011].
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Fig. 1. Distribution of execution times of a program

The common practice in industry has been, and partly still is, to measure the end-
to-end execution latency of a task [Wenzel et al. 2008], by sampling its executions
in different scenarios (depicted as the blue vertical lines in Fig. 1). The maximal ob-
served execution time increased by a safety margin is used as the WCET estimate of
the measured program. This approach is called dynamic timing analysis in the real-
time community. However, the worst case is not guaranteed to be covered by measure-
ments. Thus, the observed WCET is in general an underestimation of the actual WCET.
Analytical methods that cover all possible execution scenarios (without executing the
analyzed program) and provide safe upper bounds on the WCET are desirable for hard
real-time systems. They are usually called static timing analysis.

Unfortunately, such upper bounds cannot be easily estimated due to both the com-
plexity of the program itself and the uncertainty from the execution environment. The
program may execute different control-flow paths depending on input, and these dif-
ferent paths may need different execution times. The execution platform may exhibit a
dependence of the execution time of instructions on the execution state of the platform.
This execution state consists of the occupancy of the platform resources. For example,
an instruction may exhibit very different execution times depending on whether in-
struction or operand fetch hit or miss the cache. The execution environment, finally,
may interfere with a program’s execution by preempting its execution and thereby in-
crease the program’s response time. Hence, these three factors all have impacts on the
program’s execution time.

Exhaustive exploration of the combined space of control-flow paths and paths
through the platform architecture is infeasible due to the size of this space. A safe
abstraction of the execution platform is typically used in static timing analysis to in-
crease efficiency. This abstraction may adversely lead to an overestimated WCET. Ef-
forts have to be exerted to reduce the overestimation as much as possible, so as to avoid
over-provisioning of system resources.

All approaches to static timing analysis compute bounds on the execution times of
a program starting with bounds on the execution times of individual instructions oc-
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curring at some point in the program. Their execution time typically depends on the
execution state of the platform. Depending on this state, an instruction’s execution
may suffer from timing accidents, which may increase the execution time by their as-
sociated timing penalties. For example, a memory access may suffer from a cache miss,
which increases its execution time by the cache miss penalty. The actual execution
state is the result of the execution history. Different control-flow paths through the
program, in general, result in different execution states and may thus exhibit differ-
ent execution times. A classification of an occurrence of a memory access as a cache hit
or a cache miss must hold for all executions of this memory access.!

Static timing analysis methods determine an invariant for each program point that
describes all execution states that are possible when control reaches this program
point. Such an invariant allows excluding many timing accidents, such as cache misses,
pipeline stalls etc., and safely allows to subtract the associated timing penalties from
the worst-case upper bound on the execution times.

Of the hardware features to consider in timing analysis, cache has the biggest in-
fluence on the execution time [Hennessy and Patterson 2011]. A precise analysis of
the cache behavior does therefore have a great impact on the precision of any overall
WCET estimation.

Cache is a small on-chip memory to bridge the speed gap between the processing
unit and the much slower off-chip memory by storing a portion of the content from
main memory. If a data request hits in the cache, it takes only very few processor
cycles to deliver the data from the cache to the processing unit; otherwise, in the case
of a miss, the CPU has to fetch the data from main memory, which nowadays consumes
hundreds of processor cycles.

The role of cache analysis for WCET estimation is to predict the behavior of a pro-
gram on the platform’s caches. For example, cache analysis may provide a safe bound
on the number of cache hits or misses when a program executes on some given plat-
form; it may also categorize the accesses to memory blocks in programs as definite hits
or misses.

In [Wilhelm et al. 2008], WCET analysis techniques and tools are surveyed. Due to
its importance in timing analysis and its complexity, cache analysis alone deserves an
in-depth discussion.

The rest of the article is organized as follows. First, background knowledge on WCET
estimation and caches are given in Sec. 2. Then, we present the research problems and
solutions for the intensively researched LRU caches in Sec. 3. A survey of the most
recent research on non-LRU caches are provided in Sec. 4. In Sec. 5, the discussions
are extended to cache analysis in multi-tasking and multi-core environments where
programs interfere with each other on shared caches. A summary of WCET analysis
tools based on static cache analysis is given in Sec. 6. We present an outlook for future
research at last.

2. BACKGROUND KNOWLEDGE

We first present an established static WCET analysis framework to exhibit its main
work flow and where cache analysis steps in. Then, the basic concepts on cache orga-
nization, behavior and analysis are introduced.

2.1. A Classical WCET Analysis Framework

The objective of static timing analysis is to compute safe lower and upper bounds on
the execution times of programs. These are also called BCET and WCET estimates,

1This distinction between the occurrence of a memory access or an instruction and one, several, or all of
their executions is of utmost importance.
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Fig. 2. The separated path and cache analyses framework for WCET estimation

respectively. The WCET is observed in a particular execution scenario with some exe-
cution context, such as data input and initial hardware state. Theoretically, the WCET
is not computable; otherwise, one could solve the halting problem. In this article, we
assume that all real-time programs terminate so that their WCET can be computed.

Most static analyses are performed on the binary code rather than the source code of
the program, because the two need not have the same control flow due to compiler op-
timizations, and the source code does not determine the precise location of instructions
and program variables in memory, which are needed for instruction- and data-cache
analysis.

A naive, straightforward analysis would enumerate all possible executions to find
the largest execution time. However, this method does not scale. Consider a loop with
a conditional branch inside. If we do not know whether or not the branch is taken in
each iteration, the number of program paths to be explored is exponential with respect
to the number of loop iterations. To tackle the complexity, the state-of-the-art analysis
techniques adopt the framework in Fig. 2.

The first step is to reconstruct the Control Flow Graph (CFG) of the program. A
CFG is a directed graph, with each vertex representing an instruction and each edge
representing the control flow. We say there is a program point right before each ver-
tex in the following discussions. A CFG typically has a single entry and a single exit
corresponding the start and the end of a program. The analysis procedures are then
conducted on the CFG.

This step is followed by a Value Analysis, which computes enclosing intervals for all
potential values of registers and local variables and also determines loop bounds. This
is a more or less standard Interval Analysis as invented by P. and R. Cousot [Cousot
and Cousot 1977]. The next step is to compute an upper bound on the execution time of
each instruction (C; in Equation 1), which heavily depends on the underlying hardware
features, such as pipelines [Li et al. 2006], branch predictors [Colin and Puaut 2000;
Burguiere and Rochange 2005] and caches. Cache analysis is an important part of this
step, which is often referred to as micro-architectural analysis or low-level analysis.

With the above results, the final step is to find the execution path that exhibits
the longest execution time, typically referred to as WCET calculation. An established
approach is the Implicit Path Enumeration Technique (IPET) [Li and Malik 1995],
whose main idea is to transform the problem of searching the worst-case execution
path into searching the execution counts for each instruction such that the execution
time is the largest. This can be formally modeled as an integer linear programming
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(ILP) problem, in which the execution time of a program is represented by the sum of
execution latencies of all instructions. Thus, the WCET can be obtained by maximizing
the execution time (the objective function of the ILP problem):

N
WCET =maz»_ C; x X; 1)
i=1

In Equation (1), N refers to the total number of instructions which is a constant ob-
tained from the CFG; C; is the WCET for the i*" instruction, which has been computed
in the second step; the variable X; stands for the execution count of the i*" instruction.
X, is subject to constraints induced by the program structure. In the following, the
variable d;_; captures how often the edge from instruction ¢ to instruction j is taken.
Then, X; must be equal to both the total execution counts of all its incoming edges and

those of all outgoing edges?, which can be expressed as follows.

Vi, X; = > d i = > d;_. (2)

all incoming edges all outgoing edges

Other program behavior can be constrained as well. For example, the loop iterations
should be bounded in advance either manually or by automatic analysis [Gustafsson
et al. 2006]. They can be modeled as linear functions relating the execution counts of
the loop body and the loop entry. All available constraints are expressed in one ILP
problem, whose maximal solution bounds the WCET from above. To improve analysis
efficiency, sequences of instructions (with no branch along the path) are combined into
basic blocks and represented by a single vertex in the CFG.

The key feature of this framework is the separation of micro-architectural analysis
from WCET calculation. In general, this approach is pessimistic. However, the sacrifice
of precision is rewarded by significant improvement in analysis efficiency.

2.2. Cache Organization, Behavior and Analysis

— Cache Organization and Behavior

A cache is a small, high-speed memory residing on the processor chip (shown in
Fig. 3) that stores a copy of a portion of the instructions and/or data in main memory.
Each access to the cache results in either a hit or a miss. One can distinguish two
types of cache misses. A cold miss occurs when a data element, absent from the cache,
is loaded for the first time. If the cache is full and a cache miss occurs, a data element
needs to be evicted. A replacement miss occurs when an evicted element is reused.
Cache hits are the result of memory reuse. In most processors, a cache line (the unit
for cache access) contains multiple data elements. An access to one element causes
the whole cache line to be loaded into the cache. As a result, a following access to
another element of the same cache line also results in a cache hit. Besides, consecutive
accesses to the same data element result in cache hits as well, an example of which
is the execution of a loop. The above two types of reuses are commonly referred to as
spatial reuse and temporal reuse respectively, the pervasiveness of which is expressed
by the well-known locality principle.

Today, some processors are equipped with two or more levels of caches, as a fine-
grained trade-off between cost and speed. The lowest level® (namely L1 cache) is usu-
ally divided into a private instruction cache and a private data cache, each of which is

2For either the entry or the exit instruction, one can simply constraint the execution count to be exactly 1.
3A cache level is lower if it is closer to the processing unit; the highest level is typically called the last level.
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typically no larger than 32 KB and has an access latency of 1 — 2 cycles. If a memory
access misses in the L1 cache, the L2 cache is queried. The capacity of L2 caches may
range from hundreds of KB to several MB, with an access latency of around 10 cycles.
In some high performance multi-core processors, an L3 cache may also be deployed to
further expand cache capacity. Misses in the last level cache trigger accesses to the
main memory via the off-chip memory bus, causing a delay in the order of hundreds of
cycles.

Like other storage devices, addressing is an important feature of the cache design.
Some processors adopt the set-associative organization, in which the address space is
partitioned into independent sets. Every set has a fixed number of ways, each of which
refers to a single cache line in every cache set. The total number of ways within a
cache set is called associativity. To load a memory block, the processor first determines
which cache set the block maps to. Then a lookup into the target set is performed for
a free cache way. If all the cache ways are occupied, the replacement policy determines
which old block to evict to make room for the new block. In this article, we consider
four common policies illustrated in Figure 4, assuming a 4-way cache set.

X X
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Fig. 4. Common cache replacement policies

The least-recently-used (LRU) policy replaces the block that has been used least
recently. The illustration of LRU in Figure 4(a) is a first abstraction from the actual
hardware implementation. Each cache way in an LRU cache set is associated with a
fixed age, which is received by the block in the corresponding cache way. Figure 4(a)
illustrates how the positions of the blocks are reordered upon a cache hit and a cache
miss.

However, most commercial processors do not employ LRU, because it requires com-
plex hardware implementation and further leads to higher power consumption. Non-
LRU replacement policies, such as First-In-First-Out (FIFO), Most-Recently-Used
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(MRU) and Pseudo-LRU (PLRU), are adopted instead since they are simple to im-
plement and still have similar average performance as LRU [Heckmann et al. 2003].

Figure 4(b) shows how the FIFO replacement policy works. A cache hit does not
change the cache state. Upon a cache miss, all the memory blocks shift one position
downwards, evicting the block in the bottom cache way; then the new block is installed
in the top-most cache way. Again, this representation is an abstraction from the actual
hardware implementation, which does not shift memory blocks from one cache line
to another, but rather maintains a modulo-4 counter to determine the next block to
replace.

The MRU cache (shown in Fig. 4(c)) maintains a bit for each cache way (called MRU-
bit) to approximate the recency of access. Bit 1 means the block was visited recently.
Upon a hit, the MRU-bit of the hit block is set to 1. Upon a miss, the top-most way with
MRU-bit 0 is taken by the new block, and its MRU-bit is set to 1. Eventually there is
only one cache way with MRU-bit 0. When this way is visited (MRU-bit turned to 1),
all the other MRU-bits are set to 0 immediately, called a global flip.

PLRU is a tree-based approximation of LRU (Fig. 4(d)). It arranges the cache ways
at the leaves of a binary tree with k—1 bits, where % is the cache associativity. Bit 0
and 1 on the branches indicate the left and the right subtrees respectively. Following
the bits downwards from the root, the cache line to be replaced or refilled can be found.
After an access (either hit or miss) to a cache way, all tree bits along the path from it
to the root are set to point away. It is possible that a cache set contains invalid cache
lines. We assume the ¢ree-fill policy, by which the line to be filled or replaced is always
determined by the tree bits.

In most architectures, cache sets are completely independent of each other. This
makes the independent analysis of programs’ behavior on different cache sets possible.
Throughout this article, we focus on the cache behavior in one set, and may use cache
to refer to a cache set for simple presentation when appropriate.

— Cache Analysis

The objective of cache analysis is to statically determine the cache behavior of a
program, the results of which can be used for performance analysis and optimization.
The results may be of several types: one is the classification of individual memory
accesses in a program as hits or misses. Such a classification of memory accesses can
be used in a cooperating pipeline analysis to determine whether the pipeline may have
to stall on an instruction or operand fetch. Another is a bound on the number of cache
loads in a segment of the program. This allows, under certain conditions, to just add
an accumulated penalty to the execution-time bound for memory accesses that could
be neither classified as cache hits or misses. The former type of cache analysis could
be called a classifying cache analysis, one instance of the latter, relevant for practice,
is known as persistence analysis.

A typical use of the results of a cache analysis in real-time systems is for computing
the BCET and WCET of programs. The bigger the percentage of hits that will hap-
pen during execution it can predict, the tighter the WCET estimation is. In contrast,
predicting a higher percentage of actual misses leads to tighter BCET estimation.

The designer of a cache analysis faces several questions: the first one is whether
the analysis is to be a classifying or a persistence analysis. The second question is by
which method cache behavior should be analyzed. Associated to the second question
are the questions of the granularity of the analysis and the representation of the cache-
behavior properties.

Let us illustrate this rather abstract discussion at the example of classifying cache
analyses. The most precise analysis would predict each executed memory access to be
either a hit or a miss—here it is vital to make the difference between an executed
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memory access and the occurrence of an instruction involving a memory access in a
program. We have assumed that all real-time programs terminate. Hence any pro-
gram would execute only finitely many memory accesses, so that such an analysis
would in principle be possible. However, the corresponding analysis would, in general,
not scale. On the other end are cache analyses that would classify occurrences of mem-
ory accesses as always hit or always miss, where always means for all executions of
this occurrence of the memory access. However, experience has shown that the actual
execution times of memory accesses associated with one occurrence of a memory ac-
cess may vary widely. This means that just taking their upper bounds may largely
overestimate the memory-access costs. Precise and efficient analyses should attempt
to classify subsets of executed memory accesses corresponding to one occurrence, such
that the accesses in the subsets have some homogeneous timing behavior. The subsets
would be characterized through control-flow criteria, in the following called contexts.
The most important examples for contexts are different iterations of loops.

To approach the second question raised above, one needs to identify the information
about cache contents—in the following mostly called concrete cache states—to be com-
puted by a classifying cache analysis. This information would provide answers to the
question, are all memory accesses belonging to this occurrence (in this context) hits or
are they all misses? One solution would be to collect at each program point the set S
of all concrete cache states that are possible when program control reaches this pro-
gram point (in this context). Such an analysis would again not scale. Instead, one can
represent sets of concrete cache states by abstract cache states. Each abstract cache
state (compactly) represents a set of concrete cache states. As we will later see, two
types of such abstract cache states are of interest. Consider the set S of all concrete
cache states that are possible at a program point. One might represent by an abstract
Must cache state the information, whose memory blocks will be in each of the possible
concrete cache states in S. This is obtained by some kind of intersection applied to
the elements in S. Likewise, one might represent in an abstract may cache state the
information, which memory blocks may be in one of the possible cache contents. This
is obtained by some kind of union applied to the elements in S.

3. ANALYSIS OF LRU CACHES

For decades, a majority of research on cache analysis has focused on caches with LRU
replacement strategy. In this section, we survey the main analysis techniques with
an emphasis on the approach based on Abstract Interpretation (AI) [Ferdinand and
Wilhelm 1999]. This technique is realized in the aiT tool of AbsInt [Heckmann and
Ferdinand 2014], which is widely used in industry. Since programs spend most of their
execution time in loops, a sub-section is dedicated to the analysis of the cache behavior
in loops. The big picture on LRU caches is completed with further discussions on data
cache and multi-level cache analyses.

3.1. Abstract-Interpretation-Based Approaches
The first cache analyses based on abstract interpretation (AI) were proposed by Ferdi-
nand and Wilhelm in the 1990’s [Alt et al. 1996; Ferdinand and Wilhelm 1999].

The overall approach works in two phases:

(1) An Al-based cache analysis computes abstract cache states at all program points
as part of a fixed-point solution;
(2) These abstract cache states are queried in order to classify memory accesses.

A Short Introduction to Abstract Interpretation. Abstract interpretation [Cousot and
Cousot 1977] is a static program analysis method based on a semantics of the consid-
ered programming language. Instead of executing the program on the concrete domain
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of values, it executes an abstracted version of the program on an abstract domain
of descriptions of values. In the case of cache analysis, the program abstraction only
describes the memory-access behavior of the program, i.e., it performs all memory ac-
cesses that the program would execute. This abstracted program works on abstract
cache states, which are descriptions of sets of concrete cache states. One abstract cache
state is associated with each program point. Whenever the analysis encounters a mem-
ory access, it updates the abstract cache state in a way induced by the update that the
processor would perform on the concrete cache states. Whenever the control flow of the
program merges, e.g. at the end of a conditional or at the header of a loop, it combines
the incoming abstract cache states in a sound way.

Gary Kildall [1973] has recognized that the abstract domains of typical data-flow
analyses were lattices, i.e. partially ordered sets where all subsets have least upper
bounds. The partial order reflects the relative information content of two lattice ele-
ments. By convention, elements lower in the lattice represent more information than
information higher in the lattice, i.e., an element a below or equal to an element b in
the lattice, a C b, contains no worse information than b. The domain of abstract cache
states together with a partial order reflecting the amount of knowledge about cache
contents, in this sense, also forms a lattice.

Age 1 2 3 4 Age 1 2 3 4

alw [ ] o] @] bl [ 0[] =]

Fig. 5. An example to show the C relation w.r.t. the Must domain

Consider two abstract Must cache states G and b (as shown in Fig. 5). Abstract cache
state a represents just one concrete cache state, containing memory blocks {u,z,y, z}

with the ages 1, 2, 3, 4. Abstract cache state b represents concrete cache states with
memory block u having age 1, x having age at most 3, z having age at most 4, and
possibly one more (unknown) block at age 2, 3, or 4. @ C b means that all the cache
states represented by a are also represented by b. In particular, this implies that all
the memory blocks known to be contained in the concrete cache states described by b,
in the example above u, z, z, are also known to be contained in the concrete cache states
described by a. Furthermore, a¢ additionally tells us that, (1) block y is guaranteed to
be in the cache while b does not; (2) the age upper bound estimated for block z in a is
smaller that that in b. Clearly, the abstract cache state a contains better information
than b. As stated above, at control-flow merge points cache analysis must combine the
incoming information in a sound way. The operation applied to the incoming abstract
cache states is the least upper bound, L, of the lattice. This is shown in Fig. 6. As said
above and made more precise later, it is some form of intersection. It determines safe
information holding for all incoming paths.

The lowest element in the lattice of abstract cache states, L, called bottom, describes
the empty set of concrete cache states. It is the initial analysis information at all pro-
gram points but program entry. If we do not have any information about the cache
contents at program entry, the highest lattice element, T, called top, is used as ini-
tial analysis information. It describes the set of all concrete cache states, and thus the
absence of information about cache contents.

The update functions are, in general, monotone, so that information, once computed,
is not lost again. A fixed-point iteration over the control-flow graph of the program is
guaranteed to terminate and deliver the least fixed point as solution. Essential for
termination is the finiteness of the lattice.
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Let us summarize this short introduction to Al by listing the main ingredients of a
particular abstract interpretation. The designer needs to choose or define an abstract
domain, a lattice of abstract values, which are descriptions of (sets of) concrete values.
The partial order defines the relative information content of two lattice elements. The
least upper bound is the operation to join abstract values flowing to a program node
through different control-flow graph edges. Abstract update functions for an instruc-
tion reflect the instruction’s effect on the incoming abstract values.

Querying the Results. Querying an abstract cache state, resulting from a cache anal-
ysis, for an accessed memory block may yield qualitative properties as listed in Table I.
To determine whether the memory access to m is always hit (AH), one simply checks
the existence of m in the abstract must cache reaching its program point. Similarly, to
determine whether the memory access to m is always miss (AM), it suffices to know
that m is not in the abstract may cache reaching its program point. If a memory access
can be neither classified as AH nor as AM, it is classified as NC. An NC classification
can have two reasons: (1) some of the executions of a memory access hit in the cache
and others miss in the cache, or (2) the analysis method overapproximates the set of
concrete cache states and thereby fails to deliver the correct classification. Research
results show that these properties are able to cover most access behaviors for LRU
caches [Ferdinand and Wilhelm 1999]. The classifications can then be expressed as
linear constraints on the execution cost of each instruction (basically each instruction
generates a single memory access) and later integrated into WCET computation. In
architectures without timing anomalies [Reineke et al. 2006], if the classification of a
memory access is NC, it is safe to treat it as AM. The properties AH and AM in Table I
are explored by independent analyses, which are now described in detail.

Table I. Cache Hit/Miss Classification

Classification Cache Access Behaviors Described Analysis
Always Hit (AH) Block is guaranteed to be in the cache upon each memory access Must
Always Miss (AM) | Block is guaranteed not to be in the cache upon each memory access May
Not Classified (NC) | Cannot be classified by any of the above classifications /

Must Cache Analysis. The objective of Must analysis is to compute a Must-ACS at
each program point, which represents the common cache contents in all possible exe-
cutions leading to this program point. An age is associated with each memory block
in the Must-ACS, which is an upper bound of its ages in all CCS. We use a graphical
representation to show a Must-ACS, in which blocks are grouped according to their
ages, e.g., in Fig. 6. The set of CCS represented by a given Must-ACS is formally de-
fined by the concretization function below, where ¢ and ¢ denote concrete and abstract
cache state respectively, and age(c, m) refers to m’s age in cache state ¢ (applies to both
concrete and abstract states).

concM¥t (@) ={c|VYmeé : mec A age(e,m) < age(é,m)} 3)

The Must-ACS at the program entry is initialized with T representing all concrete
cache states if the initial cache content is unknown; all other nodes are initialized
with L representing the empty set of concrete cache states. A fixed-point computation
is employed to compute the Must-ACS at each program point, during which two main
operations over the Must-ACS are involved.

A join function combines several Must-ACS into a single Must-ACS when the control
flow merges. The resulting Must-ACS takes the intersection of the sets of blocks in
all the incoming states and assigns to each block its maximal age from the incoming
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Fig. 6. An example to demonstrate the Must join function
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Fig. 7. An example to demonstrate the Must update function

states, as shown in Fig.6. An update function U (¢,x) defines how an abstract state
¢ is changed due to an access to memory block x, specifically, how the age of each
block in the ACS is updated. Fig. 7 shows an example. A correct Must update function
guarantees that the age of each block in the computed ACS is a safe age upper bound
for all possible represented CCS. For example in Fig. 7, the age of d in ¢ implies that
there could be a CCS represented by ¢, in which d has an age of 4, such as c;. By
loading x, we can no longer guarantee d still stays in any resulting CCS. Thus, d has
to be removed from the computed abstract state ¢'.

May analysis. May analysis computes a May-ACS at each program point, which rep-
resents all potentially cached contents in all possible executions leading to this pro-
gram point. If block m does not exist in the May-ACS at the reaching program point,
we can guarantee the access to m is AM. Unlike the Must-ACS, the age of each block
in a May-ACS is the lower bound of its ages in all represented CCS, as expressed by
the May concretization function below, with the same notions as in function 3.

concM (&) ={c|Vm cc : meé A age(é,m) < age(c,m)} 4)

The May join function takes the union of the sets of blocks in all incoming May-
ACS and assigns each block the minimal age in all incoming states. The May update
function is exemplified in Fig. 8, where ¢ is the May-ACS representing the concrete
states ¢; and cy. Take memory block d for example. d’s age in the May-ACS is the
minimum of those in ¢; and c¢,. After the access to z, d is evicted from c¢,. However,
d still remains in the resulting May-ACS ¢, because ¢ must soundly represent the
other resulting CCS ¢] in which d remains. To determine whether the memory access
to m is AM, it suffices to know that m is not in the May-ACS reaching its program
point. A block m is not in the final May-ACS at a program point because either m has
never been loaded or enough different blocks have been loaded to evict m from the
cache. May analysis does not directly help with tighter WCET estimations, however,
predicting more misses results in better estimations on BCET.

3.2. Improving Precision by Using Contexts

In practice, merely relying on classifying analyses, such as Must and May analyses,
may still largely overestimate the memory-access cost and thus the WCET. Methods
to improve the knowledge about the cache behaivor are proposed by taking program
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Fig. 8. An example to demonstrate the May update function

structures into consideration, in paticular loops. The cache behavior of programs in
loops is somewhat special: the first iteration typically loads the contents into the cache;
later iterations profit from the first iteration since accesses to the cached contents are
hits. The concrete state on return to the loop header may thus be very different from
that reaching the loop from the outside. This is also reflected in cache analysis where
the abstract state upon return from the first iteration may be very different from that
on the entrance to the loop. Naively applying the join function to these two abstract
cache states would produce very bad information about the cache behavior of the loop.
In such cases, a large percentage of the accesses to the memory blocks in the loop
cannot be classified as either AH or AM by the previously introduced Must and May
analysis. However, there are two alternative ways to tighten the WCET estimation.
The first one exploits the above observation by virtually unrolling each loop followed
by a Must analysis. An access to a memory block who in the first iteration would be
classified as AM, and who in the other iterations would be classified as AH would then
be classified as FM (first miss). The other alternative would be to bound the number
of cache misses for all the accesses to a memory block within a certain program scope.
These two analysis techniques will be now introduced. Note that the first analysis still
is a classifying analysis for memory accesses, albeit with a new classification, FM, and
the second is a bounding analysis for memory blocks in a scope.

AM

AM 1% round analysis

LB=9
LB=10 for the outer loop
&
@ NG 2" round analysis
i for the inner loop
ACS for i
the 1
iteration
ACS for the other iterations
(a) Program example (b) VIVU (c) Multi-level Persistence

Fig. 9. The ideas of VIVU and multi-level Persistence analysis

Virtual Inlining & Virtual Unrolling (VIVU). VIVU [Martin et al. 1998] can be used
to improve cache analysis precision for loops. The idea is to analyze the first loop it-
eration separately from all other loop iterations. This is done by virtually unrolling
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the first iteration of the loop body*, so as to distinguish the behavior between the two
contexts. Then, a Must analysis is applied to the program with the unrolled loop to
find the AH memory accesses in all but the first loop iterations. Fig. 9(b) shows the
results of unrolling the inner loop of the program in Fig. 9(a). In the new CFG, c¢; and
¢, refer to the first and the other iterations of the inner loop respectively (similar for
d). Assume the cache is 2-way associative. Must analysis on the new CFG is able to
classify ¢, and d, as AH, and thus c and d as FM.

Persistence Analysis. One can aim at the same analysis objective by a Persistence
analysis. There are several possible notions of persistence of memory blocks one could
aim at. These are:

persistence. execution causes at most one miss for the memory block,
first miss. only the first access is a miss, all others are hits,
no eviction. the block is never evicted after a possible miss.

For a memory block that is persistent in a program fragment, timing analysis can
assume a bound of one cache load for all accesses within that program fragment.

The first Persistence analysis was proposed by Ferdinand and Wilhelm [Ferdinand
and Wilhelm 1999]. This analysis employs abstract cache states, Per-ACS, as do the
Must and May analyses. The fact that a block has been visited and already evicted from
the cache is modeled by assigning an age T to the block, where T is larger than the
cache associativity. The Per-ACS at each program point represents the cache contents
that are potentially visited and then guaranteed to remain in the cache. If a memory
block exists in the Per-ACS at the end of the scope, then one can guarantee that at
most one cache miss may occur for all the accesses to this block.

The concretization of a Per-ACS is a set of traces satisfying the persistence condition,
i.e. at most one miss for each block with a non—T age in the Per-ACS. More precisely,
a Per-ACS captures upper bounds on the ages of memory blocks, assuming that they
have already been accessed at least once in the execution of the program.

Fig. 10(a) gives an example for Persistence update. All blocks in Per-ACS ¢ are po-
tentially visited during program execution. By accessing z, d is no longer guaranteed
to be in the cache since it has age 4 in ¢, which is maintained by putting d in the T-age
line. Block f, already evicted from the cache before accessing x, remains unchanged in
the T-age line. The update function for Persistence analysis mainly needs to guarantee
the maximal age for each block in the ACS is soundly maintained.

At a control flow merge point, several Per-ACS are merged by the join function,
which takes the union of the blocks in all the incoming Per-ACS and assigns each
block the maximal age from the incoming states, as shown in Fig. 10(b). Intuitively,
the set union operation guarantees the resulting Per-ACS does not lose track of any
potentially visited memory block; the maximal age ensures that we can safely predict
whether a block is definitely persistent after its first access.

The Persistence analysis by [Ferdinand and Wilhelm 1999] was recently found to
be unsafe, due to an error in the update function, which may incorrectly underesti-
mate the age of a block. The error was corrected by Cullmann [Cullmann 2013] and
Huynh [Huynh et al. 2011]. Several different ways were proposed to restrict the set
of memory blocks in a Per-ACS to the actual capacity of a cache set. The simplest

4(1) The unrolling is called virtual since it is done by maintaining separate abstract cache states for the
first iteration and the remaining iterations (e.g., ¢1 and &| in Fig. 9(b)). For ease of understanding, we use
a physically unrolled CFG to show the effects. (2) VIVU allows to unroll more than one iteration of the loop
since iterations other than the first may have vastly different behavior and thus execution times. Here we
assume only unrolling the first iteration to simplify presentation.
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Fig. 10. Operations for Persistence analysis

way, yielding the least precise results, marks all memory blocks in a Per-ACS as non-
persistent, if the Per-ACS contains more blocks than the associativity allows. Others
check the number of conflicts between members of the Per-ACS; Huynh’s analysis em-
ploys fixed-point computation to collect for each block m a set of potentially conflicting
blocks (blocks that are mapped to the same cache set with m and thus may age m). If
the total number of conflicting blocks is no larger than A — 1, where A is the cache as-
sociativity, then one can safely draw the conclusion that m, once loaded, will persist in
the cache. A similar idea was also applied in an earlier Persistence analysis [Mueller
2000]. Cullmann presents a number of similar persistence analyses [Cullmann 2013].
The most precise of Cullmann’s analyses relies on a May analysis to make correct
decisions on age update.

Analysis Scope. A bounding analysis, such as the Persistence analysis, is designed
to investigate cache behavior within a program scope, in most cases a loop body. It is
common for a program to have nested loops, where a block in an inner loop also be-
longs to the outer loop. A natural question would be: does the block have a different
cache behavior for different loop levels? To distinguish a block’s behavior, the relevant
loop nest(s) (the inner loop, the outer loop, or both) is/are unrolled in the VIVU ap-
proach. For Persistence analysis, a multi-level approach was proposed by Ballabriga
and Cassé [Ballabriga and Casse 2008], which applies the basic Persistence analysis
on the relevant scope, here specifically the relevant loop nest, to explore local cache
behavior. Fig. 9(c) illustrates the basic idea. Persistence properties regarding different
loop nests for a memory block can be encoded as linear constraints (or other forms)
and integrated into WCET computation for tighter estimations.

e block | VIVU | block | VIVU | PER
bi | AM | b, | AH | NC

(a)
° br [ NC [ b, [ AH [ FM ° o | AM | c | NC | NC
¢ | NC| ¢, | NC | FM d' AM d0 NC | NC
() (9 & [ NC | do | NC | FM Q9 ; .
e e | AM | e, | AH | NC

(a) Multi-level Persistence outperforms VIVU (b) VIVU outperforms multi-level Persistence

block | VIVU | block | VIVU | PER

Fig. 11. Comparing VIVU with multi-level Persistence analysis
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Comparing VIVU and Persistence Analysis. Since both VIVU and Persistence anal-
ysis are able to bound cache misses for a program scope, a straightforward question
would be: which one is more precise? In fact, the two techniques are generally incom-
parable. For the program in Fig. 11(a), ¢, and d, cannot be classified as AH by Must
analysis [Ferdinand and Wilhelm 1999] of the VIVU approach, as neither ¢, nor d,
are guaranteed to be accessed in the first loop iteration. On the other hand, the multi-
level Persistence analysis is successful in this example for ¢ and d. In Fig.11(b), both b,
and e, can be classified as AH by VIVU. However, none of b, ¢, d or ¢ can be classified
as FM by the multi-level Persistence analysis [Ballabriga and Casse 2008], which is
based on a specific Persistence analysis proposed by [Mueller 2000]. This is because
the Persistence analysis [Mueller 2000] counts the conflicting blocks in a loop (mapped
to the same cache set); if the number is larger than the cache associativity, none of the
blocks in the loop can be classified as FM. If, otherwise, a different Persistence domain
is adopted in the multi-level analysis, such as [Cullmann 2013], b and e can be locally
classified as persistent.

VIVU and Persistence analysis can also be compared in terms of analysis cost. On
the one hand, VIVU may result in a more expensive micro-architectural analysis, hav-
ing to distinguish multiple contexts. On the other hand, the results of Persistence
analysis need to be encoded into constraints during implicit path enumeration. The
influence of the two effects on analysis times have not yet been compared empirically.

3.3. Other Techniques

Mueller and Whalley proposed static cache simulation [Mueller and Whalley 1995].
Static cache simulation is very similar to Al-based methods discussed above: it adopts
the concept of abstract cache states and leverages a data flow analysis by fixed-point
iteration to compute them. Static cache simulation also tries to determine similar clas-
sifications to Ferdinand’s analysis. The major difference lies in the construction of their
abstract domains: the analysis employs a unified abstract domain to infer AH, AM, FM
and First Hit (FH) classifications all at once.

Before Al-based approaches, Li et al. presented a technique which uses Cache State
Transition Graphs (CSTGs) to model cache behavior [Li et al. 1996]. An CSTG, built
out of the CFG, models the cache-state transitions for a given cache set. A vertex in the
CSTG stands for a possible concrete cache state, and each edge in the CSTG represents
a possible transition from the source state to the destination state due to a memory
access in the program. Instead of exploring qualitative properties, such as AH, AM
and FM, the analysis tries to find a lower bound on cache hits for each memory block.
The bounds can be modeled as linear constraints and combined into the ILP to obtain
the WCET for the program. By explicitly enumerating the concrete cache states, the
CSTG approach can provide good analysis precision. However, it does not scale with

program size. Assume that there are M memory blocks mapped to each cache set with
associativity K, the number of states in an CSTG can be calculated by Zfi o % [Li
et al. 1996]. Note that the number of linear constraints is of the same scale as the
number of CSTG states. In practice, the analysis efficiency is low due to the complexity
of the resulting ILP problem.

Model checking [Clarke et al. 1999] is a powerful technique widely used in system-
level timing analysis of real-time systems. Timed automata [Alur and Dill 1994] have
been used to model the cache behavior of programs, and a model checker has been em-
ployed to find the WCET. Existing work includes the McAiT tool [Lv et al. 2011], the
METAMOC approach [Dalsgaard et al. 2010a], Gustavsson et al.’s analysis [Gustavs-

son et al. 2010], etc.
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Fig. 12. The analysis framework of McAiT

Fig. 12 shows the architecture of the McAiT tool. McAiT first constructs the pro-
gram automaton out of the CFG, which fully simulates the behavior of the program,
such as the control flow and how the program accesses caches. For a given cache con-
figuration, McAiT builds a timed automaton to model each cache. The execution of an
instruction causes the program automaton to issue messages to the cache automaton
via UPPAALs channel mechanism, and the cache automaton updates the cache state
accordingly. The timed automata models for both the program and the cache are then
explored using the UPPAAL model checker to find the WCET.

Essentially, the estimated WCET by a model checker is the actual WCET of the pro-
gram, since all the possible executions are explored by the model checker. Cache hits
and misses for each execution of memory accesses is precisely reported. The major dif-
ference between this approach and the CSTG approach is that the possible cache states
are not explicitly modeled in the automaton, but rather explored by the model checker.
The main drawback of model checking-based approaches is their lack of scalability,
since an exponential state space has to be explored.

3.4. Data Caches

Modern processors are typically equipped with data caches to improve the performance
of data accesses. Instructions are fetched from known addresses; so instruction fetch-
ing can be accurately analyzed. In contrast, data accesses are less predictable [Vera
et al. 2003; Lundqvist and Stenstrom 1999a].

— Main Challenges

Before predicting hits/misses for data accesses, the set of data addresses accessed
by each instruction needs to be determined, referred to as value analysis or address
analysis [White et al. 1999; Balakrishnan and Reps 2004]. The threat to precision is
that an imprecise value analysis may not be able to eliminate memory accesses that
do not occur in a real execution. The problems are the following: Firstly, data manipu-
lations using redirectable pointers make it hard to statically determine the data items
actually accessed. Secondly, in the presence of dynamic data structures on the heap,
the data addresses can only be determined at run-time (due to this problem, dynamic
data structures are typically avoided in hard real-time systems). Lastly, value analy-
ses may work with abstractions of memory addresses, such as intervals. As a result,
the address range they compute may be over-approximated. Considering non-feasible
data accesses in cache-behavior analysis increases the probability of not being able to
classify memory accesses as cache hits or misses. In addition, a memory access without
precisely determined address pollutes the information contained in an abstract data
cache since the update function has to be applied to all potential concrete addresses.

Besides that, data cache analysis is challenged by another problem: executing an in-
struction may generate accesses to multiple data addresses. Fig. 13 depicts a program
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1 for (i = 0; i < N; i++)

2 for (k = 0; k < N; k++)

3 for = 0; J < N; j++)

4 CLIL] += ALKILi] * BO1IK]:

Fig. 13. An example of matrix multiplication

with a matrix multiplication, in which line 4 generates accesses to different matrix ele-
ments (in different loop iterations). For this simple program, one can easily determine
the data items accessed in each loop iteration. But, in general, data accesses could be
very unpredictable due to input dependence of the array indexes. Think of accesses to
array Alz][y]: if the values of z or y are not clear, one has to conservatively assume
that any address in the whole array could be accessed. Furthermore, classifications
of memory accesses as used for instruction-cache analysis (AH, AM, FM) may not be
sufficient to describe data cache behavior.

— Analysis without Input Dependence

Early work, such as the Cache Miss Equation (CME) framework [Ghosh et al. 1999],
focused on analyzing programs with predictable data accesses. The underlying idea is
to set up mathematical formulas (Linear Diophantine equations specifically) to pre-
cisely capture both spatial and temporal memory reuses by relating data addresses,
loop induction variables and cache parameters. From the solution of the equations,
one can check if a memory block is evicted from the cache before it can be reused. An
upper bound on the number of misses can thus be obtained for WCET estimation.

However, only a small set of programs can be analyzed by the CME framework:
(1) loops must be rectangular loops and perfectly nested; (2) array subscript expres-
sions and the bounds of the loop index must be affine combinations of the enclosing
loop indices; (3) no data/input-dependent conditions may exist. The CME framework
has been later extended to allow function calls [Vera and Xue 2002], conditionals only
depending on the loop induction variables [Vera and Xue 2002], and multiple loop
nests [Ramaprasad and Mueller 2005]. Unfortunately, none of these methods can deal
with input dependence. Clauss presented an approach of solving cache miss equations
through the mapping to Ehrhart polynomials [Clauss 1996]. Still, the complexity of
solving these polynomials is high. Another approach is the Presburger Arithmetic
framework [Chatterjee et al. 2001], which has similar restrictions and is computa-
tionally expensive.

— Analysis with Input Dependence

Earlier research to handle input dependence focused on direct-mapped caches. Kim
et al. proposed an analysis method based on the pigeonhole principle [Kim et al. 1996].
Fig. 14 shows 3 iterations in the execution of a loop in which a, b, ¢, and d can be ac-
cessed. If in total 9 memory accesses are generated, then at least 9—4 = 5 among them
must be cache hits. Apparently, the 4 cache misses are simply cold misses. This work
was later extended by Staschulat and Ernst to handle programs with unpredictable
input dependency [Staschulat and Ernst 2006], in which cache misses are bounded
according to data access types: (1) cache misses from predictable accesses are bounded
by the pigeonhole principle; (2) cache misses from unpredictable accesses are tracked
down by a miss counter and expressed with linear constraints. Unfortunately, these
methods are still too restrictive. First, they only work for direct-mapped caches. Sec-
ond, the loops must fit into the cache to utilize the pigeonhole principle. Essentially,
these approaches correspond to simple Persistence analyses for the special case where
programs fits into the cache.
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Fig. 14. Data cache analysis based on the pigeonhole principle

Al-based analysis techniques are extended to analyze set-associative data caches
with input dependency. Ferdinand extended the Persistence analysis [Ferdinand 1997]
with a new update function to handle multiple memory accesses by one instruction.
The basic idea and its drawback can be explained by the example in Fig. 15.
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(a) CFG (b) Fixed-point iteration of Ferdinand’s Persistence analysis

Fig. 15. Ferdinand’s Persistence analysis for data caches

Fig. 15(a) gives the CFG of a loop in which p; to p; are program points. Note that
each time the instruction after p; is executed, one of the blocks from {c,d, e} could be
accessed. Fig. 15(b) shows the fixed-point iteration process, given a cache size of 3. The
last line . of each abstract state is used to collect the blocks that have been evicted
from the cache (a common structure for most Persistence abstract domains). On the
transitions from p3 to p4, since it is not clear which of the three blocks (or their com-
bination) is actually accessed, they pessimistically assume that all blocks in {c,d, ¢}
could be accessed and cause other blocks to age. Thus, both a and b are evicted from
the cache (collected in [;). Moreover, since there is no knowledge about the access se-
quence of ¢, d and e, they receive an age of 3 when they are brought into the cache state
in the 1% iteration. As a result, no cache hit can be predicted for this loop. As only one
of the blocks ¢, d, e may be accessed in every iteration of the loop, slightly better results
would be possible with a different transfer function.

Sen and Srikant developed a Must analysis for data caches [Sen and Srikant 2007].
The analysis can be combined with VIVU to discover the persistence property of data
accesses. Despite some small differences, the age manipulation in Sen’s Must analysis
are similar to Ferdinand’s Persistence analysis [Ferdinand 1997], and thus may lead
to very pessimistic estimations.

Ferdinand’s and Sen’s analyses show that without modeling data access patterns,
the abstract domain has to do very conservative age maintenance. Again, for the pro-
gram in Fig. 15(a), if by some means we know that the lifetime of ¢, d, and e do not
overlap, then the analysis can be improved. For example, if the loop iterates for 30
times, c is only accessed in iterations 1 to 10, d only in iterations 11 to 20, and e only
in iterations 21 to 30, then ¢, d and e cannot evict each other in their lifetime. They
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are actually persistent (given a cache size of 3) once they are loaded into the cache,
since any of them can only be aged by a and b. Based on this observation, Huynh et al.
proposed scope-aware data cache analysis [Huynh et al. 2011]. Each memory access
is now associated with a temporal scope to model its lifetime, as an augmentation to
the traditional Al-based analysis. In the update function, memory accesses that have
no overlapping temporal scopes do not cause each other to age. In consequence, some
non-existing access conflicts are excluded, and more persistent data accesses can be
identified (such as ¢, d and e).

Hahn and Grund observe that cache analysis does not require knowledge of abso-
lute addresses of memory accesses. Instead it is sufficient to know about the relation
between the addresses of different memory accesses: do they refer to the same cache
block, a different cache block but the same cache set, or different cache blocks in differ-
ent cache sets? Based on this insight they developed relational cache analysis [Hahn
and Grund 2012], which can classify accesses as cache hits even if the absolute address
of the access is unknown.

To summarize, input dependence makes data cache analysis a challenging task. The
pessimism mainly comes from competition of memory accesses in the analysis that are
infeasible in real executions. The main causes of this problem are imprecise address
analysis and the inability to model and analyye data access patterns. The success of
data cache analysis depends on whether temporal and spatial locality of data accesses
can be precisely captured and analyzed.

3.5. Multi-Level Caches

Most modern processors adopt a multi-level cache design. Upon a memory access, the
processor queries the memory hierarchy from the L1 cache down to main memory
until the requested data or instruction are found. Regardless of the number of levels,
the highest level cache is generally much faster than main memory, since the latter
is accessed via the off-chip memory bus. To produce precise WCET estimations, cache
analysis should be conducted all the way to the highest level, instead of merely on the
L1 cache.

— Separate vs. Integrated Approaches

Two major analysis frameworks for multi-level caches are the separate analysis,
which analyzes caches level by level, and the integrated analysis, which deals with the
cache hierarchy as a whole.

| Memory . Cachean a"a'VS'S CAC for level L ‘
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— Level L
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CHMC for level L -~ Fiter " \ S
Cache analy5|s 777777 A VVVVVV
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Fig. 16. The separate analysis architecture

The separate-analysis framework was first proposed by Mueller [Mueller 1997] and
refined by Hardy and Puaut [Hardy and Puaut 2008], who corrected a soundness prob-
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lem. Fig. 16 [Hardy and Puaut 2008] shows the main work flow. In the analysis of all
but the L1 cache, a key information is whether a data request actually leads to an
access to this level. For example, if a memory access is predicted always hit at L1, then
the L2 cache will not be visited. An interface across cache levels, called Cache Access
Classification (CAC) is introduced to describe this information. The notion C AC, 1, de-
notes the access property of block r to level L, which is evaluated to one of the following
three cases:

— N (Never): the access to r is never performed at level L;
— A (Always): the access to r is always performed at level L;
— U (Uncertain): the access to r at level L can neither be excluded nor predicted.

The CAC values for level L are computed from both the CHMC and the CAC for level
L—1, which is shown in Table II.

Table II. Computing CAC for level L and memory block r [Hardy and Puaut 2008]

CHMC.1
CAC . AM AH FM NC
A N U U

U U N U U

N N N N

Trivially, if CAC, _1 = A (or N), then the access to memory block r is always (or
never) considered in the analysis of level L. However, handling the U classification
requires special attention. In Mueller’s multi-level analysis [Mueller 1997], memory
accesses with U classification are “conservatively” treated as always access in the
analysis of the current cache level. However, this treatment is demonstrated to be
unsafe [Hardy and Puaut 2008], since it may underestimate block ages, and thus in-
correctly predict cache misses as hits. Hardy and Puaut corrected the problem by con-
sidering both possibilities for the U accesses in the update function (shown in Fig. 17),
which guarantees that the worst-case scenario is never missed.

Input State: ACSj,

Aaccesstor N access tor

Update(ACS;,, 1) ACS;,

Join function
Join(Update(ACSiy,, 1), ACSin)
|

v
Output State: ACSout

Fig. 17. Update function for U access [Hardy and Puaut 2008]

However, Hardy and Puaut’s analysis may suffer from precision problems. Note that
in the above CAC computation, the FM classification is treated the same as NC, which
means the information obtained by Persistence analysis at level L—1 is never leveraged
in the analysis of level L. Actually, a block classified as FM at level L—1 causes at most
one access to level L on its first access. Mueller in an earlier practice tried to solve this
problem by unrolling the loop bodies [Mueller 1997], but this approach does not scale.

The component-wise separate analysis has several advantages. First, the analyzer
has the flexibility to apply different analysis methods for each cache level, as long
as the methods produce hit/miss classifications as the interface across adjacent lev-
els. This is desirable for architectures with different replacement policies for different
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cache levels, such as in the IBM Power 5 processor. Second, the overall analysis is
scalable as long as the adopted single-level analysis is scalable.

However, the separate analysis may be pessimistic due to imprecise transfer of cache
access information across cache levels. In contrast, integrated analysis [Sondag and
Rajan 2010] tries to build a holistic abstract domain for all cache levels, aiming to
collect the information lost by the separate analysis.

sl z [y ] sz [ x [z ]
sie[z [ x[y[al] s2:[ z [y ] [b]
\ /
S3u - Live Cache: S3jye
sselz | [y | [z [xTvy [ ]
Access x:  MISS in both L1 and L2 Atleast HIT in L2

Fig. 18. How a live cache helps to obtain a more precise join operation [Sondag and Rajan 2010]

Consider a Must join operation of a separate analysis with a 2-way L1 cache and
a 4-way L2 cache, shown in Fig. 18. Si;; represents the abstract state Si at Level j.
Consider block z, which appears in S1; on the left branch and in S2;; on the right
branch. By a separate analysis, = does not appear in the joined state S3 of any level. If a
subsequent access to x occurs, a cache hit can not be predicted. However, by evaluating
both levels together, it can be seen that = does show up in every incoming path, so a
subsequent access to x should be a cache hit, either in L1 or in L2 depending on the
execution history. This is to say, « is guaranteed in the cache hierarchy at the joined
program point. Unfortunately, this information is lost in the separate analysis.

Based on this observation, Sondag and Rajan introduced a new component called
live cache into the traditional abstract domains. At a join, a block is added to the
live cache if it appears in some cache level in every input cache state, as depicted
by S3;i..° in Fig. 18. With live-cache information, one can now safely predict that z at
least hits in the L2 cache. As reported in [Sondag and Rajan 2010], the extra overhead
by introducing live cache is acceptable for a 2-level cache hierarchy. However, analysis
overhead increases with the number of cache levels, since an independent live cache is
maintained for every pair of cache levels.

— The Impact of Inclusiveness

The relationship between cache levels is a key design feature. In some processors,
all data in level L must be contained in level L+1. Such caches are called (strictly) in-
clusive caches. For example in Fig. 19, the access to e causes a to be evicted from L2, so
a is forced to be removed from L1 to guarantee inclusion. Inclusive caches are favored
in multi-cores: any data update in the shared L2 cache is automatically synchronized
to the private L1 caches of all cores due to inclusion enforcement, which also achieves
data coherency. Other processors adopt exclusive caches, in which data is guaranteed
to be in at most one cache level. Exclusive caches are desirable for resource-limited
systems since there is no data duplication in the cache hierarchy. The type adopted
in previous discussions is called mainly-inclusive, which neither enforces inclusive-
ness nor exclusiveness. Inclusive caches are harder to analyze than exclusive caches,

5z has an older age in S175 than in S27,. This is because Sondag’s analysis assumes the write back policy.
If = is evicted from the L1 cache, it is installed in the youngest position of the L2 cache. This means z can
still suffer another k — 1 evictions in L2, where & is the cache associativity. The age of a block in the live
cache describes how long it can stay in the whole cache hierarchy.
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~ Mainly-Inclusive

[elbfoeld] [efbfecld]
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e 2> L2, evicts a e > L1, evicts a

Fig. 19. Handling new behavior of inclusive and exclusive caches

because the update to one cache level may cause further changes to both lower and
higher cache levels. Such behavior may preclude the separate-analysis flow.

Hardy et al. adapted the separate analysis [Hardy and Puaut 2008], originally de-
signed for mainly-inclusive caches, to both inclusive and exclusive caches [Hardy and
Puaut 2011]. The main idea is to first conduct an analysis assuming a mainly-inclusive
cache, and to then modify the CHMC results to guarantee that the effects of cross-level
cache updates are safely considered. For example in Fig. 19, the analysis assuming
mainly-inclusive cache reports that a is AH at L1 but may be evicted from L2. To
adapt this result to an inclusive cache, one must consider the possibility that a can be
removed from the L1 cache due to an update in the L2 cache. As a result, «’s CHMC at
L1 is modified from AH to NC. Similar problems exist in the May analysis as well. As a
consequence to CAC computation, accesses to all cache levels except L1 are changed to
Uncertain (CAC,  =U for L>2). All these modifications severely degrade the analysis
precision.

Sondag and Rajan extended their integrated analysis to both inclusive and exclusive
caches [Sondag and Rajan 2010]. The resulting update and join functions for inclusive
caches are very complex since once a block is accessed on some level L, the correspond-
ing changes in other cache levels must be correctly considered. Analysis of exclusive
caches has similar problems. To summarize, the inter-dependent updates among cache
levels to enforce inclusion/exclusion brings new difficulties regardless of the analysis
framework.

— The Impact of Write Operations

A write to the cache occurs when a data variable receives a new value. Two levels
of policies determine when and where to conduct the writing of data back to memory.
The write-through policy requires that the new value is updated synchronously both
in the cache and in main memory. In contrast, the write-back policy only marks the
modified data as dirty, and performs the actual update of memory only when the data
is evicted from the cache. A write miss occurs if the data to write are not in the cache.
Under the write allocate policy, missed data are first loaded into the cache, and then
updated with the new value, resulting in a cache miss followed by a cache hit. For the
non-write allocate policy, the data are directly written to main memory, bypassing the
caches.

The write-through policy is generally easy to handle in cache analysis, since data
writes to a certain cache level incur no change to other cache levels. However, for the
write-back policy, evicted dirty data are written to higher cache levels. Second, for the
write allocate policy, a write operation always causes cache accesses regardless of hit
or miss, which makes no difference from the read operation. However, for non-write
allocate caches, a write miss never causes a cache access, so one cannot simply assume
that each write operation changes the cache state, as is the case for reads. Like the
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inclusiveness enforcement, complex write operations cause cross-level cache updates,
which is a challenge to the analysis.

Hardy’s separate analysis framework has been extended to multi-level data caches
by Lesage et al. [Lesage et al. 2009] and to multi-level unified caches by Chattopadhyay
and Roychoudhury [Chattopadhyay and Roychoudhury 2009]. However, both analyses
assume a write-through policy. The abstract domains adopted in these methods are
not able to handle write-back. Sondag and Rajan modeled write-back behavior in their
integrated analysis [Sondag and Rajan 2010]. It is shown that modeling write-back
is easier by an integrated abstract domain, but one still has to carefully distinguish
possibly evicted blocks from definitely evicted blocks at any level during the analysis
to guarantee soundness. Definitely evicted blocks are identified from the May infor-
mation in Sondag’s method. Due to the access uncertainty of possibly evicted blocks,
conservative update and join operations have to be employed, causing a loss in preci-
sion.

4. ANALYSIS OF NON-LRU CACHES

In the past two decades, most research on cache analysis in the real-time domain was
focused on the LRU replacement policy. The analysis of non-LRU replacement policies,
i.e., those widely adopted in real-life processors, is still immature. In this section, we
look into the challenges for non-LRU analysis and survey existing techniques.

4.1. Why Are Non-LRU Replacement Policies Hard to Analyze

To answer this question we explore why it is hard to design precise and efficient ab-
stract domains and the corresponding operations for non-LRU caches. We identify mul-
tiple challenges discussed in the following paragraphs.

— Unsuitability of AH, AM, and FM Classifications

Under LRU replacement most memory accesses can be classified as AH, AM, or FM.
Are these classifications equally suitable for non-LRU replacements? If not, what are
alternatives that are better suited to characterize other policies’ behavior?

Unfortunately, these classifications are not as suitable for non-LRU replacements as
they are for LRU. As shown in Guan et al.’s analysis [Guan et al. 2013], under FIFO
replacement memory accesses may exhibit alternative hit and miss behavior so that
none of the traditional classifications, i.e., AH, AM or FM. Similarly, under MRU [Guan
et al. 2012] many cache accesses exhibit the K-Miss property. An access classified as
K-Miss suffers several misses (bounded by K < cache associativity) upon the first few
accesses, and then persists in the cache. This kind of persistence property, however,
is not captured by the FM classification. This demonstrates that one needs to better
understand the specific cache behavior under different policies to come up with proper
classifications.

— Irregular and Non-monotone Cache Update Behavior

The abstract domains and the corresponding transfer functions are designed to com-
pute cache behavior invariants. An abstract domain is precise and efficient if (1) ab-
stract states can compactly represent many concrete states, while preserving the in-
formation required for classification, and at the same time (2) transfer functions pre-
cisely capture the effect of a memory access on the concrete cache states. For example
in the Al-based analyses for LRU, the block age bounds in the abstract states capture
precisely the information required to classify blocks as cached or not. Further, this in-
formation can be precisely maintained by the transfer functions due to LRU’s regular
cache update: a) whether or not a block ages depends solely on its age relative to the
accessed block’s age. Upper and lower bounds (in Must and May analyses) on the ages
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of blocks can be precisely updated due to the monotonicity of the operation, b) regard-
less of its previous age, and whether it was cached or not, the accessed block is always
assigned the youngest age.

Unfortunately, most non-LRU replacement policies do not possess such monotone
behavior. Take the FIFO replacement in Fig. 4(a) for example. After a hit to d, d re-
mains in the original position and is immediately evicted by the next access to x. The
fact that d is recently accessed is not reflected by the update rules. An example of ir-
regular behavior under MRU is shown in Fig. 4(c). After f is installed into the cache,
a subsequent hit to ¢ followed by a miss to e¢ evicts f out of the cache. However, block
b, which is older than f, remains in the cache even after f is evicted. The problem of
PLRU is shown in Fig. 4(b). In the state before a is accessed, the oldest block that will
be evicted next is b. However, after a hit to a, the block to be evicted is changed to d.

To build efficient abstract domains for such replacement policies is very difficult. For
example, in a Must analysis for FIFO [Grund and Reineke 2009], early determination
of cache misses is helpful to better predict cache hits later. However, a very complex
May analysis has to be designed to determine miss information as early as possible. For
PLRU, a precise analysis must model the tree bits. The Must analysis for PLRU [Grund
2011] by Grund employs a far more complex abstract domain, compared to LRU, to
express information in the tree and predict cache hits.

— The Influence of Initial States

Cache behavior heavily depends on the execution history. In [Reineke and Grund
2013], it is shown that program performance under non-LRU replacement policies are
very sensitive to the initial cache state, i.e., what remains in the cache before a pro-
gram starts. This presents a challenge to obtain precise estimations. To illustrate the
problem, assume currently m is accessed in a FIFO cache and we want to precisely es-
timate m’s lifetime. There are many possible situations: Case 1: m hits, but it has been
in the cache for the longest time among the cached blocks, and thus it will be evicted
upon the next cache miss. Case 2: the access to m is a miss and due to first-in, first-out
behavior m will withstand another & — 1 (where & is cache associativity) cache misses
without being evicted. Obviously, m’s remaining “life expectancy” in the two cases is
rather different. If no knowledge on the initial cache states is available, a safe analysis
(to predict hits) has to assume the worst case, i.e., Case 1. To be more precise, one may
try to distinguish Case 2 from Case I by investigating whether the current access to
m is a miss or not. Then, the analysis needs to know there are enough cache misses
to evict any previously accessed m out of the cache, which again relies on the initial
states. If a replacement policy can remove uncertainty from the initial states quickly,
it will be easier to analyze.

To analytically model the effects of unknown initial states, Reineke et al. proposed
a metric, evict, for a replacement policy [Reineke et al. 2007], as listed in Table IIIS.
Intuitively, the value of evict(k) tells us after how long a sequence of pairwise different
memory accesses, we can conclude that the cache only contains blocks from the access
sequence, or, in other words, how long a sequence of pairwise different accesses is
needed to evict unknown cache contents from the cache. The evict(k) results show that
generally longer sequences have to be observed for non-LRU replacement policies. This
property directly corresponds to the achievable precision by a May analysis to predict
misses, and indirectly affects Must analysis, the precision of which partly depends on
how much may information can be obtained during the analysis [Grund and Reineke
2009]. Similarly, the fill metric captures the number of pairwise different memory

STable III extracts the HM case for evict and fill with k& > 2 from the full results in [Reineke et al. 20071,
where k is cache associativity.
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Table Ill. Predictability metrics [Reineke et al. 2007]

Policy evict(k) full(k)
LRU k k

FIFO 2k —1 3k—1
MRU 2k —2 3k—4
PLRU | Zlogok+1 | Flogok +k —1

Table IV. Generalized predictability metrics [Reineke

et al. 2007].
Policy | mis(k) = mls’(k) | evict/ (k)
LRU k k
FIFO 1 2k —1
MRU 2 2k —2
PLRU logy k+ 1 00

accesses required to reach a single cache state independently of the initial cache state.
As can be seen in Table III, the gap between LRU and other policies is even bigger for
the fill metric.

The two metrics evict and fill discussed above relate to the precision of classifying
analyses. In other work, Reineke and Grund [Reineke and Grund 2013] determine how
strongly the number of cache misses may vary depending on the initial state, which is
related to the precision of bounding analyses in the presence of uncertainty about the
initial state. Their analysis demonstrates that the number of cache misses may vary
strongly depending on the initial state under FIFO, PLRU, and MRU, while it may not
vary much under LRU replacement. Further, it is shown that the empty cache state
is not necessarily the worst initial state for non-LRU policies. This presents severe
problems for measurement-based WCET analysis approaches.

4.2. Predicting Cache Hits

The more hits can be predicted the better the WCET bound. Must and Persistence
analyses discussed earlier are used for this purpose. To predict a hit for a memory
access to m an analysis needs to ensure m has not been evicted since its last access.
Intuitively, the more pairwise different blocks have been accessed since the last access
to m, the higher the chance that m has been evicted from the cache. To capture this
information, we introduce the following definition:

DEFINITION 1 (STACK DISTANCE). Let p be a memory access sequence that ends
with an access to memory block m. The stack distance of m, denoted by sd,(m), is the
number of distinct blocks accessed along p since the previous access to m in p.

The notion of stack distances coincides with that of ages of memory blocks that is used
in the analysis of LRU caches. For example, let p; = (beabeda) and ps = (abeedeccba),
we have sd,, (a) = sd,,(a) = 4. Due to branches or input-dependent memory accesses,
there can be multiple access sequences leading to the same access to block m in a

program. So we define the maximal stack distance, denoted by sd(m), as the maximal
value of sd(m) over all possible memory access sequences leading to a particular ac-
cess. We can evaluate analysis techniques by the maximal stack distances for which
they can predict cache hits.

Reineke et al. explored the minimal life-span [Reineke et al. 2007] for different re-
placement policies, which is the minimal length of a sequence of pairwise different
memory accesses necessary to evict a block that has just been accessed from the cache.
The minimal life-span values are given in the mis(k) column of Table IV. A slight vari-
ation of mis(k) is mls’(k), which considers the minimal number of pairwise different
memory blocks required to evict a block that has just been accessed from the cache.
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Notice, the slight difference between the two notions: mis(k) considers only sequences
consisting of pairwise different accesses, whereas mls’(k) allows multiple accesses to
the same block. For all the considered policies, mls(k) is equal to mls’(k). The metric
evict’ also listed in Table IV will be discussed in Sec. 4.3. The mls’(k) metric tells us
how many of the most recently accessed blocks are guaranteed to be in the cache. By
this result, a Must analysis can be constructed as follows: for any memory access to

m, one can check if sd(m) < mls’(k) holds for the given replacement policy. If yes, the
memory access to m is guaranteed to be a hit. We say that such an analysis explores
Level I, which is illustrated in Fig. 20.

Notice that to predict cache hits, the Must analysis for LRU presented in Sec. 3.1
computes upper bounds on the maximal stack distances of memory blocks. Similarly,
the May analysis computes lower bounds on the minimal stack distance of memory
blocks to predict cache misses. As the notion of stack distances is replacement policy-
independent, these LRU Must analysis can thus safely be reused to predict hits for
other policies, by relying on the policies value of mis’' (k).

- >l Level Il »l Level Il -

»

0 mis’(k) k evict'(k)  Maximal Stack Distance

Fig. 20. Levels to explore cache hits

However, the mlis’(k) values for non-LRU replacements are commonly small com-
pared to cache associativity k, because they consider worst-case scenarios. In practice,
it is unlikely that the worst case occurs at every program point. Thus, analyses tailored
to a particular replacement policy can often go beyond Level 1 in predicting hits.

For a program that can fit into the cache of size k, there is a strong intuition that
each block of the program eventually persists in the cache, i.e., after some misses,
the remaining accesses to each block are definitely cache hits. For such programs,
the maximal stack distance of any access is no larger than k (Level IT in Fig. 20). This
property is attractive as it enables an efficient Persistence analysis that simply collects
the set of different blocks accessed by a program. However, such a Persistence analysis
is not correct for every replacement policy: it work for LRU, MRU and FIFO, but not
for PLRU.

(a) Program 1 (b) Program 2

Fig. 21. Example programs

Fig. 22 illustrates the cache state transitions when the loop in Fig. 21(a) is executed,
alternating between the three branches in the loop body on a 4-way PLRU cache. Each
time a is accessed, the root bit points to the right subtree, so b, ¢, and d have to compete
for the two cache lines on the right. Even though the loop can fit into the 4-way cache
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Fig. 22. An example that demonstrates that PLRU does not always use the cache’s entire capacity

set, only block a is persistent. This example unveils a negative property of PLRU: it
does not always make use of all of its capacity [Berg 2006].

It is crucial to investigate what process a block may go through before it finally
persists in the cache. This is important to safely bound the number of misses that may
occur.

For MRU, Guan et al.’s results [Guan et al. 2012] show that if for a block m, sd(m) <
k holds, m will eventually persist in the cache. However, m may suffer more than
one miss before reaching the stable state. The result is strong in that bounds on the
number of misses are determined for all stack distances in Level II for MRU. Consider
the program in Fig. 21(b): even if the program cannot fit into a 4-way MRU cache, block

a’s number of misses can be bounded by a constant since s/(\i(a) < 4.

a b c a d e
[?,2,2,?] [a,7,7,7] [b,a??] [c,b,a?] [c,b,a?] [d,c b a] [e.dcb]
miss hit

Fig. 23. Alternative hit and miss behavior on FIFO

For FIFO replacement, Grund and Reineke [Grund and Reineke 2010a] show that
if a loop entirely fits into the cache, each block suffers at most one miss and then
persists in the cache’; otherwise, no guarantee is given. Guan et al. further explored
this problem, and found that if a block m satisfies sd(m) < k, then even though m
is not eventually persistent, it is still guaranteed to enjoys cache hits, which can be
expressed by a bound on the number of misses that accesses to m may suffer [Guan

et al. 2013]. For example in Fig. 21(b), sd(a) < 4 holds for a 4-way FIFO cache. In
the worst case, the loop alternatively takes the two branches, and a may suffer cache
misses repeatedly. To evict a from the cache, both branches have to be taken, which
causes a to enjoy a cache hit in the execution of one of the branches (shown in Fig. 23).
It can be shown that a suffers at most |1 - 2] 4+ y misses, where z is the execution count
of a, and y is the total number of times the loop is entered.

The only analysis to predict hits for PLRU for maximal stack distances in Level IT
is a Must analysis proposed in [Grund and Reineke 2010b]. The analysis presented is
based on the following observation: to evict a block with the fewest possible accesses to
distinct memory blocks, the three bits (assuming an associativity of 8) that are on the
path from a cache line to the root of the tree need to be flipped in a particular order.

"Note that blocks do not necessarily encounter their misses in the first loop iteration. It may take several
iterations for all the blocks to stabilize in the cache.
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Fig. 24. Scenario in which block m is evicted with the minimal mls’(k) = log, k + 1 accesses

Namely from the bottom to the top. This is illustrated in Fig. 24 for block m. Notice
that flipping bits near the root before flipping all bits closer to the leaves does not
contribute to evicting m, as these bits will eventually be flipped back before evicting
m. The basic idea behind the analysis in [Grund and Reineke 2010b] is to track two
properties: a) the number of bits that already point towards a block (counting from
the leaf of the tree), b) the so-called “sub-tree distance” between pairs of blocks. The
sub-tree distance between a and b captures which bits on the path from a to the root
an access to b may flip. By analyzing these key properties, it is sometimes possible to
predict that a block stays in the cache even if more than mis's; 5, (k) = log, k + 1 other
blocks have been accessed.

11 0 1 0 0 1 0 1.0 1 0

entry a b
e flald] = lefff[ald] = [b[flald]
c miss

0 0 1 11 0
 lelelafd] <= [efc[a]d]

Fig. 25. Cache behavior under MRU in Level II1

To go beyond Level II means to explore whether blocks with maximal stack distance
larger than £ still have cache hits. One needs to first show that the above fact does
occur for some replacement policy, and second propose an analysis to discover the cache

hits. Take MRU for example, Fig. 25 shows that even if we have sd(a) = sd(d) > 4 for
a 4-way cache, accessing a and d is always hit. But this phenomenon relies on the
initial state at the entry of the loop. To explore such behavior, the abstract domain
must be able to preserve very detailed information on cache states. This requirement
makes it very hard to explore cache hits in Level III by abstract analysis methods. The
abstractions introduced by Grund and Reineke for FIFO [Grund and Reineke 2009]
are in principle able to predict Level III hits, however, they usually require a highly
context-sensitive analysis to do so. Level III ends at evict'(k), after which no more hits
are possible.

4.3. Predicting Cache Misses

Predicting more misses tightens the estimated BCET, but it can also indirectly help
with the analyses for some non-LRU replacement policies to predict more hits [Grund
and Reineke 2009]. A concrete example is the case of FIFO explained in the discussion
of the influence of initial states in Sec. 4.1. Furthermore, for multi-level cache analysis,
predicting more misses for level L reduces the uncertainty of cache accesses on level
L + 1, which leads to more precise overall estimations. Lastly, in microarchitectures
with timing anomalies, if a memory access cannot be classified as a cache hit, both the
cache hit and the cache miss case need to be explored. Predicting cache misses may in
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such cases drastically reduce analysis times, as it allows to explore only the cache miss
case.

To predict cache misses requires to show that memory blocks are not in the cache
right before they are being accessed. Thus a May analysis, i.e., an analysis that over-
approximates cache contents, is required to safely predict cache misses. May analyses
can be constructed based on a variation of the evict metric [Reineke et al. 2007], which
we denote by evict’. The difference between evict and evict’ is the same as the differ-
ence between mls and mls’: any sequence s containing evict’ (k) distinct memory blocks
is guaranteed to evict any prior cache contents not contained in the sequence s. In con-
trast, cvict refers only to sequences that never access the same memory block twice.
Values of evict’ for common policies are listed in Table IV. For example, for FIFO,
evict’ (k) = 2k—1. This means that after accesses to 2k —1 pairwise different blocks,
the cache only contains elements from the accessed sequence. Then, the May analysis
only needs to observe a sequence with 2k — 1 pairwise different blocks other than m
precluding the current access to m. On the other hand, for PLRU, evict'(k) = oco. In
other words, there are sequences of memory accesses containing an arbitrary number
of distinct memory blocks that do not evict all prior cache contents. We have seen an
example of such a sequence in the previous section, which is illustrated in Fig. 22.

May analyses based on evict’ can be constructed by determining lower bounds on the
stack distances of memory blocks. The LRU May analysis presented in Sec. 3.1 does
exactly that.

The evict metric suggests that less than cvict(k) accesses to pairwise different mem-
ory blocks do not allow to predict any misses, thereby constituting a limit on how much
information a May analysis can obtain. However, note that this conclusion is built on
the assumptions that the initial state is completely unknown, and that the access se-
quence consists of pairwise different memory accesses. There is thus hope that by tai-
loring an abstract domain to a specific replacement policy, more precise May analyses
can be achieved. So far, such abstractions have only been built for the FIFO replace-
ment policy [Grund and Reineke 2009; Grund 2011]. Due to limited space, we only
explain the main intuitions and the key constituents of the two existing FIFO abstract
domains.

Consider a 4-way FIFO cache and the access sequence z o sox, where the first access
to x is a miss and installs z into the “first-in” cache way, and then a sequence s that does
not contain z is accessed followed by another access to x. To predict a miss for the sec-
ond access to z, it suffices to check whether either of the following two properties holds:

e Property 1: The accesses in s result in at least 4 misses;
e Property 2: Before the second access to x, every cache way is occupied by a memory
block from s.

The abstract domain proposed in [Grund and Reineke 2009], which we call F'IFO¢,
checks Property 1. The key information to be maintained in the abstract domain is the
number of definite misses after the first access to =, denoted by dm(x). When dm/(x)
reaches 4 during the analysis, one can predict misses for a future access to z. To better
maintain definite misses, the number of cache ways covered by blocks accessed after
the last access to x is maintained as auxiliary information.

A disadvantage of FIFO® is that it only starts to predict misses after 2k — 1 pairwise
different memory blocks have been accessed, which is in line with the evict metric.
Therefore, Grund and Reineke proposed another FIFO domain, which we denote by
FIFO?, so that cache misses can be predicted even if fewer than 2k — 1 pairwise differ-
ent blocks are accessed between two different accesses to the same block [Grund and
Reineke 2010a; Grund 2011]. The domain FIFO? checks Property 2 to predict cache
misses. For the above example, it explores if memory blocks accessed in sequence s
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eventually cover all the 4 cache ways. The exploration is based on a more powerful
result (Lemma 4 in [Grund and Reineke 2010al]):

If a sequence s contains | distinct blocks, then | — k + 1 cache ways must be occupied
by the contents of s, regardless of the initial cache state.

Importantly, the effect of consecutive sequences adds up. For example, let s = sj0s5 =
(a,b,c,d,e)o{a,b,c,d,e). The accesses to s; cover the 5—4+1 =2 most-recently-used ways
in the cache set. Similarly, the accesses to s; contribute another 5-4+1 =2 to the covered
positions. Then we can guarantee that access to s finally covered all the 4 cache ways®.
This means the execution of s actually evicts = out of the cache and a miss on the
second access to z can safely be predicted.

So far, no May analysis is known for PLRU. For MRU the best known May analysis
is based on evict’. Precisely predicting misses for these two policies is still a challenge.

4.4. The Relative Competitiveness Framework

Besides the above research, Reineke and Grund proposed the Relative Competitive-
ness framework [Reineke and Grund 2008] which allows to translate analysis results
for one replacement policy to another policy. The promise is then to apply known LRU
analyses to non-LRU caches.

A policy P is (k,c)-hit-competitive relative to policy @ if the number of cache hits
hp(s) of P on sequence s is bounded from below by the number of cache hits hq(s) of Q
as follows: hp(s) > k- hg(s) — c. Similarly, a policy P is (k, c)-miss-competitive relative
relative to policy @ if the number of cache misses mp(s) of P on sequence s is bounded
from above by the number of cache misses mq(s) of Q as follows: mp(s) < k-mg(s)+ec.

By monotonicity of the two inequalities, they can also be applied to lower bounds on
the number of hits and upper bounds on the number of misses: For example, given a
lower bound on the number of hits of () using hit-competitiveness a lower bound on
the number of hits of P can be derived.

For (k,c) = (1,0) the notions of (k, ¢)-hit- and miss-competitiveness coincide. In this
case, P “dominates” (). In other words, P never incurs more misses than Q. In such
a case we simply say that P is (1,0)-competitive relative to ). Then, a Must analysis
for ) is a valid Must analysis for P; conversely, a May Analysis for  is a valid May
Analysis for P.

In [Reineke and Grund 2008] it is shown how to automatically compute the best
values for (k, ¢) such that policy P is (k, ¢)-hit/miss-competitive relative to policy @, for
fixed associativities of the two policies. Depending on the similarity of P and @ this
computation scales to associativities between 8 and 256.

The most interesting cases are those in which either P or ) is LRU, as precise anal-
yses for LRU are known. Examples for hit-competitiveness results derived in this way
are [Reineke and Grund 2008; Reineke 2008]:

e An 8-way FIFO cache is (3, Z)-hit-competitive relative to an 8-way LRU cache.
e An 8-way FIFO cache is (%, 2)-hit-competitive relative to an 4-way LRU cache.
e An 8-way PLRU cache is (3, 2)-hit-competitive relative to an 6-way LRU cache.
e An 8-way MRU cache is (2, 3)-hit-competitive relative to a 4-way LRU cache.

To use this relation, assume 100 hits are predicted for a program on an 4-way LRU
cache, then [2 x 100 — 2| = 65 hits are guaranteed on an 8-way FIFO cache.

The metrics mls’(k) and evict'(k) are strongly related to (1,0)-competitiveness rel-
ative to LRU. In particular, let mish (k) and evict’>(k) denote the values of the two

8The effectiveness of this analysis depends on how a long sequence is partitioned. Grund has a systematic
method to explore different partitionings for optimization [Grund 2011].
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metrics under policy P. Then, P is (1,0)-competitive relative to LRU(mls’»(k)) and
LRU (evict’n(k)) is (1,0)-competitive relative to P. For example:

e LRU(2k — 1) is (1,0)-competitive relative to FIFO(k).
e LRU(2k — 2) is (1, 0)-competitive relative to M RU (k).
e PLRU (k) is (1, 0)-competitive relative to LRU (log, k + 1).

Cache analyses based on relative competitiveness can be pessimistic, because the
relation holds for any possible workload. Moreover, the framework provides bounds on
hits (or misses) for the whole program or alternatively program fragments rather than
classifying independent memory access, except for the case of (1,0)-competitiveness.
This makes it difficult to apply the approach in multi-level cache analysis, or in inte-
grated analyses considering both caches and pipelines.

5. EXECUTION ENVIRONMENTS

Discussions so far have focussed on analyzing an independent program. Cache anal-
ysis is severely challenged in the presence of complex execution environments, such
as multi-tasking systems or shared-cache multi-cores, where extra time delay due to
interference on caches from other co-scheduled/running programs must be taken into
account.

5.1. Cache-Related Preemption Delay

An essential feature of real-time systems is preemption, which allows a higher priority
task to preempt a lower priority task so that the higher priority one meets its deadline.
However, preemptions may lead to extra cache misses: the execution of the preempting
task may alter the cache state, so that once resumed, the preempted task needs to
bring data back into the cache that was evicted as a consequence of the preemption.
The extra delay due to cache reloading is commonly referred to as the Cache-Related
Preemption Delay (CRPD). Empirical results [Liu and Solihin 2010] show that CRPD
contributes signficantly to the execution time, so it must be precisely estimated to
obtain tight estimations of response times. Furthermore, it has also been shown that
with CRPD, the synchronous release of all higher priority tasks does not represent the
critical instance of single-core preemptive scheduling [Yomsi and Sorel 2007]. Clearly,
preemptions introduce a new dimension of complexity into timing analysis.

{ Preempted Task : UCB; }\> UCB; and ECBjy > CRPD ‘

‘ Response Time Analysis

WCRT;

{ Preempting Tasks : ECBry)

Fig. 26. Separate CRPD analysis framework

The most intensively studied framework is separate CRPD analysis, in which the
CRPD is treated as a separate overhead rather than as a part of the WCET of the
preempted task. To bound the CRPD under LRU replacement, two approaches have
been proposed, which are illustrated in Fig. 26:

(1) By analyzing the preempted task [Lee et al. 1998; Negi et al. 2003; Tan and
Mooney 2004; Staschulat and Ernst 2007; Altmeyer and Burguiere 2009]: Addi-
tional misses can only occur for useful cache blocks (UCBs), i.e., blocks that may be
cached and that may be reused later, resulting in cache hits. For LRU, the number
of such UCBs is a bound on the number of additional misses due to preemptions.
Static analyses have been proposed to safely approximate the set of UCBs.
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(2) By analyzing the preempting task [Tomiyama and Dutt 2000; Negi et al. 2003;
Tan and Mooney 2004; Staschulat and Ernst 2007]: The preempting task may only
cause additional cache misses in those cache sets that it modifies. Thus, analyses
to compute bounds on the number of evicting cache blocks (ECBs) have been de-
veloped. A memory block is an ECB if it may be accessed during the preempting
task’s execution. However, for set-associative caches, approaches based purely on
ECBs have so far been either imprecise [Burguiere et al. 2009] or unsound [Tan
and Mooney 2004], as shown in [Burguiere et al. 2009].

The CRPD is computed as the total time delay of all preemption-related cache misses.
The final step is to take into account the computed CRPD bounds in a schedulability
analysis framework, so that the Worst-Case Response Time (WCRT) of the preempted
task can be obtained.

— Computing UCBs and ECBs

Since a preemption must happen before some instruction, here we first consider
what happens at a particular program point. Most existing work adopts the UCB defi-
nition in [Lee et al. 1998]. A cache block m is useful at a given program point p, if:

(1) m may be cached at p;
(2) m may be reused at some program point reachable from p without being evicted
along the corresponding path.

To determine memory blocks that satisfy Condition (1), one needs to collect the set of
blocks that may be cached by any possible program path from the starting point of the
CFG to p, referred to as Reaching Cache Blocks (RCBs) and denoted by RC B,. This cor-
responds to a May analysis as discussed in Sec. 3.1. To determine memory blocks that
satisfy Condition (2), a set of Live Cache Blocks (LCBs), denoted by LC B, is computed
similarly to RCB,, however, by a backward analysis. Then, an overapproximation of
the set of useful cache blocks at point p, UC B, is obtained by the intersection of RCB,
and LCB,. A bound on the CRPD is then obtained by taking the maximum size of
UC B, over all program points.

For direct-mapped caches, two major techniques exist: set-based analysis [Lee et al.
1998] and state-based analysis [Negi et al. 2003]. Both techniques rely on dataflow
analyses to collect the RCBs and LCBs at each program point. State-based analysis
maintains all possible concrete cache states at a program point. The analysis is pre-
cise, but does not scale to large programs. In contrast, set-based analysis maintains
one abstract state at each program point, which collects the set of all possible cached
blocks for each cache line. Staschulat and Ernst [Staschulat and Ernst 2007] proposed
a scalable precision analysis that presents a trade-off between the above two analyses.
The main idea is to pose a bound on the number of cache states maintained at each
program point. Whenever the number of states goes beyond the limit, cache states are
merged.

Regarding the analysis of the preempting task, note that (a) what matters is the
size of the set of evicting cache blocks and not its actual contents, and (b) sizes that
exceed the associativity of the cache do not have to be distinguished, as they will evict
all prior cache contents anyway. For those reasons bounds on the number of ECBs can
be obtained from bounds on the number of reaching cache blocks at the end of program
execution, i.e., RC'Bepgq.

— CRPD Computation for Direct-Mapped Caches

For direct-mapped caches, the CRPD can be estimated by only considering the pre-
empted task, which pessimistically assumes that each UCB of the preempted task
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could be evicted by the preempting task [Lee et al. 1998]. These techniques are clas-
sified as the UCB-Only approach by [Altmeyer et al. 2012]. The CRPD can also be
computed by only considering the preempting tasks [Busquets-Mataix et al. 1996;
Tomiyama and Dutt 2000], which assumes any ECB of a preempting task may cause
a preemption related cache miss (ECB-Only by [Altmeyer et al. 2012]). Clearly, more
precise CRPD can be computed by evaluating both the preempting and the preempted
tasks. Specifically, the ECB-Only approaches have been improved by considering the
preempted tasks, resulting in the UCB-Union class [Tan and Mooney 2007]; similarly,
the UCB-Only approaches have been extended into the ECB-Union class [Altmeyer
et al. 2012].

Schedulability analysis needs to take the CRPD into account. Consider a widely
adopted schedulability analysis shown in Equation (5), where R; is the response time,
C; is the WCET of a task, and 7 is the activation period. Equation (5) can be inter-
preted in the following way: the preemption cost of task 7, preempted by 7;, denoted by
7i,j» 18 seen as an extra part of the execution time of the preempting task ;.

R;
Ri=Ci+ > {TW (Cj + i) (5)
viehp(i) ' 7

In the presence of nested preemptions, as shown in Fig. 27, the response time of
73 includes both the indirect cost of 71 preempting 7 (y,) and the direct cost of 7
preempting 73 (7). The main problem is how to safely account for v,. Actually, ~,
can be considered in 73 ;. Note that 7, may be larger than ~;, so a safe v;; needs
to account for the maximal cost of 7, preempting any lower priority task, however
not lower than 73. Note that the ECB-Only approaches do no suffer from such nested
preemption problems since they do not consider the preempted task.

Preemptions

y £

y

n [ ]

7

=

Time

Fig. 27. An example of nested preemptions

A disadvantage of analyses by Equation (5) is: the worst-case delay ~, ; is always
assumed for each preemption (7; preempting 7;). As a result, some cache evictions can
be included multiple times. To reduce this pessimism, other approaches [Staschulat
et al. 2005; Altmeyer et al. 2012] adopted the schedulability test of Equation (6) in-
stead, which evaluates the total cost of multiple preemptions of 7; preempting 7; as a
Whole The computation of v} differentiates preemption scenarios, and thus can avoid
unnecessary inclusion of cache evictions.

Ri=Ci+ Y (Fﬂ Cj + 75t (6)

Vichp(i) J

Altmeyer et al. provide a detailed classification of different approaches to bound the
CRPD for direct-mapped caches and their relationship [Altmeyer et al. 2012].

— CRPD Computation for Set-Associative Caches
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The computation of UCBs and ECBs can be solved by existing May analyses for
set-associative caches. The main challenge is how to precisely and safely compute the
“intersection” between the sets of UCBs and ECBs.

X a b c d
[d,c,b,a] [x,d,c bl [a,x,d,c] [b,a, x,d] [c,b,a x] [d,c,b,a]
ECB MISS MISS MISS MISS

Fig. 28. An example of reordered misses

Let us first discuss a safety problem, given LRU replacement. Consider the case in
Fig. 28. Blocks a, b, c and d are all useful blocks. A preemption installs = into the cache
set and thereby evicts a. The subsequent accesses of the preempted task to a, b, ¢ and
d are all cache misses even though the preempting task only evicted one cache block.
This illustrates that there are two types of context-switch misses [Liu and Solihin
2010; Burguiere et al. 2009]. The miss to a is a replaced miss, as a direct result of the
preemption. In contrast, the misses to b, ¢ and d are an indirect result of reordering of
blocks by the LRU replacement policy. This example shows that even a single ECB can
lead to a chain of misses to multiple UCBs, which cannot happen for direct-mapped
caches. An example of an unsafe analysis is [Tan and Mooney 2007], which overlooked
reordered misses.

p i

age(m)=3 age(m)=5

Fig. 29. The notion of resilience

One way to cope with this problem was proposed in [Burguieére et al. 2009]. As soon
as there is a single ECB that maps to a particular cache set, all the UCBs that map
to the same cache set are assumed to contribute to context-switch misses. This is ob-
viously conservative, and it can be improved by obtaining more detailed information
about the useful cache blocks. This information is captured by the notion of resilience
introduced by [Altmeyer et al. 2010]. The resilience res(m) of a useful cache block m
is the amount of “disturbance”, i.e. its ECBs, by a preempting task that the block may
endure before becoming useless to the preempted task. Consider a useful cache block
m for an 8-way LRU cache in Fig. 29, where all blocks are mapped to the same cache
set. The maximal age of m before its second access is 5. If the program is preempted at
any point between the two accesses to m, for example at program point p, m will not
be evicted from the cache as long as at most 3 ECBs from the preempting task map to
the same set. So m’s resilience is 3.

By computing lower bounds on the resilience of useful cache blocks, one can exclude
many cache misses compared with the conservative assumption in [Burguiére et al.
2009]. However, nested preemptions must be very carefully handled. The ECBs from
nested preempting tasks may accumulate to age a useful block. In this case, the ECBs
of all possible preempting tasks must be considered, which may adversely introduce
some pessimism.

The problem of reordered misses is rooted in LRU. A new policy called Selfish-
LRU [Reineke et al. 2014] has been proposed to eliminate reordered misses. The idea
is to first evict cache blocks that do not belong to the currently active task.

For other replacement policies, such as FIFO and PLRU, the number of additional
misses can even be greater than the number of UCBs, the number of cache ways,

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.



A Survey on Cache Analysis for Real-Time Systems 0:35

and the number of ECBs [Burguiere et al. 2009]. This makes it difficult to obtain
precise CRPD bounds for these policies. Am approach based on relative competitive-
ness [Reineke and Grund 2008] was sketched in [Burguiere et al. 2009] that allows
bounding the total misses (intra- and inter-task misses) of a non-LRU policy from the
results of LRU. Due to the generic nature of the relative competitiveness framework,
the analysis results can be imprecise.

— Further Approaches

It has been observed [Altmeyer and Burguiere 2009] that some pessimism is intro-
duced by independently computing bounds on the CRPD and on the WCET. Consider
the treatment of memory accesses to blocks that have been classified as useful cache
blocks during the WCET analysis. If such accesses cannot be guaranteed to result in
cache hits, a sound WCET analysis will also cover the cache miss case. However, in
that case, while a preemption-related cache miss may occur in reality, it has already
been accounted for in the computed WCET bound. Motivated by this observation, a
notion of definitely-cached UCBs has been proposed in [Altmeyer and Burguiere 2009],
which excludes such blocks from the CRPD computation. This approach relies on a
coupling of WCET and CRPD analysis and may improve precision significantly.

CRPD analysis under dynamic priority scheduling has also been studied [Ju et al.
2007; Lunniss et al. 2013]. The difference lies in the CRPD calculation for different
schedulability tests of new scheduling policies. [Lunniss et al. 2014] compares the ef-
fectiveness of fixed priority scheduling and EDF in the presence of CRPD.

5.2. Shared Caches in Multi-Cores

Nowadays, multiple processing cores are deployed on a single die to fully exploit the
real estate of the processor chip and to achieve high performance with low power con-
sumption. A commonality among modern multi-core processors is the sharing of on-
chip resources among multiple cores, such as the last-level cache (Fig. 30), so that each
core can potentially make use of the entire resource. However, tasks running in paral-
lel on different cores compete for the shared resource, resulting in inter-core conflicts,
also referred to as inter-core interference. Due to this interference, the execution time
of a program now also depends on the resource-access behavior of the tasks running in
parallel [Yan and Zhang 2008].

I L ' .

L1 L1 L1 L1
|-cache D-cache |-cache D-cache

4 4 4 !

[ ’ L2 Shared Cache : ]

[ Off-Chip M.ain Memory }

Fig. 30. A Common Shared Cache Design in Multi-Cores

Inter-core interference on a shared cache is different from inter-task interference
due to preemption. First, in a single-core preemptive system, a higher priority task
does not suffer from interference by a lower priority task, while in multi-core systems,
all tasks running in parallel on different cores interfere with each other independently
of their priority level. Second, in a single-core preemptive system, a task can only
suffer from interference by preempting tasks a small number of times, no more than
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the total number of releases of the higher priority tasks; in contrast, on multi-cores,
interference on a shared cache may come between any two consecutive cache accesses
of a task. Precisely analyzing all possible interleaving cache accesses on a shared cache
is notoriously difficult due to the huge number of cases to consider.

One approach is to extend the Al-based analysis to take into account the interference
on the shared cache [Liang et al. 2012]. The basic idea is similar to the resilience
analysis in CRPD analysis. Assume that two tasks, A and B, run in parallel and share
a k-way L2 cache. To estimate A’s WCET, multi-level analyses for A are first conducted
without considering the interference from task B. Then, a second step analyzes task
B to see whether its interference could cause the blocks of A that are guaranteed to
hit when A runs in isolation, to be evicted from the cache. Consider a block m of A:
its maximal age, age(m), in the cache can be extracted from a Must analysis. Then
task B is analyzed to determine a bound on the number of interfering memory blocks
that map to the same cache set as m , denoted by M. If M < k—age(m) holds, m willl
remain in the cache even in the presence of B’s interference. Otherwise, m could be
evicted from the cache due to B’s execution, and its classification needs to be changed
accordingly.

A major drawback of the above approach is that the timing of cache conflicts is
not considered, i.e., all potential cache conflicts computed from cache mapping are in-
cluded. However, if by some means we know that the lifetimes of two conflicting tasks
(or cache accesses) do not overlap, some cache conflicts can be safely excluded. This
is a key property to tighten the estimations. Zhang and Yan proposed a technique to
exclude infeasible conflicts by exploring conflicting pairs of cache accesses [Zhang and
Yan 2009]. Liang et al. in [Liang et al. 2012] explore the overlapping of the lifetimes
of co-running programs. The timing of cache conflicts can also be precisely captured by
model checking. Gustavsson et al. used timed automata to model the behavior of pro-
grams on shared caches [Gustavsson et al. 2010]. Infeasible conflicts can be precisely
excluded when the UPPAAL model checker explores the system model. However, due
to state space explosion, model checking based analysis can hardly scale beyond 2
cores. Another model checking based method was proposed in [Wu and Zhang 2012].
The SPIN model checker was adopted to exclude the infeasible cache conflicts, but the
models did not explore the exact timing of the cache conflicts.

Another major analysis obstacle is that uncertainty, introduced by particular anal-
ysis technique or inherent to a hardware feature, may be amplified in the presence of
shared caches. For example, in Al-based analyses, pessimistic age prediction makes
the blocks of the interfered task less resilient; similarly, pessimistic age prediction for
the interfering task leads to an overestimated number of conflicting blocks. Another
source of uncertainty is the separation of cache behavior analysis and path analy-
sis [Theiling et al. 2000], which adversely introduces “architecturally-infeasible” paths.
Pruning such infeasible paths can help to tighten WCET estimations. Banerjee et al.
proposed a finer-grained abstract domain, which associates path information into the
traditional Must and May abstract states to exclude non-existent cache states due
to infeasible paths [Banerjee et al. 2013]. Chattopadhyay and Roychoudhury propose
another technique which improves the prediction for NC blocks by excluding infeasi-
ble paths using model checking [Chattopadhyay and Roychoudhury 2011]. Both tech-
niques can be integrated into the analysis framework of [Liang et al. 2012] to more
precisely estimate shared cache interference.

Even with the above techniques, real-time system design still faces a problem: if
the shared cache is freely used, the worst-case performance of the tasks also degrades.
Therefore, recent research tried to employ mechanisms that provide temporal isolation
on shared caches, which both simplifies cache analysis and at the same time reduces
the WCET. Cache partitioning [Suhendra and Mitra 2008; Liu et al. 2010; Ungerer
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Table V. WCET analysis tools supporting static cache analysis
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Tools Instruction Data Multi-Level| Non-LRU CRPD Shared
Cache Cache Cache Cache Cache
aiT Al Al Pseudo-RR,
PLRU,
FIFO
OTAWA Al
ML-PER
Chronos Scope- Separate
Aware Framework
SymTA/P Enhanced Separate
Pigeonhole Analysis
Heptane Al Al Separate Al
Framework
WCA Model FIFO
Checking
SWEET Al
METAMOC Model Model Round
Checking Checking Robin
MCcAIT Al Separate Model
Framework Checking
Florida SCS SCS, CME Separate
Framework
Chalmers Symbolic Symbolic
Execution Execution

et al. 2010] partitions the cache space among tasks by controlling page allocation to
completely avoid cache conflicts among tasks on different cores. Cache locking [Suhen-
dra and Mitra 2008; Liu et al. 2010] locks the frequently used data in the cache so that
hit/miss behavior is totally predictable. Another approach [Hardy et al. 2009] is to by-
pass the shared cache upon accesses to memory blocks with little reuse. This reduces
cache interference. On system level, some further issues have to be solved. In multi-
tasking systems, different tasks may try to lock the same cache segment, so scheduling
of the lockings must be considered [Ward et al. 2013]. Regarding cache partitioning,
the partitions assigned to the tasks may overlap in cache space. A task can only start
execution if both the CPU and the cache partition are available. The schedulability
tests must consider both the CPU and the cache constraints [Guan et al. 2009]. How-
ever, partitioning and locking have a side-effect of reducing the cache space available
for each task. New techniques are expected for more intelligent resource allocation and
arbitration, so that the WCET of the tasks can be further reduced®, and the schedula-
bility of the overall system is improved.

6. STATIC ANALYSIS TOOLS
In the past decades, a number of WCET analysis tools have been developed in both
industry and academia. Table V lists the tools that support static cache analysis.

aiT [Heckmann and Ferdinand 2014] is the only successful WCET analysis tool in
industry. It uses the Al-based analyses [Ferdinand and Wilhelm 1999; Cullmann 2013]
for both instruction and data caches. Besides LRU, the aiT tool can analyze three non-

9Unlike the general-purpose computing domain [Zhang et al. 2009], cache management in real-time sys-
tems [Mancuso et al. 2013] optimizes the worst-case rather than the average-case performance.
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LRU replacement policies: Pseudo-Round-Robin [Heckmann et al. 2003] as well as,
PLRU and FIFO based on the analyses described in [Reineke and Grund 2008] and
[Grund et al. 2011].

The OTAWA tool [Ballabriga et al. 2010] developed by the University of Toulouse,
France is an open framework for WCET analysis. OTAWA provides instruction cache
analysis based on abstract interpretation [Ferdinand and Wilhelm 1999] with the im-
provement of multi-level Persistence analysis [Ballabriga and Casse 2008].

Chronos [Li et al. 2007] is a static WCET analysis tool from the National University
of Singapore. It was originally designed with a highlight on pipeline analysis using
the SimpleScalar simulator. The latest version, Chronos 4.2, now supports the recent
contributions of the group: scope-aware data cache analysis [Huynh et al. 2011] and
unified cache analysis [Chattopadhyay and Roychoudhury 2009].

SymTA/P [SymTA/P 2010] is a timing analysis tool developed by TU Braunschweig,
Germany. The tool generally uses measurement-based approaches for instruction and
data cache analysis. It also supports static analysis for data caches [Staschulat and
Ernst 2006] and CRPD analysis based on [Staschulat et al. 2005].

Heptane [Heptane 2013] is a static WCET analysis tool developed by IRISA, France.
The highlight of the tool is the separate analysis of multi-level caches [Hardy and
Puaut 2008]. It also support shared cache analysis by the technique extended from
Al-based analysis [Hardy et al. 2009].

WCA [Schoeberl et al. 2010] from Vienna University of Technology and DTU is a
WCET analysis tool for a Java processor, JOP [Schoeber]l 2008], which uses method
cache to store the instructions of a whole Java method. A method is fully loaded into the
cache upon invocation and enjoys cache hits during its execution. On exit, the content
of the caller function is reloaded into the method cache. The method cache is organized
like a fully-associative FIFO cache with N blocks. The tool uses model checking to
analyze the method cache, and it also provides a simple persistence analysis given
that a code region can fit into the cache.

SWEET [SWEET 2012] is a WCET analysis tool currently maintained by
Mailardalen University of Sweden. Although mainly focused on flow analysis, it sup-
ports Al-based analysis for instruction caches [Ferdinand and Wilhelm 1999].

The METAMOC tool [Dalsgaard et al. 2010b] from Aalborg University of Denmark
employs model checking for both instruction and data caches. It can analyze the round-
robin replacement policy used by the ARM920T processor.

MCcAIT [Lv et al. 2011] is a WCET analysis tool jointly developed by Uppsala Unvier-
sity of Sweden and Northeastern University of China. The tool supports L1 instruction
cache analysis by the Al-based approaches [Ferdinand and Wilhelm 1999; Cullmann
2013], and shared L2 cache analysis by model checking.

Other research prototypes include a tool from Florida State, North Carolina State,
and Furman Universities, which adopts Static Cache Simulation [Mueller and Whal-
ley 1995] for both instruction and data cache analysis, and also supports data cache
analysis using cache miss equations [Ramaprasad and Mueller 2005]. Another proto-
type from Chalmers University of Technology uses symbolic execution [Lundqvist and
Stenstrom 1999b] for cache analysis.

The data provided in Table V might be imprecise, because the information can only
be inferred from the publications instead of the tools in some cases. More compre-
hensive knowledge on existing WCET analysis tools can be found in [Wilhelm et al.
2008] and the reports for the WCET Tool Challenge in 2011 [Hanxleden et al. 2011],
2008 [Holsti et al. 2008] and 2006 [Gustafsson 2007].
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7. FUTURE RESEARCH DIRECTIONS

WCET estimation is a key task in timing analysis of real-time systems. Since caches
may significantly affect execution time, the quality of cache analysis determines the
precision of the estimated WCET. This article surveys the main challenges and anal-
ysis techniques for vast cache architectures. For decades, the LRU replacement policy
has been well studied. The most valuable asset is that a comprehensive understanding
of cache behavior and cache analysis were established by the ingenious researchers in
related communities. However, the use of existing techniques in real-life systems is
still limited. Several future directions can be explored to bridge the gap.

— Non-LRU cache analysis

Although LRU is highly predictable, it is practically more important to analyze non-
LRU replacement policies since they are actually adopted in real-life processors. Must,
May and Persistence analyses needs to be established to fully characterize the cache
behavior. Currently, the missing pieces are Persistence analysis for FIFO, Must and
May analyses for MRU, Persistence and May analyses for PLRU. Furthermore, there
are no techniques to analyze non-LRU data caches and multi-level caches, which are
actually required to cover the whole cache hierarchy. For policies other than the above-
mentioned ones, similar analysis targets should be fulfilled. However, we still lack a
systematic way to construct abstract analyses for new replacement policies.

— Application of cache analysis in other domains

So far the use of cache analysis has mostly been confined to WCET analysis. How-
ever, there is at least one more domain in which cache analysis can deliver valuable
insights, namely security. Side-channel attacks recover secret inputs to programs from
physical characteristics of the computation. Typical goals of such attacks are the re-
covery of cryptographic keys and private information about users. Characteristics that
have been exploited for that purpose include execution time, cache behavior, memory
and power consumption, and electromagnetic radiation. Doychev et al. have demon-
strated that static cache analyses based on abstract interpretation can be used to de-
rive guarantees on the amount of information leaked to an attacker [Doychev et al.
2013].

— Design and analysis of timing-predictable embedded systems

Preemption delay analysis and multi-core shared cache analysis have to consider
the interactions among tasks running in parallel. It is commonly acknowledged that
inter-core interference not only harms cache analysis, but also degrades overall system
performance. Academia has gradually come to a consensus [Axer et al. 2014; Ungerer
et al. 2010; Consortium 2011]: the solution to this problem should be to regulate both
the hardware [Paolieri et al. 2009; Wilhelm et al. 2009] and the software [Pellizzoni
et al. 2011; Falk and Kotthaus 2011; Maksoud and Reineke 2014] so that the system
behaves in a timely predictable manner. The grand challenge is to obtain predictabil-
ity without sacrificing the performance provided by future powerful processors. Cache
analysis will provide valuable insights to characterize tasks so that good design deci-
sions can be made in resource allocation and arbitration, such as cache partitioning
and cache-aware scheduling.

One important step in this direction would be to understand how timing compo-
sitionality [Hahn et al. 2013] can be achieved. Due to complex interactions between
caches and other microarchitectural components, such as branch predictors or out-
of-order pipelines, provably sound WCET analyses can currently only be achieved by
analyzing all of these components together in an integrated fashion. However, such an
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integrated approach is very unlikely to scale to multi-tasking systems or even to the
parallel execution of multiple tasks on a multi-core processor. In these scenarios, to
limit analysis complexity, interference costs are better analyzed separately and then
taken into account during schedulability analysis. Timing compositionality has, how-
ever, not been formally proven for models of any modern microarchitecture, leaving
much of the recent work unapplicable to real systems.
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