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SCHEDULING PERIODIC TASKS
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Periodic tasks

R: release time
D: deadline

C: computing time

F: finishing/response time

T:period

time

Arrival time

3

Periodic tasks (the simplified case)

R: release time
D: deadline

computing

T:period

time

Arrival time

Scheduled to run

Finishing/response time

4

Assumptions on task sets 

 Each task is released at a given constant rate
 Given by the period T 

 All instances of a task have:
 The same worst case execution time: C

 The same relative deadline: D=T (not a restriction)

 The same relative arrival time: A=0 (not a restriction)

 The same release time, released as soon as they arrive

 All tasks are independent
 No sharing resources  (consider this later)

 All overheads in the kernel are assumed to be zero
 E.g context switch etc (consider this later)

5

Periodic task model

 A  task = (C, T)

 C: worst case execution time/computing time (C<=T!)

 T: period (D=T)

 A task set: (Ci,Ti)
 All tasks are independent

 The periods of tasks start at 0 simultaneously

6

CPU utilization

 C/T is the CPU utilization of a task

 U=Σ Ci/Ti is the CPU utilization of a task set

 Note that the CPU utilization is a measure on how busy the 
processor could be during the shortest repeating cycle: 

T1*T2*...*Tn

 U>1 (overload): some task will fail to meet its deadline no matter 
what algorithms you use!

 U<=1: it will depend on the scheduling algorithms

 If U=1 and the CPU is kept busy (non idle algorithms e.g. EDF), all 
deadlines will be met
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Scheduling Algorithms

 Static Cyclic Scheduling (SCS)

 Earliest Deadline First  (EDF)

 Rate Monotonic Scheduling (RMS)

 Deadline Monotonic Scheduling (DMS)

8

Static cyclic scheduling

 Shortest repeating cycle = least common 
multiple (LCM)

 Within the cycle, it is possible to construct a 
static schedule i.e. a time table

 Schedule task instances according to the time 
table within each cycle

 Synchronous programming languages: 
Esterel, Lustre, Signal

9

Example: the Car Controller

Activities of a car control system. Let

1. C= worst case execution time

2. T= (sampling) period

3. D= deadline

 Speed measurment: C=4ms, T=20ms, D=20ms

 ABS control:            C=10ms,T=40ms, D=40ms

 Fuel injection:          C=40ms,T=80ms, D=80ms

 Other software with soft deadlines e.g audio, air condition etc  

10

The car controller: static cyclic scheduling

 The shortest repeating cycle = 80ms 

 All task instances within the cycle: 

 Try any method to schedule the tasks

0
Speed
ABS

Fuel

8040
Speed
ABS

20
Speed

60
Speed

11

The car controller: 
time table constructed with EDF

A feasible Schedule!

0
4

14

20

4044
54

60

64

76
speed

ABS

speed

Fuel-2

speed
ABS

FUEL-3

FUEL-1

speed

FUEL-4

Soft RT tasks

24

80

12

Static cyclic scheduling: + and –

 Deterministic: predictable (+)

 Easy to implement (+) 

 Inflexible (-) 

 Difficult to modify, e.g adding another task

 Difficult to handle external events

 The table can be huge (-)

 Huge memory-usage

 Difficult to construct  the time table
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Example:  shortest repeating cycle

 OBS: The LCM determines the size of the time table 

 LCM =50ms for tasks with periods: 5ms, 10ms and 25ms

 LCM =7*13*23=2093 ms for tasks with periods: 7ms, 13ms and 
23ms (very much bigger)

 So if possible, manipulate the periods so that they are multiples 
of each other 

 Easier to find a feasible schedule  and

 Reduce the size of the static schedule, thus less memory usage

14

Earliest Deadline First  (EDF)

 Task model

 a set of independent periodic tasks (not necessarily the simplified 
task model)

 EDF:

 Whenever a new task arrive, sort the ready queue so that the task 
closest to the end of its period assigned the highest priority

 Preempt the running task if it is not placed in the first of the queue 
in the last sorting

 FACT 1: EDF is optimal  

 EDF can schedule the task set if any one else can

 FACT 2 (Scedulability test): 

 Σ Ci/Ti <= 1 iff the task set is schedulable

15

Example

 Task set: {(2,5),(4,7)}

 U = 2/5 + 4/7= 34/35 ~ 0.97 (schedulable!)

0 35

0 35

5 10

7 14

15

16

EDF: + and –

 Note that this is just the simple EDF algorithm; it works for all 
types of tasks: periodic or non periodic
 It is simple and works nicely in theory (+)

 Simple schedulability test: U <= 1  (+)

 Optimal (+)

 Best CPU utilization (+)

 Difficult to implement in practice. It is not very often adopted 
due to the dynamic priority-assignment (expensive to sort the 
ready queue on-line), which has nothing to do with the periods 
of tasks. Note that Any task could get the highest priority (-)

 Non stable: if any task instance fails to meet its deadline, the 
system is not predictable, any instance of any task may fail (-)

We use periods to assign static priorities: RMS  

17

Rate Monotonic Scheduling: task model

Assume a set of periodic tasks: (Ci,Ti)

 Di=Ti

 Tasks are always released at the start of their periods

 Tasks are independent

18

RMS: fixed/static-priority scheduling

 Rate Monotonic Fixed-Priority Assignment:

 Tasks with smaller periods get higher priorities

 Run-Time Scheduling:

 Preemptive highest priority first

 FACT: RMS is optimal in the sense:

 If a task set is schedulable with any fixed-priority
scheduling algorithm, it is also schedulable with RMS
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Example

20 202020

40

40 30

40

10 20

0 100 200 300

150 300

350

40
0

0

{(20,100),(40,150),(100,350)}

T1

T2

T3

Pr(T1)=1, Pr(T2)=2, Pr(T3)=3

20

Example

 Task set: T1=(2,5), T2=(4,7)

 U = 2/5 + 4/7= 34/35 ~ 0.97 (schedulable?)

 RMS priority assignment: Pr(T1)=1, Pr(T2)=2

0 35

0 35

5 10

7 14

15

2 5

2
Missing the deadline!

21

RMS: schedulability test

 U<1 doesn’t imply ’schedulable’ with RMS
 OBS: the previous example is schedulable by EDF, not RMS

 Idea:  utilization bound
 Given a task set S, find X(S) such that U<= X(S) if and only 

if S is schedulable by RMS (necessary and sufficient test)

 Note that the bound X(S) for EDF is 1

22

The famous Utilization Bound test (UB test)
[by Liu and Layland, 1973: a classic result]

 Assume a set of n independent tasks: 

 S= {(C1,T1)(C2,T2)...(Cn,Tn)} and U = Σ Ci/Ti

 FACT: if U<= n*(21/n-1), then S is schedulable by RMS

 Note that the bound depends only on the size of the task set

23

Example: Utilization bounds

B(1)=1.0 B(4)=0.756 B(7)=0.728

B(2)=0.828 B(5)=0.743 B(8)=0.724

B(3)=0.779 B(6)=0.734 U()=0.693

Note that U()=0.693 !

24

Example: applying UB Test

C T (D=T) C/T

Task 1 20 100 0.200

Task 2 40 150 0.267

Task 3 100 350 0.286

Total utilization: U=0.2+0.267+0.286=0.753<B(3)=0.779!
The task set is schedulable
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Example: RM Scheduling

20 202020

40

40 30

40

10 20

0 100 200 300

150 300

350

40
0

0

{(20,100),(40,150),(100,350)}

26

UB test is only sufficient, not necessay!

 Let U= Σ Ci/Ti and B(n) = n*(21/n-1)

 Three possible outcomes:
 0<= U<= B(n):    schedulable

 B(n)<U<=1:        no conclusion

 1< U :                 overload

 Thus, the test may be too conservative 

 (exact test will be given later)

27

Example: UB test is sufficient, not necessary

 Assume a task set: {(1,3),(1,5),(1,6),(2,10)}

 CPU utilization U= 1/3+1/5+1/6+2/10=0.899

 The utilization bound B(4)=0.756

 The task set fails in the UB test due to U>B(4)

 Question: is the task set schedulable?

 Answer: YES

28

{(1,3),(1,5),(1,6),(2,10)}

0 3 6 9 12 15 18

5 10 15 200

0 6 12 18

0 10 20

Response times?
Worst case? First period?
Why?

This is only for the first periods! But we will see that this is enough
to tell that the task set is schedullable.

29

How to deal with tasks with the same period

 What should we do if tasks have the same period? 

 Should we assign the same priority to the tasks?

 How about the UB test? Is it still sufficient?

 What happens at run time?

30

RMS: Summary

 Task model: 

 priodic, independent, D=T, and a task= (Ci,Ti)

 Fixed-priority assignment:

 smaller periods = higher priorities

 Run time scheduling: Preemptive HPF

 Sufficient schedulability test: U<= n*(21/n-1)

 Precise/exact schedulability test exists
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RMS: + and –

 Simple to understand (and remember!) (+)

 Easy to implement (static/fixed priority assignment)(+)

 Stable: though some of the lower priority tasks fail to meet 
deadlines, others may meet deadlines (+)

 ”lower” CPU utilization (-)

 Requires D=T (-)

 Only deal with independent tasks (-)

 Non-precise schedulability analysis (-)

 But these are not really disadvantages;they can be fixed (+++)

 We can solve all these problems except “lower” utilization

32

Critical instant: an important observation

 Note that in our examples, we have assumed that all tasks are 
released at the same time: this is to consider the critical instant 
(the worst case senario)

 If tasks meet the first deadlines (the first periods), they will do so 
in the future (why?)

 Critical instant of a task is the time at which the release of the 

task will yield the largest response time. It occurs when the task 
is released simultaneously with higher priority tasks

 Note that the start of a task period is not necessarily the same 

as any of the other periods: but the delay between two releases 
should be equal to the constant period (otherwise we have 
jitters)

33

Sufficient and necessary schedulability analysis

 Simple ideas [Mathai Joseph and Paritosh Pandya, 1986]:

 Critical instant: the worst case response time for all tasks is 
given when all tasks are released at the same time

 Calculate the worst case response time R for each task with 
deadline D. If R<=D, the task is schedulable/feasible. 
Repeat the same check for all tasks

 If all tasks pass the test, the task set is schedulable

 If some tasks pass the test, they will meet their deadlines 
even the other don’t (stable and predictable)

 Question:
 how to calculate the worst case response times?

 We did this before!

34

Worst case response time calculation: example

{(1,3),(1,5),(1,6),(2,10)}

0 3 6 9 12 15 18

5 10 15 200

0 6 12 18

0 10 20

Response times?
Worst case? First period?
Why?

35

Worst case response time calculation: example

{(1,3),(1,5),(1,6),(2,10)}

0 3 6 9 12 15 18

5 10 15 200

0 6 12 18

0 10 20

Response times?
Worst case? First period?
Why?

WCR=1

WCR=2

WCR=3

WCR=9

What to do if too many?

You don’t have to 
Check this area!

36

Calculation of worst case response times
[Mathai Joseph and Paritosh Pandya, 1986]

 Let Ri stand for the response time for task i. Then 

Ri= Ci + j I(i,j)

 Ci is the computing time

 I(i,j) is the so-called interference of task j to i

 I(i,j) = 0 if task i has higher priority than j

 I(i,j) = Ri/Tj*Cj if task i has lower priority than j

 x denotes the least integer larger than x

 E.g 3.2 = 4, 3 =3, 1.9 =2

 Ri= Ci + j  HP(i) Ri/Tj*Cj 
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Intuition on the equation

Ri= Ci + j  HP(i) Ri/Tj*Cj
 Ri/Tj is the number of instances of task j during Rj

 Ri/Tj*Cj is the time needed to execute all instances of task

j released within Rj

 j  HP(i) Ri/Tj*Cj is the time needed to execute instances  

of tasks with higher priorities than task i, released during Rj

 Rj is the sum of the time required for executing task 

instances with higher priorities than task j and its own 
computing time

38

Equation solving and schedulability analysis

 We need to solve the equation:

Ri= Ci + j  HP(i) Ri/Tj*Cj

 This can be done by numerical methods to compute 
the fixed point of the equation e.g. By iteration: let

 Ri0    = Ci + j  HP(i) Cj = C1+C2+...+Ci  (the first guess)

 Rik+1 = Ci + j  HP(i)  Rik/Tj*Cj    (the (k+1)th guess)

 The iteration stops when either

 Rim+1>Ti or                non schedulable

 Rim<Ti and Rim+1 = Rim     schedulable

 This is the so called Precise test

39

Example

 Assume a task set: {(1,3),(1,5),(1,6),(2,10)}

 Question: is the task set schedulable?

 Answer: YES

 Because

 R11 = R10 = C1=1  (done)

 R20 = C2 + C1=2,

R21 = C2 + R20/T1*C1=1+ 2/3*1=2 (done)

40

Combine UB and Precise tests

 Order tasks according to their priorities (periods)

 Use UB test as far as you can until you find the first 

non-schedulable task

 Calculate response time for the task and all the tasks 

with lower priority

41

Example (combine UB test and precise test)

 Consider the same task set: {(1,3),(1,5),(1,6),(3,10)}

 CPU utilization U= 1/3+1/5+1/6+3/10=0.899> B(4)= 0.756
 Fail the UB test!

 But U(3)= 1/3+1/5+1/6=0.699<B(3)=0.779
 This means that the first 3 tasks are schedulable

 Question: is task 4 set schedulable?

 R40 = C1+C2+C3+C4= 6

 R41 = C4+R40/T1*C1+R40/T2*C2+R40/T3*C3

= 3 + 6/3*1+6/5*1+6/6*1=8

 R42 = C4+R41/T1*C1+R41/T2*C2+R41/T3*C3

= 3 + 8/3*1+8/5*1+8/6*1

= 3+3+2+2

= 10 

 R43 = C4+R42/T1*C1+R42/T2*C2+R42/T3*C3

= 3+ 4 + 2 + 2 = 11 (task 4 is non schedulable! 42

Example

C T C/T

Task 1 40 100 0.400

Task 2 40 150 0.267

Task 3 100 350 0.286

Total utilization: U=0.4+0.267+0.286= 0.953>B(3)=0.779!
UB test is inclusive: we need Precise test
but we do have U(T1)+U(T2)= 0.4+0.267= 0.667<U(2)=0.828

so we need to calculate R3 only!
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Calculate response time for task 3

 R30 = C1+C2+C3= 180

 R31 = C3+R30/T1*C1+R30/T2*C2

=100+ 180/100*40+180/150*40

=100+2*40+2*40=260

 R32 =C3+R31/T1*C1+R31/T2*C2

=100+ 260/100*40+260/150*40=300

 R33 =C3+R32/T1*C1+R32/T2*C2

=100+ 300/100*40+300/150*40=300 (done)

Task 3 is schedulable and so are the others!

44

Question: other priority-assignments

 Could we calculate the response times by the same 

equation for different priority assignment?

45

Precedence constraints

How to handle precedence constraints?

 We can always try the ’old’ method: static cyclic scheduling!

 Alternatively, take the precedence constraints (DAG) into 

account in priority assignment: the priority-ordering must satisfy 
the precedence constraints

 Precise schedulability test is valid: use the same method as beforee 
to calculate the response times.

46

Summary: Three ways to check schedulability

1. UB test (simple but conservative)

2. Response time calculation (precise test)

3. Construct a schedule for the first periods

 assume the first instances arrive at time 0 (critical instant)

 draw the schedule for the first periods

 if all tasks are finished before the end of the first periods, 

schedulable, otherwise NO

47

Extensions to the basic RMS

 Deadline <= Period

 Interrupt handling

 Non zero OH for context switch

 Non preemptive sections

 Resource Sharing

48

RMS for tasks with D <= T

 RMS is no longer optimal (example?)

 Utilization bound test must be modified

 Response time test is still applicable 

 Assuming that fixed-priority assignment is adopted

 But considering the critical instant and checking the first 
deadlines principle are still applicable
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Deadline Monotonic Scheduling (DMS) 
[Leung et al, 1982]

 Task model: the same as for RMS but Di<=Ti

 Priority-Assignment:  tasks with shorter deadline are 

assigned higher priorities

 Run-time scheduling: preemptive HPF

 FACTS: 

 DMS is optimal

 RMS is a special case of DMS

 DMS is often refered as Rate Monotonic Scheduling 
for historical reasons and they are so similar

50

Example

C T D

Task 1 1 4 3

Task 2 1 5 5

Task 3 2 6 4

Task 4 1 11 10

4 8 12 16

5 10 15

6 12

11

R1=1
R2=4
R3=3
R4=10



51

DMS: Schedulability analysis

 UB test (sufficient): 

Σ Ci/Di <= n*(21/n-1) implies schedulable by DMS

 Prescise test (exactly the same as for RMS):

Response time calculation: Ri= Ci + j  HP(i) Ri/Tj*Cj

 Ri0    = Ci + j  HP(i) Cj = C1+C2+...+Ci   the first guess

 Rik+1 = Ci + j  HP(i)  Rik/Tj*Cj   the (k+1)th guess

 The iteration stops when either

 Rim+1>Di or                non schedulable

 Rim<Di and Rim+1 = Rim    
schedulable

52

Summary: 3 ways for DMS schedulability check

 UB test (sufficient, inconclusive)

 Response time calculation

 Draw the schedule for the first periods

53

EDF for tasks with D <= T

 You can always use EDF and it is always optimal to 

schedule tasks with deadlines

 We have a precise UB test for EDF for tasks with Di=Ti: 
U<=1 iff task set is schedulable

 Unfortunately, for tasks with Di<=Ti, schedulability analysis
is more complicated (out of scope of the course, further 

reading [Giorgio Buttazzo’s book])

 We can always check the whole LCM

54

Summary: schedulability analysis

Di=Ti Di<=Ti

Static/Fixed-
priority 

RMS

Sufficient test

Σ Ci/Ti <= n*(21/n-1)

Precise test

Ri= Ci +

j  HP(i) Ri/Tj*Cj

Ri<=Ti

DMS

Sufficient test

Σ Ci/Di <= n*(21/n-1)

Precise test

Ri= Ci +

j  HP(i) Ri/Tj*Cj

Ri<=Di

Dynamic 
priority

EDF

Precise test

Σ Ci/Ti <=1

EDF

?
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Handling context switch overhands
in schedulability analysis

 Assume that 

 Cl is the extra time required to load the context for a new 
task (load contents of registers etc from TCB)

 Cs is the extra time required to save the context for a 

current  task (save contents of registers etc to TCB)

 Note that in most cases, Cl=Cs, which is a parameter

depending on hardware

Task 1

Task 2

Dispatch/context switch

Cl
Cs

56

Handling context switch overheads ?

 Thus, the real computing time for a task should be

Ci´= Ci+Cl+Cs

 The schedulability analysis techniques we studied so far are 
applicable if we use the new computing time C´.

 Unfortunately this is not right

57

Handling context switch

 Ri= Ci´+ j  HP(i) Ri/Tj * Cj´

= Ci+ 2Ccs + j  HP(i) Ri/Tj*(Cj + 2Ccs)

 This is wrong!

 Ri= Ci+ 2Ccs + j  HP(i) Ri/Tj*Cj

+ j  HP(i) Ri/Tj*4Ccs  

(each preemption 2 context switches)

= Ci+ 2Ccs + j  HP(i) Ri/Tj*(Cj +4Ccs) 

 This is right

58

Handling interrupts: problem and example

C T=D

IH, task 0 60 200

Task 1

Task 2

10

40

50

250

Task 0 is the interrupt handler
with highest priority

Task 0

Task 1

0 100 20060

50

Missing deadline = 50Released here

0 60

Response time = 70 

Task 2

59

Handling interrupts: solution

 Whenever possible: move code from the interrupt 
handler to a special application task with the same 
rate as the interrupt handler to make the interrupt 
handler (with high priority) as shorter as possible

 Interrupt processing can be inconsistent with RM 
priority assignment, and therefore can effect 
schedulability of task set (previous example)
 Interrupt handler runs with high priority despites its period

 Interrupt processing may delay tasks with shorter periods 
(deadlines)

 how to calculate the worst case response time ? 

60

Handling interrupts: example

C T=D

IH 10 200

Task 1

Task 2

Task 3

10

40

50

50

150

200

Task 0 is the interrupt handler
with highest priority

IH

Task 1

200

50

Task 2

100 150

150

Task 3
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Handling non-preemtive sections

 So far, we have assumed that all tasks are 

preemptive regions of code. This not always the case 
e.g code for context switch though it may be short, 

and the short part of the interrupt handler as we 

considered before

 Some section of a task is non preemptive

 In general, we may assume an extra parameter B in 

the task model, which is the computing time for the 
non preemtive section of a task.

 Bi = computing time of non preemptive section of task i

62

Handling non preemptive sections:
Problem and Example

C T=D blocking blocked

Task 1 20 100 0 20

Task 2 40 150 0 20

Task 3 60 200 0 20

Task 4 40 350 20 0

20

100 200

150

Task 3

Task 1

Task 2

Task 4

IH

20

Missing deadline 150

Task 3 is an interrupt handler with highest priority
Task 4 has a non preemptive section of 20 sec

60 60

Non preemptive/non interruptible section of 20

63

Handling non-preemtive sections:
Response time calculation

 The equation for response time calculation:

Ri= Bi + Ci + j  HP(i) Ri/Tj*Cj

 Where Bi is the longest time that task i can be 
blocked by lower-priority tasks with non preemptive 

section

 Note that a task preempts only one task with lower priority 

within each period

64

So now, we have an equation:

Ri= Bi + Ci+2Ccs + j  HP(i) Ri/Tj*(Cj +4*Ccs)

65

The Jitter Problem

 So far, we have assumed that tasks are released at a 

constant rate (at the start of a constant period)

 This is true in practice and a realistic assumption

 However, there are situations where the period or 

rather the release time may ’jitter’ or change a little, 
but the jitter is bounded with some constant J

 The jitter may cause some task missing deadline

66

Jitter: Example

20 202020

40 40

0 100 200 300

150 300

40

0

{(20,100),(40,150),(20, T3)}

T1

T2

150 3000

T3

130 170

T3 is activated by T2 when it finishes within each period 
Note that because the response time for T2 is not a constant, 
the period between two instances of T3 is not a constant: 170, 130

20
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Jitter: Definition

 J(biggest)=maximal delay from period-start

 J(smallest)=minimal delay from period-start

 Jitter= J(biggest)-J(smallest)

 Jitter = the maximal length of the interval in which a 
task may be released non-deterministically

 If J(biggest)=J(smallest), then NO JITTER and 
therefore no influence on the other tasks with lower 
priorities

68

Jitter: Example

20 202020

40 40

0 100 200 300

150 300

40

0

{(20,100),(40,150),(20, T3)}

T1

T2

Pr(T1)=1, Pr(T2)=2, Pr(T3)=3

150 3000

T3

130 170

T3 is activated by T2 by the end of each instance
J(biggest)= R2(worst case), J(smallest)= R2(best case)
Jitter = J(biggest)- J(smallest)=60-40=20

20
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Jitter: Example

20 202020

40 40

0 100 200 300

150 300

40

0

{(20,100),(40,150),(20, T3)}

T1

T2

150 3000

T3

90 210

T3 is activated by T2 at any time during its execution of an instance

J(biggest)= R2(worst case), J(smallest)= R2(best case)-C2
Jitter = J(biggest)- J(smallest)=60-0=60

20
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The number of preemptions due to Jitter

Task L

Task H

0

Tlow

Rlow

Thigh

Jhigh

0

One release

One more release due to the jitter
Which preempts L, one more time

Task L will be preempted at least 2 times if Rlow > Thigh -Jhigh
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Task L

Task H

0

Tlow

Rlow

2Thigh

Jhigh

0

One release

One more release due to the jitter
Which preempts L, one more time

Task L will be preempted at least 3 times if Rlow > 2Thigh -Jhigh

Thigh

72

The number of preemptions/blocking 
when jitters occur

 Task L will be preempted at least 2 times if Rlow > Thigh -Jhigh

 Task L will be preempted at least 3 times if Rlow > 2 *Thigh -Jhigh

 ...

 Task L will be preempted at least n times  if 

Rlow > (n-1)* Thigh –Jhigh

 Thus   (Rlow +Jhigh)/Tj  > n-1

 the largest n satisfying the condition is given by 

n= (Rlow + Jhigh)/ Thigh 
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Handling Jitters in schedulability analysis

 Ri= Ci + j  HP(i) ”number of preemptions” *Cj

 Ri* = Ri + Ji(biggest)    

 if Ri* < Di, task i is schedulable otherwise no

74

Handling Jitters in schedulability analysis

 Ri= Ci + j  HP(i) (Ri+Jj)/Tj*Cj

 Ri* = Ri + Ji(biggest)    

why Ri+Ji(biggest) ?

 if Ri* < Di, task i is schedulable, otherwise no

75

Now, we have an equation:

Ri= Ci+ 2Ccs + Bi + j  HP(i) (Ri+Jj)/Tj*(Cj +4Ccs)

The response time for task i

Ri* = Ri+Ji(biggest)

Ji(biggest) is the ”biggest jitter” for task i

76

Reource Sharing with HLP and PCP  (and BIP)

 Let 
 CS(k,S) denote the computing time for the critical section that  task

k uses semaphore S.

 Use(S) is the set of tasks using S

 Then for HLP and PCP, the maximal blocking time RSi and 
response time Ri for task i is as follows:

 RSi = max{CS(k,S)| i,k in Use(S), pr(k)<pr(i)<=C(S)}

 How about BIP?  
 RSi = Sum{CS(k,S)| i,k in Use(S), pr(k)<pr(i)<=C(S)}

 Ri= RSi + Ci + j  HP(i) Ri/Tj*Cj

77

Finally, we have an equation (why?):

Ri= Ci+ 2Ccs + Bi + RSi +  j  HP(i) (Ri+Jj)/Tj*(Cj +4Ccs)

78

Summary: + and -

 Static Cyclic Scheduling (SCS)
 Simple, and reliable, may be difficult to construct the time table 

and difficult to modify and  (inflexible)

 Earliest Deadline First  (EDF)

 Simple in theory, but difficult to implement, non-stable

 no precise analysis for tasks D<T

 Rate Monotonic Scheduling (RMS)

 Simple in theory and practice, and easy to implement

 Deadline Monotonic Scheduling (DMS)
 Similar to RMS

 Handling overheads, blocking, resource sharing (priority ceiling 
protocols)


