Specifying properties of real-time systems
--- UPPAAL querry language

Transition Systems
as the semantics of real-time system

A transition system is a graph with
= a set of states (may be infinite)
= a set of transitions (may be infinite)
where
= a state may satisfies some properties (propositions/predicates)

Example (states are labeled with propositions)
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EXAMPLE: a BUGGY machine The Computation Tree of BUGGY
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UPPAAL specification language




Formalizing requirements in UPPAAL

Af[lp, A<>p, E<>p, E[lp, p-—->p
where p is a local property
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E<>p “p Reachable”

= it is possible to reach a state in which p is satisfied.
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= pis true in (at least) one reachable state.

Allp “Invariantly p”

= A[] p — p holds invariantly.

A<>p “Inevitable p”

= p will inevitably become true, the automaton is
guaranteed to eventually reach a state in which p is

true.
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= pis true in all reachable states.
. = pis true in some state of all paths. »
E[]p “Potentially Always p” p-->q “p lead to 9"

= pis potentially always true.
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= There exists a path in which p is true in all states.
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= whenever p becomes true, q will inevitably become
true. This is the same as A[]( p imply A<>q )
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= In all paths, if p becomes true, q will inevitably
become true. 2




p -->q "p lead to q”
The same as A[] (p imply A<> q)

Whenever p becomes true

P P q should become true
eventually

Example querries in UPPAAL

= Reachability properties: E<> Q

= E<> P.stop

= E<> (y>200)
= Invariant properties: A[] Q

= A[] not (P1.CS and P2.cs)

= A[] (i < 100)

= A[] (x>10 imply i>100)

After 10, i should be larger than 100

= Deadlock-freedom

= A[] !deadlock




