Specifying properties of real-time systems
--- UPPAAL querry language

Transition Systems
as the semantics of real-time system

A transition system is a graph with
= a set of states (may be infinite)
= a set of transitions (may be infinite)
where
= a state may satisfies some properties (propositions/predicates)

Example (states are labeled with propositions)

Computation Trees

O (ON@) o o
o
so/\O—’O<O
~o._ o0 0 o
000

The computation tree of state s

Computation Trees vs. STATES

The computation tree of state s,

Computation trees of STATES

The computation tree of state s,

EXAMPLE: a BUGGY machine The Computation Tree of BUGGY

ﬁ /'\

@
@
@ @
-]
"Properties” of BUGGY "Properties” of BUGGY
Possible error E<> error Possoble Globally ok E[] ok

/'\ /'\

S S

"Properties” of BUGGY Properties of Computation Trees

Always (ok or error)

(o)
/

A[] (ok or error)

\ Invariant Potentially global Possible Inevitable

| R S

¥

Example

E[1p

Example

E[1p

Example

A[lp

Example

A[lp

Example

UPPAAL specification language

Formalizing requirements in UPPAAL

Af[lp, A<>p, E<>p, E[lp, p-—->p
where p is a local property

__ data guard clock guard
automaton location

p::=,2.1 | ga | gc | p and p |
/porplnotplpimplypl (p)

process/ name

E<>p “p Reachable”

= it is possible to reach a state in which p is satisfied.

2
gy

= pis true in (at least) one reachable state.

Allp “Invariantly p”

= A[] p — p holds invariantly.

A<>p “Inevitable p”

= p will inevitably become true, the automaton is
guaranteed to eventually reach a state in which p is

true.
]
., LY
5 At
P p
= pis true in all reachable states.
. = pis true in some state of all paths. »
E[]p “Potentially Always p” p-->q “p lead to 9"

= pis potentially always true.

K
[
/
PR
= There exists a path in which p is true in all states.

23

= whenever p becomes true, q will inevitably become
true. This is the same as A[](p imply A<>q)

! N\
q
= In all paths, if p becomes true, q will inevitably
become true. 2

p -->q "p lead to q”
The same as A[] (p imply A<> q)

Whenever p becomes true

P P q should become true
eventually

Example querries in UPPAAL

= Reachability properties: E<> Q

= E<> P.stop

= E<> (y>200)
= Invariant properties: A[] Q

= A[] not (P1.CS and P2.cs)

= A[] (i < 100)

= A[] (x>10 imply i>100)

After 10, i should be larger than 100

= Deadlock-freedom

= A[] !deadlock

