=

Verification of Real-Time Systems

In general, two types of system requirements

(to verify)

= Safety: nothing bad should happen
= e.q.
» Deadlock freeness,
= no deadline missed

= Liveness: good thing should be repeated

= €.0.
= any message sent should be delivered eventually to the
receiver
= all service requests should be granted eventually or
= any failure should be recovered within 10 ms (bounded
liveness)

Formalizing Safety Properties
in UPPAAL/TIMES

= Reachability properties: E<> Q
= E<> P.stop
= E<> (y>200)
= Invariant properties: A[] Q (not E<> not Q)
= A[] not (P1.CS and P2.cs)
= A[] (i < 100)
= A[] (x>10 imply i>100)
= After 10, i should be larger than 100
= Schedulability analysis (by TIMES)
= No deadline missed
= Deadlock-freedom
= Verified by default by UPPAAL/TIMES

=

Examples

Example: Petersson’s algorithm

turn: shared variable

= Process 1 = Process 2

= Loop = Loop

» flagl:=1; turn:=2 s flag2:=1; turn:=1

= While (flag2 and turn=2) = While (flagl and turn=1)
wait wait

[] @ [] @

= flagl:=0 = flag2:=0

= End loop = End loop

Question: no more than one process run in CS?

Example: Fischer’s Protocol

¥~ |

[) + .
° 0 /
V
-" k Criticial Section

B X<100 X:=0, >100
Init A1 vi=t /\{ V=1

Y<100 Y:=0 >100
vi=2 e v=2 .
[)
[)

Example: the Vikings Problem
i Real time scheduling

c

UNSAFE SAFE

? ?
% %? %; % =

5 10 20 25

:® What is the fastest time

At most 2 Torch for getting all vikings on
crossing at a time ore the
Need torch safe side ?

i Problem: reachability analysis

= Give an automaton and a location n, or a local
property F

= Question: does it exist an execution of the
automaton, that leads to n (or a state where F
holds)?

= This is the so called reachability problem.

i Timed Automata: Semantics

X<=5 & y-x>1 (location , clock-assignment)

Transitions

1

1
x:=0 (m, x=24,y=31415) — > (m x=35, y=4.2415)

(m, x=1.14, y=3.1415) ——> (n, x=0, y=3.1415)

i Reachability Problems

n is reachable from m if there is a sequence of transitions:

*

(m, x=r, y=s) (n, x=r', y=s')

Formalizing requirements

= Reachability properties: E<> Q
= E<> P.stop
= E<> (y>200)
= Invariant properties: A[] Q (not E<> not Q)
= A[] not (P1.CS and P2.cs)
» A[] (i < 100)
= A[] (x>10 imply i>100)
= After 10, i should be larger than 100
= Schedulability analysis (in TIMES)
= No deadline missed

i Infinite State Space!

T =2

@ O

gives rise to the
infinite transition system:

However, the reachability problem is decidable © Alur&Dill 1991

12

= S

Algorithms and Data
Structures for Verification
of Timed Automata

13

ZONES

i Zones: From infinite to finite

Symbolic state (zone)

State
(n, x=3.2, y=2.5) (n, 1<x<4,1<y<3)
Zone:
conjunction of
y y X-y~n, X~n
[e¢)
X X

15

Symbolic Transitions
oo) iy
\-—N delays to '

—x
x>3
Yy y 3<x, 1<=y
. 2<=xy<=3
conjuncts to
a
X

3<x,y=0

y:=0 projects to

Thus (n,1<=x<=4,1<=y<=3) =a=>(m,3<x y=0)]

Fischer’s Protocol
analysis using zones

ki 2 [
¥~
I v
Criticial Section
X<10 X:=0, X>10
Initially Al Vi=t /\ v=1
V-1 \8L/

Y<10 Vvim2 Y:=0/\Y>10 Vo2
G O

17

X<10 - X:=0 >10 _
* Fischers cont. | @ & =
@<10 \,,_Y::Q/;Plo Ve @

Untimed case

[AtA2v=1 |—— A1B2v=2 ——] At,cs2,v=2 |— B1,cs2,v=1 |—— cs1,c52,=1 |

<10 _X:=>10 3 @
o >10
@<10 Lo Q/B\;(s @
Untimed case

[AtA2v=1 |—— A1B2v=2 ——] At,cs2,v=2 — B1,cs2,v=1 |—— cs1,c52,=1 |

Fischers cont.

Taking time into account

<10 _X:=>10 3 @
<10 . _Y:= >10,
Untimed case

[ALA2v=1 F——{ A1B2v=2 ——] A1,cs2,v=2 |—{ B1,cs2,v=1 |—— cs1,c52,=1 |

Fischers cont.

Taking time into account

X<10 - X:=0 >10 _ . X<10 - X:=0 >10 _
Fischers cont. | @ s (e Fischers cont. | @ o (e
- . >10 - . >10
Untimed case @ e @ - @ Untimed case @ e Q/Bj - @

[ALA2v=1 F——{ A1B2v=2 ——] At,cs2,v=2 — B1,cs2,v=1 |—— cs1,c52,=1 |

Taking time into account

Y
10

[ALA2v=1 F——] A1B2v=2 ——[At,cs2,v=2 | B1,cs2,v=1 |—— cs1,c52,=1 |

Taking time into account

10 % 10 X
2 2
< 10 K= > 10 @
Fischers cont. Symbolic Transitions
' >10 1R=XX=4 _ -
(a0t g i (a5 , s y 524
Untimed case
— delays to 0
[ALA2v=1 F——] A1B2v=2 ——[Atcs2,v=2 | B1,cs2,v=1 |—— cs1,c52,=1 |
x>3
Taking time into account Y Y 5 :i?la
ﬁ conjuncts to
a
X X
y:=0 projects to =0
Thus (n,) =a=>(m,)]
2

23

Zones = Conjuctive constraints

= Azone Zis a conjunctive formula:

9 &g &... &g,

where g; is a clock constraint:

X~ by or x-x;~by
= Use a zero-clock x, (constant 0)
= A zone can be re-written as a set:

{X%; ~ by | ~is < or <, ij<n}
= This can be represented as a MATRIX, DBM
(Difference Bound Matrices)

25

i Solution set as semantics

= Let Z be a zone (a set of constraints)

= Let [Z]={u | u is a solution of Z}
= The semantics

(We shall simply write Z instead [Z])

26

Operations on Zones

= Strongest post-condition (Delay): SP(Z) or ZT
« [Z1] = {u+d| d e R, ue[Z]}

= Weakest pre-condition: WP(Z) or Z{ (the dual of ZT)
« [Zl] = {u| u+de[Z] for some deR}

= Reset: {x}Z or Z(x:=0)
= [{X3Z] = {u[0/x] | u [Z]}

= Conjunction
= [2&g]= [Z]n[g]

27

i An important theorem on Zones

= The set of zones is closed under all constraint
operations (including x:=x-c or x:=x+c)
= That is, the result of the operations on a zone is a zone

= That is, there will be a zone (a finite object i.e a
zone/constraints) to represent the sets: [21], [Z{],

[32]

28

i One-step reachability: Si->S;

= Delay: (n,Z) ©> (n,2) where Z'= ZT A inv(n)

= Action: (n,Z2) > (m,Z") where Z'= {x}(Z Ag)

= Successors(n,Z)={(m,Z") | (n,Z) >>(m,Z"), Z'#0}

= Sometime we write: (n,Z)>(m,Z’) if (m,Z’) is a successor of (n,Z)

29

i Two more operations on Zones

= Inclusion checking: ZicZ>
= solution sets

= Emptiness checking: Z = @
= NO solution

30

All Operations on Zones
(needed for reachability analysis)

= Transformation s1
= Conjunction sz‘g Ny
= Post condition (delay) 20

/S
= Reset i S /&\
= Consistency Checking 7 /f\

= Inclusion
= Emptiness

31

i Now, we have a search problem

32

=

REACHABILITY ALGORITHM

33

#Mchabmty Init -> Final ?
\ INITIAL Passed := @;

Waiting Final Waiting := {(n0,20)}
0~0) REPEAT
O O O - pick (n,Z) in Waiting
e -ifforsomeZ’ o Z
(n,Z') in Passed then STOP
- else (explore) add
successors(n,Z) to Waiting;
Add (n,Z) to Passed

UNTIL Waiting =@
or
Passed / Final is in Waiting

34

#Mcha b| I |ty Init -> Final ?
.\ INITIAL Passed := {;

Waiting Final Waiting := {(n0,20)}
(O~) REPEAT
ON©) O - pick (n,Z) in Waiting
e — -ifforsomeZ' 2 Z
(n,Z") in Passed then STOP

UNTIL Waiting =0
or
Passed / Final is in Waiting

35

#Mcha b| I |ty Init -> Final ?
.\ INITIAL Passed :=@;

Waiting Final Waiting := {(n0,20)}
[O ‘ REPEAT
O @) - pick (n,Z) in Waiting
N g - if for some Z' 2 Z
(n,Z2') in Passed then STOP
- else /explore/ add
successors(n,Z) to Waiting;

UNTIL Waiting =0
or
Passed / Final is in Waiting

36

Forward Rechability
N\

waiting | O &y O ®
/ |

o)

Final

Passed /

Init -> Final ?

INITIAL Passed := @;
Waiting := {(n0,Z0)}

REPEAT
- pick (n,Z) in Waiting
- if forsome 7' 2 7
(n,Z') in Passed then STOP
- else /explore/ add
successors(n,Z) to Waiting;
Add (n,Z) to Passed

UNTIL Waiting =0

or
Final is in Waiting

37

