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Verification of Real-Time Systems
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In general, two types of system requirements
(to verify)

� Safety: nothing bad should happen 
� e.g. 

� Deadlock freeness, 
� no deadline missed

� Liveness: good thing should be repeated 
� e.g. 

� any message sent should be delivered eventually to the 
receiver

� all service requests should be granted eventually or
� any failure should be recovered within 10 ms (bounded 

liveness)
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Formalizing Safety Properties 
in UPPAAL/TIMES
� Reachability properties: E<> Q

� E<> P.stop
� E<> (y>200)

� Invariant properties: A[] Q  (not E<> not Q)
� A[] not (P1.CS and P2.cs)
� A[] (i < 100)
� A[] (x>10 imply i>100)

� After 10, i should be larger than 100
� Schedulability analysis (by TIMES)

� No deadline missed 
� Deadlock-freedom

� Verified by default by UPPAAL/TIMES
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Examples
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Example: Petersson’s algorithm

� Process 1
� Loop
� flag1:=1; turn:=2
� While (flag2 and turn=2) 

wait
� CS1
� flag1:=0
� End loop

� Process 2
� Loop
� flag2:=1; turn:=1
� While (flag1 and turn=1) 

wait
� CS2
� flag2:=0
� End loop

turn: shared variable

Question: no more than one process run in CS?
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A1 B1 CS1
V:=1 V=1

A2 B2 CS2V:=2 V=2

Init
V=1
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V
Criticial Section

Example: Fischer’s Protocol

Y<100

X:=0

Y:=0

X>100

Y>100

X<100
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Example: the Vikings Problem
Real time scheduling

UNSAFE SAFE

5 10 20 25

At most 2
crossing at a time
Need torch 

At most 2
crossing at a time
Need torch 

Mines

Can they make
it within 60 minutes ?
Can they make
it within 60 minutes ?

Torch
What is the fastest time
for getting all vikings on 

the
safe side ?

What is the fastest time
for getting all vikings on 

the
safe side ?
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Problem: reachability analysis 

� Give an automaton and a location n, or a local 
property F

� Question: does it exist an execution of the 
automaton, that leads to n (or a state where F 
holds)?

� This is the so called reachability problem. 
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Timed Automata: Semantics
m

n

x<=5 & y-x>1

x := 0

Transitions

( m , x=2.4 , y=3.1415 )

( m , x=1.14 , y=3.1415 )

State
( location , clock-assignment )

(n , x=0 , y=3.1415 )

( m, x=3.5 , y=4.2415 )
1.1
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Reachability Problems

n is reachable from m if there is a sequence  of transitions:

(m, x=r, y=s ) (n , x=r’ , y=s’ )*
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Formalizing requirements 
� Reachability properties: E<> Q

� E<> P.stop
� E<> (y>200)

� Invariant properties: A[] Q  (not E<> not Q)
� A[] not (P1.CS and P2.cs)
� A[] (i < 100)
� A[] (x>10 imply i>100)

� After 10, i should be larger than 100

� Schedulability analysis (in TIMES)
� No deadline missed
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Infinite State Space!

However, the reachability problem is decidable ☺ Alur&Dill 1991
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Algorithms and Data 
Structures for Verification
of Timed Automata

14

ZONES
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Zones: From infinite to finite

State
(n, x=3.2, y=2.5 )

x

y

x

y

Symbolic state (zone)
(n,                      )

Zone:
conjunction of
x-y~n, x~n

 3y4,1x1 ≤≤≤≤

∞
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Symbolic Transitions

n

m

x>3

y:=0

x

y
delays to

conjuncts to

projects to

x

y

1<=x<=4
1<=y<=3

x

y
1<=x, 1<=y
-2<=x-y<=3

x

y 3<x, 1<=y
-2<=x-y<=3

3<x, y=0

Thus  (n,1<=x<=4,1<=y<=3)  =a=> (m,3<x, y=0)Thus  (n,1<=x<=4,1<=y<=3)  =a=> (m,3<x, y=0)

a
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A1 B1 CS1
V:=1 V=1

A2 B2 CS2V:=2 V=2

Initially
V=1

2
�´

V
Criticial Section

Fischer’s Protocol
analysis using zones

Y<10

X:=0

Y:=0

X>10

Y>10

X<10
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Fischers cont. B1 CS1V:=1 V=1

A2 B2 CS2V:=2 V=2Y<10

X:=0

Y:=0

X>10

Y>10

X<10

A1,A2,v=1 A1,B2,v=2 A1,CS2,v=2 B1,CS2,v=1 CS1,CS2,v=1

Untimed case

A1
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Fischers cont. B1 CS1V:=1 V=1

A2 B2 CS2V:=2 V=2Y<10

X:=0

Y:=0

X>10

Y>10

X<10

A1,A2,v=1 A1,B2,v=2 A1,CS2,v=2 B1,CS2,v=1 CS1,CS2,v=1

Untimed case

Taking time into account

X

Y

A1
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Fischers cont. B1 CS1V:=1 V=1

A2 B2 CS2V:=2 V=2Y<10

X:=0

Y:=0

X>10

Y>10

X<10

A1,A2,v=1 A1,B2,v=2 A1,CS2,v=2 B1,CS2,v=1 CS1,CS2,v=1

Untimed case

Taking time into account

X

Y

A1

10
X

Y
1010
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Fischers cont. B1 CS1V:=1 V=1

A2 B2 CS2V:=2 V=2Y<10

X:=0

Y:=0

X>10
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Taking time into account

A1

10
X

Y
10

X

Y
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X

Y
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Symbolic Transitions

n

m

x>3

y:=0

x

y
delays to

conjuncts to

projects to

x

y

1<=x<=4
1<=y<=3

x

y
1<=x, 1<=y
-2<=x-y<=3

x

y 3<x, 1<=y
-2<=x-y<=3

3<x, y=0

Thus  (n,1<=x<=4,1<=y<=3)  =a=> (m,3<x, y=0)Thus  (n,1<=x<=4,1<=y<=3)  =a=> (m,3<x, y=0)

a
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Zones = Conjuctive constraints
� A zone Z is a conjunctive formula:

g1 & g2 & ... & gn

where gi is a clock constraint:
xi ~ bi or  xi-xj~bij

� Use a zero-clock x0 (constant 0)
� A zone can be re-written as a set:

{xi-xj ~ bij | ~ is < or ≤, i,j≤n}
� This can be represented as a MATRIX, DBM

(Difference Bound Matrices)
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Solution set as semantics 

� Let Z be a zone (a set of constraints)

� Let [Z]={u | u is a solution of Z}
� The semantics

(We shall simply write Z instead [Z] )
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Operations on Zones
� Strongest post-condition (Delay): SP(Z) or Z↑

� [Z↑] = {u+d| d ∈ R, u∈[Z]}

� Weakest pre-condition: WP(Z) or Z↓ (the dual of Z↑)
� [Z↓] = {u| u+d∈[Z] for some d∈R}

� Reset: {x}Z or Z(x:=0)
� [{x}Z] = {u[0/x] | u ∈[Z]}

� Conjunction
� [Z&g]= [Z]∩[g]
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An important theorem on Zones
� The set of zones is closed under all  constraint 

operations (including x:=x-c or x:=x+c)
� That is, the result of the operations on a zone is a zone
� That is, there will be a zone (a finite object i.e a 

zone/constraints) to represent the sets: [Z↑],  [Z↓], 
[{x}Z]
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One-step reachability: SiÆSj

� Delay:  (n,Z) Æ (n,Z’) where Z’= Z↑ ∧ inv(n)

� Action: (n,Z) Æ (m,Z’) where Z’= {x}(Z ∧g)

� Successors(n,Z)={(m,Z’) | (n,Z) ÆÆ(m,Z’), Z’≠Ø}
� Sometime we write: (n,Z)Æ(m,Z’) if (m,Z’) is a successor of (n,Z)

n m
g x:=0if
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Two more operations on Zones
� Inclusion checking: Z1⊆Z2

� solution sets
� Emptiness checking: Z = Ø

� no solution
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All Operations on Zones
(needed for reachability analysis)

� Transformation
� Conjunction
� Post condition (delay)
� Reset

� Consistency Checking
� Inclusion
� Emptiness

S1

S2, S3, ... , Sn

Si    Sj                 
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Now, we have a search problem

(n0,Z0)

S2, S3  ......   Sn

T2                 T1

…
..
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REACHABILITY ALGORITHM
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Forward Rechability

Passed

Waiting
Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ ⊇ Z

(n,Z’) in Passed then STOP
- else (explore) add

successors(n,Z) to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

Init -> Final ?
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Forward Rechability

Passed

Waiting Final

Init

n,Z

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else (explore) add

successors(n,Z) to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’

Init -> Final ?
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Forward Rechability

Passed

Waiting Final

Init

n,Z

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

successors(n,Z) to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’

m,U

Init -> Final ?
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Forward Rechability

Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

successors(n,Z) to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’

m,U

n,Z

Init -> Final ?


