
1

1

Modeling of Real-Time Systems

2

In practice

a system may contain a large number of
”components” or subsystems
each component/subsystem may contain a
number of sub-components etc

3

Hierarchical system architecture

4

The Waterfall Model

Analysis

Design

Implementation

Testing♦Errors are detected late or never:
30-50% of time for testing

♦ Errors detected: the late the more expensive

Problem
Area

Ru
nn

ing

Sy
ste

m

RE
VI

EW
S

RE
VI

EW
S

Traditional software development

5

Introducing, Detecting and
Correcting errors

6

Finding errors as early as possible!

HOW?

2

7

Modeling and Verification

It is to provide a general and rigorous
design method for system development
”modeling” is a design process: describe
the abstract behaviour of a system
”verification” is to complement scheduling
analysis to check system properties
including safety and liveness-properties

8

Analysis

Design

Implementation

Testing

Problem
Area

Ru
nn

ing

Sy
ste

m

Software development: the future

Modelling and verification

Automatic
Code generation

9

Analysis

Design

Implementation

Testing

Problem
Area

Ru
nn

ing

Sy
ste

m

Software development: the future

Modelling and verification

Automatic
Code generation

10

Analysis

Design

Implementation

Testing

Problem
Area

Ru
nn

ing

Sy
ste

m

Software development

Modelling and verification

Automatic
Code generation

Test case
generation

11

Software Development: the Future

Components

Design/modelling

Verification

Production

Error?

Testing

Test case generation

12

Basic ideas

Modeling
Use state-machines, also called automata, to
describe system components
A system will be a network of automata

Verification
Check properties of the automata using
software tools like UPPAAL or TIMES

3

13

Finite State Automata

c

d

a

It has 3 states
and 3 transitions

And it accepts
sequences out of
the language:
c + cd + cdc+ c(dc)*a

14

Automata as reactive objects

We view an automaton as a reactive object
where the action labels stand for
synchronization actions e.g. Ada’s
rendezvous
For example, the previous example could
be a network protocol where c and d stand
for ”connect !” and ”disconnect?” and a for
”abort!”

15

Input and Output Actions

We use ? and ! to denote the pairs of complementary actions
in rendezvous communication

c!

d?

a!

16

Networks of automata
We use ? and ! to denote the pairs of complementary actions
in rendezvous communication

c!

d?

a!

c?

a?The two objects can
synchronize on c and
then a

A B

17

The static architecture of a
concurrent system: A || B

A B

d

c

a

where c, a, d stand for ”ports” or ”channels”

18

The static architecture of a
concurrent system: A || B || C

A B

d

c

a

C

4

19

Networks of automata

We use ? and ! to denote the pairs of complementary actions
in rendezvous communication

c!

d?

a!

c?

a? d!

A B C

20

Networks of automata: initial state

We use ? and ! to denote the pairs of complementary actions
in rendezvous communication

c!

d?

a!

c?

a? d!

A B C

21

Networks of automata: enabled transition

We use ? and ! to denote the pairs of complementary actions
in rendezvous communication

c!

d?

a!

c?

a? d!

A B C

22

Networks of automata: transition taken

We use ? and ! to denote the pairs of complementary actions
in rendezvous communication

c!

d?

a!

c?

a? d!

A B C

23

Networks of automata:
nondeterministic choices (transitions)

We use ? and ! to denote the pairs of complementary actions
in rendezvous communication

c!

d?

a!

c?

a? d!

A B C

24

Networks of automata:
non-deterministic transitions (1)

We use ? and ! to denote the pairs of complementary actions
in rendezvous communication

c!

d?

a!

c?

a? d?

A B C

5

25

Networks of automata:
non-deterministic transition (2)

We use ? and ! to denote the pairs of complementary actions
in rendezvous communication

c!

d?

a!

c?

a? d!

A B C

26

Networks of automata:
deadlock!

We use ? and ! to denote the pairs of complementary actions
in rendezvous communication

c!

d?

a!

c?

a? d!

A B C

27

Networks of automata:
deadlock!

We use ? and ! to denote the pairs of complementary actions
in rendezvous communication

c!

d?

a!

c?

a? d!

A B C

Unless there is another component willing to
synchronize on any of the actions

c?

D

28

Clocks and timing constraints

Now we assume that the system has a
finite number of (logical) clocks

The clocks start to run from 0 when the system
starts, and they run at the same rate (they are
perfect clocks with no drift!)
The clocks can be read and tested e.g. x<100
The clocks can be reset to 0 on a transition

29

Timed automata: timing constraints

c! x:=0

x<100 s?
x=100
a!

1. connect and reset x to 0
2. If succeed within 100ms,

then go to initial
3. about after 100 ms !

30

Timed automata: integers

c! x:=0, i:=3

x<100 s?
i:=i+1 x=>100

a!
i:=0

1. connect and reset x to 0
2. If succeed within 100ms,

then go to initial
3. about after 100 ms !

6

31

Network of Timed automata

c! x:=0, i:=3

x<100 s?
i:=i+1 x=>100

a!
i:=0

y<10
i==3
s!
x:=0, y:=0

C?

32

Network of Timed automata:
initial states

c! x:=0, i:=3

x<100 s?
i:=i+1 x=>100

a!
i:=0

y<10
i==3
s!
x:=0, y:=0

C?

33

Network of Timed automata:
enabled ransition

c! x:=0, i:=3

x<100 s?
i:=i+1 x=>100

a!
i:=0

y<10
i==3
s!
x:=0, y:=0

C?

34

Network of Timed automata:
transition taken

c! x:=0, i:=f(i)

x<100 s?
i:=i+1 x=>100

a!
i:=0

y<10
i==3
s!
x:=0, y:=0

C?

35

Network of Timed automata:
enabled ransition

c! x:=0, i:=3

x<100 s?
i:=i+1 x=>100

a!
i:=0

y<10
i==3
s!
x:=0, y:=0

This depends on the values of x, y, and i

C?

36

Network of Timed automata:
transition taken

c! x:=0, i:=3

x<100 s?
i:=i+1 x=>100

a!
i:=0

y<10
i==3
s!
x:=0, y:=0

This depends on the values of x, y, and i

C?

7

37

Timed automata (definition)

a timed automaton is a finite graph
a finite many nodes N
a finite many edges between nodes E
an edge may be labelled with three elements

guard
action (a?, a!, or nothing)
assignment

(they may not appear)

38

Guard

a clock constraint
g ::= x ≤ n | x≥ n | x<n | x>n | g∧g
where n is any natuaral number

a predicate over data variables
”any logical expression” you may write in C

39

assignment

a clock reset: x:=0 for any clock x

a sequence of assignments in the form i:=e

40

Intelligent Light Control

Off Light Bright
press? press?

press?

press?

WANT: if press is issued twice quickly
then the light will get brighter; otherwise the light is
turned off.

41

Intelligent Light Control (with timer)

Off Light Bright
press? press?

press?

press?

Solution: Add real-valued clock x

X:=0
X<=3

X>3

42

Timed Automata: Example

l

X>=2

X:=0

X:=0

8

43

Timed Automata: Example

l

X>=2

X:=0

X:=0

44

Timed Automata: Example

l

2<=x<=3

X:=0

X:=0

45

Timed Automata: Example

l

X>=2

X:=0

X:=0

X<=3

46

Timed Automata: Semantics
States: (n, u) where

n stands for the current node or location
u stands for the current values of clocks and integers
(i.e. the memory of a machine)

Transitions: delay and actions
(n,u) moves to (n, u+d) after d time units
(n,u) moves to (m, v) when an action over channel ”a”
is taken, and v is the new values of clocks and integer
variables

47

Timed Automata: Semantics
n

m

a

Clocks: x, y

x<=5 & y>3

x := 0

Guard =clock constraint

Reset
Action perfomed on clocks

Transitions

(n , x=2.4 , y=3.1415)
(n , x=3.5 , y=4.2415)

e(1.1)

(n , x=2.4 , y=3.1415)
(m , x=0 , y=3.1415)

a

State
(location , x=v , y=u) where v,u are in R

Action
used

for synchronization

48

n

m

a

Clocks: x, y

x<=5 & y>3

x := 0

Transitions

(n , x=2.4 , y=3.1415)
(n , x=3.5 , y=4.2415)

1.1

(n , x=2.4 , y=3.1415)
3.2

x<=5

y<=10

Location
Invariants

g1
g2 g3

g4

Invariants insure progress!!

Timed Automata with Invariants

9

49

Timed Automata: Example
(task with jitter)

5<x<=100

X:=0

T
X<=100

50

Timed Automata: Light Switch

Switch may be turned on
whenever at least 2 time
units has elapsed since
last “turn off”

Light automatically
switches off after 9 time
units if it is not pressed.

off on

x>2 press? X:=0
X>2

press?

X:=0X=9

X<=9

51

Timed Automata: Example

...)9,0,()9),3(9,(
)3,3,(),0,(

),()0,(
)5.3,()0,(

)3(93

5.3

==→=+−=

 →+==→==

→==→==

→==→==

+−

yxoffyxon
yxonyxon

yxonyxon
yxoffyxoff

click

push

push

π

ππ

π
π

π

off on

x>2 push X,y :=0
X>2

push

X:=0y=9

y<=9

X:=0

start
x=y=0

click

52

Modeling Concurrency

Products of automata
Parallel composition

53

Networks of Timed Automata + Integer Variables + ……

l1

l2

a!

x>=2
i==3

x := 0
i:=i+4

m1

m2

a?

y<=4

…………. Two-way synchronization
on complementary actions.

Closed Systems!

(l1, m1,………, x=2, y=3.5, i=3,…..) (l2,m2,……..,x=0, y=3.5, i=7,…..)

Example transitions

54

Modeling Ada Programs

10

55

Rendezvous

task body A is
begin
...
B.Call;
...
end A

task body B is
begin
...
accept Call do
....
end Call
...
end A

56

Rendezvous

task body A is
begin
...
B.Call;
...
end A

task body B is
begin
...
accept Call do
....
end Call
...
end A

Call?call!

Task A

call?

Task B

57

Buffer
task buffer is
entry put(X: in integer)
entry get(x: out integer)
end;

task body buffer is
v: integer;

begin
loop accept put(x: in integer) do v:= x end put;

accpet get(x: out integer) do x:= v end get;
end loop;
end buffer;

buffer.put(...) --- other tasks (users)!!
buffer get(...)

58

Buffer
task buffer is
entry put(X: in integer)
entry get(x: out integer)
end;

task body buffer is
v: integer;

begin
loop accept put(x: in integer) do v:= x end put;

accpet get(y: out integer) do y:= v end get;
end loop;
end buffer;

buffer.put(...) --- other tasks (users)!!
buffer get(...)

put?

v:=x

get?

y:=v

59

Conditional/Timed entry call
loop

--get temperature
select

Controller.Call(T); -- put new temperature
or delay 5 --other actions
end select;

end loop;

60

Conditional/Timed entry call
loop

--get temperature
select

Controller.call(T); -- put new temperature
or delay 5 --other actions
end select;

end loop;

Other
actions

call!

read?

X=>5
X:=0

11

61

Timeout and message passing
loop

select
accept Call(T : temperature) do

New_temp:=T;
end Call;

or
delay 10.0;

--action for timeout
end select;
--other actions

end loop;

62

Timeout and message passing
loop

select
accept Call(T : temperature) do

New_temp:=T;
end Call;

or
delay 10.0;

--action for timeout
end select;
--other actions

end loop;

X:=0

action for timeout

call?

New_temp:=T

X=>10X<10

63

Periodic Activity
task body T is

Interval : constant Duration := 5.0;
Next_Time : Time;

begin
Next_Time := Clock + Interval;
loop

Action;
delay until Next_Time;
Next_Time := Next_Time + Interval;

end loop;
end T;

64

Periodic Activity
task body TaskP is

T : constant Duration := 5.0;
Next_Time : Time;

begin
Next_Time := Clock + T;
loop

Action;
delay until Next_Time;
Next_Time := Next_Time + T;

end loop;
end TaskP;

x :=0

Action
x == T

x :=0

65

In TIMES, periodic tasks
can be easily modeled using
”Automata with tasks”

66

Automata with Tasks

task A

a?

Whenever a occurs,
task A is set to ready!

12

67

Periodic tasks

Task A

x==10

x:=0

Every 10 time units,
A is released one instance

