i Overall Stucture of Real Time Systems

Task 1

Task n

RTOS/Run-Time System

Hardware

i So far, we have talked about

= Programming Languages to implement the Tasks
= Run-TIme/Operating Systems to run the Tasks

i Question

How to schedule the Tasks such that given timing

constraints are satisfied?

* Overall Stucture of Real Time Systems

RTOS/Run-Time System

Hardware

* Today’s topic:

REAL TIME SCHEDULING (BASICS)

Task models

= Non periodic/Aperiodic (three parameters)
= A:arrving time
= C: computing time
= D: deadline (relative deadline)

i Constraints on task sets

= Timing constraints: deadline for each task,
= Relative to arriving time or absolute deadline
= Other constraints
= Precedence constraints
= Precedence graphs imposed e.g by input/output relation
= Resource constraints: mutual exclusion
= Resource access pl’OtOCO|S

Scheduling Problems

Given a set of tasks (ready queue)

1. Check if the set is schedulable
2. If yes, construct a schedule to meet all deadlines

3. If yes, construct an optimal schedule e.g. minimizing response
times

Tasks with the same arrival time

Assume a list of tasks
(A,C1, D1)(A,C2, D2) ...(A,Cn,Dn)
that arrive at the same time i.e. A

= How to find a feasible schedule?
= (OBS: there may be many feasible schedules)

Earlist Due Date first (EDD) [Jackson 1955]

= EDD: order tasks with nondecreasing deadlines.
= Simple form of EDF (earlist deadline first)

« Example: (1,10)(2,3)(3,5)
= Schedule: (2,3)(3,5)(1,10)

= FACT: EDD is optimal

= If EDF cann't find a feasible schedule for a task set, then no
other algorithm can, i.e. The task set is non schedulable.

i EDD: Schedulability test

= If C1+C2...4Ck <=Dk for all k<=n for the schedule
with nondescreasing ordering of deadlines, then the
task set is schedulable

= Response time for task i, Ri =C1+...+Ci

= Prove that EDD is optimal ?

EDD: Examples

= (2, 4)(1,5)(6,10) is schedulable:
= Feasible schedule: (2,4)(1,5)(6,10)
=« Note that (1,5)(2,4)(6,10) is also feasible

= (1,10)(3,3)(2,5) is schedulable
= The feasible schedule: (3,3)(2,5)(1,10)
= Why not shortest task first?

= (4,6)(1,10)(3,5) is not schedulable
= (3,5)(4,6)(1,10) is not feasible: 3+4 > 6!

EDD: optimality

= Assume that Ri is the finishing time (relative to the
release time) of task i. Note that R means response
time. Let Li = Ri-Di (the lateness for task i)

= FACT: EDD is optimal with respect to minimizing the
maximum lateness Lmax= MAXi(Li) (the general form
of optimality of EDD)

= Note that even a task set is non schedulable, EDD
may minimize the maximal lateness (minimizes loss
for soft tasks?)

EDD: Exercises

= Prove: EDD is optimal in finding a feasible schedule
= Program the schedulability test for EDD

Tasks with different arrival times

= Assume a list of tasks
= S=(A1,C1, D1)(A2,C2, D2) ...(An,Cn,Dn)

= Preemptive EDF [Horn 1974]:

= Whenever new tasks arrive, sort the ready queue according
to earlist deadlines first at the moment

= Run the first task of the queue if it is non empty

= FACT: Preemptive EDF is optimal [Dertouzos 1974] in
finding feasible schedules.

Preemptive EDF: Schedulability test

= At time Ai, if the list ordered according to EDF
(A'1,C'1,D'1)(A'2,C'2,D'2)...(A%,C'i,D")
satisfies C'1+...+Ck <=D'k for all k=1,2...i, then S
is schedulable at time Ai

= If Sis schedulable at all Ai’s, S is schedulable

i Preemptive EDF: Example

Consider (1, 5, 11)(2,1,3)(3, 4,8)
= Deadlines are relative to arrival times
= At1,(511)
= At 2, (1,3)(4,10)
= At 3, (4,8)(4,9)

i Preemptive EDF: Response time calculation

= Complicated
= But possible

i Preemptive EDF: Exercises

= Write a program to calculate the response times for
(non)preemptive EDF

i Preemptive EDF: Optimality

= Assume that Ri is the finishing time (relative to the
release time) of task i. Note that R means response
time. Let Li = Ri-Di (the lateness for task i)

= FACT: preemptive EDF is optimal with respect to
minimizing the maximum lateness Lmax= MAXi(Li)
(the general form of optimality of preemptive EDF)

20

Non preemptive EDF (on-line version)

= Alternative 1: Run a task until it's finished and then
sort the queue according to EDF

~+The algorithm may be run on-line, easy to implement, less
overhead (no more context switch than necessay)

= However it is not optimal, it may not find the feasible
schedule even it exists e.g (0,5,20)(1,1,3)(6,7,30): the
second task misses its deadline. Note that the feasible
schedule: (1,1,3)(0,5,20)(6,7,30)

i On-line non preemptive EDF: example

On-line EDF
T1 T Schedule 0 4
A 0 1
0 4 6.
C 4 2 ~ ‘
7 5 Missing the deadline 5!
Feasible ’—‘
Schedul 5 3 .
Assume that D is
absolute deadline
01 3
CPU idling

22

On-line non preemptive EDF: Optimal?

= If we only consider non-idle algorithms (CPU waiting
only no task to run), is EDF is optimal?

= Unfortunately no!

= Example
= T1= (0, 10, 100)
T2=(0,1,101)
T3=(1,4,4)
Run T1,T3,T2: the 3rd task will miss its deadline
Run T2,T3,T1: it is a feasible schedule

i Off-line Non preemptive EDF (complete search)

= Alternative 2: the decision should be made according
to all the parameters in the whole list of tasks

= Consider the example: (0,5,20)(1,1,3)(6,7,30)

24

Off-line Non preemptive EDF (NP-hard)

= Unfortunately, to find a feasible non-preemptive
schedule for task set with different arrival times is
not easy

= The worst case is to test all possible combinations of
n tasks (NP-hard, difficult for large n)

Practical methods: Bratley’s algorithm

= Search until a non-schedulable situation occur, then
backtrack [Bratley’s algorithm]

= simple and easy to implement but may not find a schedule
if n is too big (worst case)

26

Example (Bratley’s alg.)

T1|T2|T3 (T4
41]1 o o2
2 |1 |2 |2 Q
6 3
7 |5 |6 |4

Heuristic methods: Spring algorithm

= Similar to Bratley’s alg. But

= Use heuristic function H to guide the search until a feasible
schedule is found, otherwise backtrack: add a new node in
the search tree if the node has smallest value according to H
e.g H(task i) = Ci, Ai, Di etc [Spring alg.]

= However it may be difficult to find the right H

28

Example Heuristics

« H(TI) = A FIFO
= H(T) =Ci SIF
= H(Ti) = Di EDF

= H(Ti) = Di +w*Ci EDF+SJF

EDF: + and —

= Simple (+)

= Preemptive EDF, Optimal (+)

= No need for computing times (+)

= On-line and off-line (+)

= Preemptive schedule easy to find (+)

= But preemptive EDF is “difficult” to implement efficiently (-)
= Must use a list of “timers”, one per task

= Nonpreemptive (feasible) schedule difficult to find (-)
= But minimal context switch (+)
= And the only way to schedule non preemtive tasks

30

Other scheduling algorithms

= Classical ones
= HPF (priorities = degrees of importance of tasks)
= Weighted Round Robin

= LRT (Latest Release Time or reverse EDF)
= LST (Least Slack Time first)

Latest Release Time (reversed EDF)

= Release time = arrival time

= Idea: no advantage to completing any hard task sooner than
necessary. We may want to postpone the execution of hard
tasks e.g to improve response times for soft tasks.

= LRT: Schedule tasks from the latest deadline to earliest
deadline. Treat deadlines as "release times’ and arrival times as
‘Deadlines’. The latest 'Deadline’ first

= FACT: LRT is optimal in finding feasible schedule (for
preemptive tasks)

32

LRT: Example

T ’—‘ ’—‘

T1|{T2|T3 20 18 19
A [0 |11|12
C |4 |3 |4 ﬂ ’—‘
T
D |20]18]17 18 17 13 11

(D=absolute deadline)

8 N

17 13

Reverse time: we get the schedule:
T1(9,11)T2(11,13)T3(13,17)T2(17,18)T1(18,20)
OBS: from 0 to 9, soft tasks may be running! 33

LRT: + and -

= It needs Arrival times (-)

= It got to be an off-line algorithm (-)

= Only for preemptive tasks (-)

= It could optimize Response times for soft tasks (+)

34

Least slack time first (LST)

= Let Si = Di-Ci (the Slack time for task i)
= Siis the maximal (tolerable) time that task i can be delayed
= Idea: there is no point to complete a task earlier than
its deadline. Other (soft) tasks may be executed first
= Slack stealing

= LST: order the queue with nondecreasing slack times

= FACT: preemptive LST is optimal in finding feasible
schedules

LST: Example

» [

T1|T2|T3 0 4
A |0 |8

5=15-9-2=4 at 9
C (4 |3 |4
D |20]15|15| ™

8 9 S=15-13-2=0at 13
(D=absolute deadline) 5$=15-9-4=2 at 9

T3
17 9 13

Comment: a task should run until a Slack reaches 0 (to avoid context switch)
And if more than one 0-slack: nonschedulable

36

LST: + and —

= It needs Computing times (-)

= Only for preemptive tasks (-)

= Not easy to implement! (-)

= Butit can run on-line (+)

= and it may improve response times?

Independent tasks

= OBS! we have assumed that tasks are independent!

= meaning that we can compute them in arbitrary orderings
only if the orderings (schedules) are feasible

= All algorithms we have studied so far are applicable
only to independent tasks

38

Summary: scheduling independent tasks

Task types Same arrival times | Preepmtive Non preemptive
Different arrival times | Different arrival times

Algorithms EDD,Jackson55 EDF, Horn 74 Tree search Bratley'71
For O(n log n), optimal | O(n**2), Optimal O(n nt), optimal
Independent LST, LRT optimal Spring, Stankovic et al
tasks 87

O(n**2), Heuristic

Dependent tasks

= In practice, tasks are dependent. We often have
conditions or constraints e.g.
= A must be computed before B
= B must be computed before C and D

= Such conditions are called precedence constraints
which can be represented as Directed Acyclic Graphs
(DAG) known as Precedence graphs

= Such graphs are also known as “Task Graph”

40

Dependent tasks: Examples

= Input/output relation

= Some task is waiting for output of the others, data flow
diagrams

sampling output

= Synchronization

= Some task must be finished before the others e.g. It is
holding a shared resource

= Other dependence relations (e.g priority-orderings?)

41

Precedence graph: Example

= A must be computed before B
= B must be computed before C and D

42

Precedence graph: Examples

MEVRY

Not a precedence graph!

Conjunct and Disjunct join: We will only consider conjunct join!

43

AND/OR-precedence graphs

= AND-node, all incomming edges must be finished first

= OR-node: some of the incomming edges must be
finished

44

Scheduling under
Timing and Precedence constraints

= Feasible schedules should meet
= Timing constraints: deadlines and also
= Precedence constraints: Precedence graphs
= Overlapping area of blue and red is what we need
= Precedence constraints restrict the search area (Guiding!)

Schedules satisfying
Precedence constraints

chedules Satisfying
Timing constraints

45

Dependent tasks with the same arrival times

= Assume a list of tasks:
(A,C1,D1)(A,C2,D2) ...(A,Cn,Dn)
= In addition to the deadlines D1...Dn, the tasks are
also constrained by a DAG

= Solution: Latest Deadline First (LDF), Lawler 1973

= FACT: LDF is optimal (in finding feasible schedules)

Latest Deadline First (LDF)

= It constructs a schedule from tail to head using a queue:

1. Pick up a task from the current DAG, that

Has the latest deadline and
» Does not precede any other tasks (a leaf!)

2. Remove the selected task from the DAG and put it to the queue
= Repeat the two steps until the DAG contains no more tasks.

Then the queue is a potentilly feasible schedule. The last task

selected should be run first.

= Note that this is similar to LRT

47

LDF: Example

T1|T2|T3|T4|T5|T6

i LDF: Example

T1|T2|T3|T4|T5|T6
cCl1 |1 |1 |1 |1 |1
D |2 |5 |4 |3 |56

LDF: T6

49

i LDF: Example

T1|T2|T3|T4|T5|T6
cCl1 |1 |1 |1 |1 |1
D |2 |5 |4 |3 |5

LDF: T6

i LDF: Example

T1|T2|T3|T4|T5|T6
cCl1 |1 |1 |1 |1 |1
D |2 |5 |4 |3 |5 |6

LDF: T6,T5

i LDF: Example

T1|T2|T3|T4|T5|T6
1|1 |1 |1 |1
D |2 |5 |4 |3 |5 |6

@]

LDF: T6,T5

52

i LDF: Example

T1|T2|T3|T4|T5|T6
Cl1 1 |11 |1
D |2 |5 |4 |3 |5 |6

LDF: T6,T5,T3

i LDF: Example

T1|T2|T3|T4|T5|T6
Cl1 1 |11 |1
D |2 |5]4 |3 |5

LDF: T6,T5,T3,T4

54

LDF: Example

T1[T2]T3|T4|T5|T6 .
1

LDF: T6,T5,T3,T4,T2

LDF: Example

T1|T2|T3|T4|T5|T6

LDF: T6,T5,T3,T4,T2,T1

56

LDF: Example

T1|T2|T3|T4|T5|T6

LDF: T6,T5,T3,T4,T5,T1

Feasible Schedule

Earlest Deadline First (EDF)

= Itis a variant of LDF, but start with the root of the DAG:
1. Pick up a task with earlest deadline among all nodes that have no
fathers (the roots)
. Remove the selected task from the DAG and put it to the queue
= Repeat the two steps until the DAG contains no more tasks.
Then the queue is a feasible schedule.

= Unfortunately, EDF is not optimal (see the following example)

58

LDF: Example

T1|T2|T3|T4|T5|T6

LDF: Example

T1|T2|T3|T4|T5|T6

EDF: T1

60

i EDF: Example

T1|T2|T3|T4|T5|T6
T @ @
D |2 |5 (4|3 |5 |6 /

EDF: T1

61

i LDF: Example

T1[T2|T3|T4|T5|T6
cl1 1 11 @
D2 |5 |4 |3 |5 |6 /;

EDF: T1,T3

62

i LDF: Example

T1|T2|T3|T4|T5|T6

® 0 o

EDF: T1,T3,T2

63

i LDF: Example

T1|T2|T3|T4|T5|T6

EDF: T1,T3,T2,T4,T5,T6

64

i LDF: Example

T1|T2|T3|T4|T5|T6

T4 will miss its
Deadline: 3

/
/
LDF: T6,T5,T3,T4,T2,T1 EDF: T1,T3,T2,T4,T5,T6
Feasible Infeasible
65

$ Dependent tasks with different arrival times

= Assume a list of tasks:
S = (A1,C1,D1)(A2,C2,D2)...(A3,Cn,Dn)
= In addition to the deadlines D1...Dn, the tasks are
also constrained by a DAG

= Solution: The Complete Search guided by the DAG
= The Bratley’s algorithm
= The Spring algorithm

66

Better algorithms?

= Assume a list of tasks:
S = (A1,C1,D1)(A2,C2,D2)...(A3,Cn,Dn)
= In addition to the deadlines D1...Dn, the tasks are
also constrained by a DAG

= Idea:

= Transform the task set S (constrained by the DAG) to an
Independent task set S* such that

S is schedulable under DAG iff S* is schedulable

67

Idea: how to transform S to S*?

= Idea:

If Ti ->Tj is in the DAG i.e. Ti must be executed
before Tj, we replace the arrival time for Tj and
deadline for Ti with
= Aj* = max(Aj, Ai+Ci)
= Tj can not be computed before the completion of Ti
= Di*=min(Di,Dj-Cj)
= Ti should be finished early enough to meet the deadline for Tj

68

Algorithm (EDF*): transform S to S*

= Let arrival times and deadlines be ‘absolute times’

= Step 1: Transform the arrival times from roots to leafs
= For all initial (root) nodes Ti, let Ai* = Ai
= REPEAT:

= Pick up a node Tj whose fathers arrival times have been modified. If
no such node, stop. Otherwise:

= Let Aj* =max(Aj, max{Ai*+Ci: Ti->Tj})
= Step 2: Transform the deadlines from leafs to roots
= For all terminal (leafs) nodes Tj, let Dj* = Dj
= REPEAT:
» Pick up a node Ti all whose sons deadlines have been modified. If no
such node, stop. Otherwise:
« Let Di* =min(Di, min{Dj*-Cj: Ti->Tj})
= Step 3: use EDF to schedule S*=(A1*,C1,D1¥)...(An*.Cn,Dn*)

69

EDF*: optimality
FACT:

= S is schedulable under a DAG iff S* is schedulable
= EDF* is optimal in finding a feasible schedule

70

Example
0
T1[12[T3] T4[T5]T6
c |1 1 1 L 0

>|o
o~
o
ofs
w
«
oo
\

EDF*: Example(1)

T1|T2|T3|T4|T5|T6

c |1 11 1 L
D254 3|5]6
A [0 02 [1 |0

Step 1: Modifying the arrival times (top-down)

72

EDF*: Example(1)

T1|T2|T3|T4|T5|T6

(@]
—
-
—

—-
—

o
IN)
«
~
w
)
=)
\

A¥|0 |1 |1 |2 |2 |2

Step 1: Modifying the arrival times (top-down)

EDF*: Example(2)

T1|T2|T3|T4|T5|T6

A<lo |1 [1 |2 [2 |2 /

Step 2: Modifying the deadlines (bottom-up)

0
-
-
—

O
N
(%]
N
w
(5]
(<)}

74

EDF*: Example(2)

S*

T1|T2 |T3|T4 |T5|T6

D*|1 |2 |4 |3 |5 |6
A* |0

—
-
N
N
N

./

Step 2: Modifying the deadlines (bottom-up)

EDF*: Example(3)

S*

T1|T2 |T3|T4 |T5 |T6

D*|1 |2 |4 |3 |5 |6

Axlo |1 [1 |2 |2 |2 /

Step 3: now we don't need the DAG any more!

76

EDF*: Example(3)

S*

T1|T2 |T3|T4 |T5|T6

D*|1 |2 |4 |3 |5 |6

A*|0

—
-
N
N
N

Step 3: schedule S* using EDF

EDF*: Example(3)

S*

T1|T2 |T3|T4 |T5|T6

D*|1 |2 |4 |3 |5 |6

A*|0 |1 |1 |2 |2 |2

Finally we have a schedule: T1,T2,T4,T3,T5,T6

78

Summary: scheduling aperiodic tasks

Task types Same arrival times

Preepmtive
Different arrival times

Non preemptive
Different arrival times

Algorithms for | EDD,Jackson55
Independent | O(n log n), optimal

EDF, Horn 74
O(n**2), Optimal

Tree search Bratley'71
O(n n!), optimal

tasks LST, optimal Spring, Stankovic et al 87
LRT, optimal O(n**2) Heuristic

Algorithms for | LDF, Lawler 73 EDF* Spring

Dependent O(n**2) Chetto et al 90 As above

tasks

Optimal

O(n**2) optimal

