
1

1

Overall Stucture of Real Time Systems

... ...Task 1 Task n

RTOS/Run-Time System

Hardware

2

So far, we have talked about

Programming Languages to implement the Tasks
Run-TIme/Operating Systems to run the Tasks

3

Question

How to schedule the Tasks such that given timing
constraints are satisfied?

4

Overall Stucture of Real Time Systems

... ...Task 1 Task n

RTOS/Run-Time System

Hardware

Scheduler

5

Today’s topic:

REAL TIME SCHEDULING (BASICS)

6

Task models

Non periodic/Aperiodic (three parameters)
A: arrving time
C: computing time
D: deadline (relative deadline)

2

7

Constraints on task sets

Timing constraints: deadline for each task,
Relative to arriving time or absolute deadline

Other constraints
Precedence constraints

Precedence graphs imposed e.g by input/output relation

Resource constraints: mutual exclusion
Resource access protocols

8

Scheduling Problems

Given a set of tasks (ready queue)

1. Check if the set is schedulable
2. If yes, construct a schedule to meet all deadlines
3. If yes, construct an optimal schedule e.g. minimizing response

times

9

Tasks with the same arrival time

Assume a list of tasks
(A,C1, D1)(A,C2, D2) ...(A,Cn,Dn)

that arrive at the same time i.e. A

How to find a feasible schedule?
(OBS: there may be many feasible schedules)

10

Earlist Due Date first (EDD) [Jackson 1955]

EDD: order tasks with nondecreasing deadlines.
Simple form of EDF (earlist deadline first)

Example: (1,10)(2,3)(3,5)
Schedule: (2,3)(3,5)(1,10)

FACT: EDD is optimal
If EDF cann’t find a feasible schedule for a task set, then no
other algorithm can, i.e. The task set is non schedulable.

11

EDD: Schedulability test

If C1+C2...+Ck <=Dk for all k<=n for the schedule
with nondescreasing ordering of deadlines, then the
task set is schedulable
Response time for task i, Ri =C1+...+Ci

Prove that EDD is optimal ?

12

EDD: Examples

(2, 4)(1,5)(6,10) is schedulable:
Feasible schedule: (2,4)(1,5)(6,10)
Note that (1,5)(2,4)(6,10) is also feasible

(1,10)(3,3)(2,5) is schedulable
The feasible schedule: (3,3)(2,5)(1,10)
Why not shortest task first?

(4,6)(1,10)(3,5) is not schedulable
(3,5)(4,6)(1,10) is not feasible: 3+4 > 6!

3

13

EDD: optimality

Assume that Ri is the finishing time (relative to the
release time) of task i. Note that R means response
time. Let Li = Ri-Di (the lateness for task i)

FACT: EDD is optimal with respect to minimizing the
maximum lateness Lmax= MAXi(Li) (the general form
of optimality of EDD)

Note that even a task set is non schedulable, EDD
may minimize the maximal lateness (minimizes loss
for soft tasks?)

14

EDD: Exercises

Prove: EDD is optimal in finding a feasible schedule
Program the schedulability test for EDD

15

Tasks with different arrival times

Assume a list of tasks
S= (A1,C1, D1)(A2,C2, D2) ...(An,Cn,Dn)

Preemptive EDF [Horn 1974]:
Whenever new tasks arrive, sort the ready queue according
to earlist deadlines first at the moment
Run the first task of the queue if it is non empty

FACT: Preemptive EDF is optimal [Dertouzos 1974] in
finding feasible schedules.

16

Preemptive EDF: Schedulability test

At time Ai, if the list ordered according to EDF
(A’1,C’1,D’1)(A’2,C’2,D’2)...(A’i,C’i,D’i)

satisfies C’1+...+C’k <=D’k for all k=1,2...i, then S
is schedulable at time Ai

If S is schedulable at all Ai’s, S is schedulable

17

Preemptive EDF: Example

Consider (1, 5, 11)(2,1,3)(3, 4,8)
Deadlines are relative to arrival times

At 1, (5,11)
At 2, (1,3)(4,10)
At 3, (4,8)(4,9)

18

Preemptive EDF: Response time calculation

Complicated
But possible

4

19

Preemptive EDF: Exercises

Write a program to calculate the response times for
(non)preemptive EDF

20

Preemptive EDF: Optimality

Assume that Ri is the finishing time (relative to the
release time) of task i. Note that R means response
time. Let Li = Ri-Di (the lateness for task i)

FACT: preemptive EDF is optimal with respect to
minimizing the maximum lateness Lmax= MAXi(Li)
(the general form of optimality of preemptive EDF)

21

Non preemptive EDF (on-line version)

Alternative 1: Run a task until it’s finished and then
sort the queue according to EDF

+The algorithm may be run on-line, easy to implement, less
overhead (no more context switch than necessay)

- However it is not optimal, it may not find the feasible
schedule even it exists e.g (0,5,20)(1,1,3)(6,7,30): the
second task misses its deadline. Note that the feasible
schedule: (1,1,3)(0,5,20)(6,7,30)

22

On-line non preemptive EDF: example

57D

24C

10A

T2T1
On-line EDF
Schedule 4

4 6

Missing the deadline 5!

Feasible
Schedule

0

0

0

0

1 3

3 7
Assume that D is
absolute deadline

CPU idling

23

On-line non preemptive EDF: Optimal?

If we only consider non-idle algorithms (CPU waiting
only no task to run), is EDF is optimal?

Unfortunately no!

Example
T1= (0, 10, 100)
T2= (0,1,101)
T3= (1,4,4)
Run T1,T3,T2: the 3rd task will miss its deadline
Run T2,T3,T1: it is a feasible schedule

24

Off-line Non preemptive EDF (complete search)

Alternative 2: the decision should be made according
to all the parameters in the whole list of tasks

Consider the example: (0,5,20)(1,1,3)(6,7,30)

5

25

Off-line Non preemptive EDF (NP-hard)

Unfortunately, to find a feasible non-preemptive
schedule for task set with different arrival times is
not easy
The worst case is to test all possible combinations of
n tasks (NP-hard, difficult for large n)

26

Practical methods: Bratley’s algorithm

Search until a non-schedulable situation occur, then
backtrack [Bratley’s algorithm]

simple and easy to implement but may not find a schedule
if n is too big (worst case)

27

Example (Bratley’s alg.)

4657D

2212C

0114A

T4T3T2T1

T1

6

T2

7 T2

2

T1

6

T3

8

T3

4

T4

6

T4

2

T1

6

T2

T2

3

T3

5

T1

7

28

Heuristic methods: Spring algorithm

Similar to Bratley’s alg. But
Use heuristic function H to guide the search until a feasible
schedule is found, otherwise backtrack: add a new node in
the search tree if the node has smallest value according to H
e.g H(task i) = Ci, Ai, Di etc [Spring alg.]
However it may be difficult to find the right H

29

Example Heuristics

H(Ti) = Ai FIFO
H(Ti) = Ci SJF
H(Ti) = Di EDF
H(Ti) = Di +w*Ci EDF+SJF
...

30

EDF: + and –

Simple (+)
Preemptive EDF, Optimal (+)
No need for computing times (+)
On-line and off-line (+)
Preemptive schedule easy to find (+)
But preemptive EDF is ”difficult” to implement efficiently (-)

Must use a list of ”timers”, one per task

Nonpreemptive (feasible) schedule difficult to find (-)
But minimal context switch (+)
And the only way to schedule non preemtive tasks

6

31

Other scheduling algorithms

Classical ones
HPF (priorities = degrees of importance of tasks)
Weighted Round Robin

LRT (Latest Release Time or reverse EDF)
LST (Least Slack Time first)

32

Latest Release Time (reversed EDF)

Release time = arrival time
Idea: no advantage to completing any hard task sooner than
necessary. We may want to postpone the execution of hard
tasks e.g to improve response times for soft tasks.
LRT: Schedule tasks from the latest deadline to earliest
deadline. Treat deadlines as ’release times’ and arrival times as
’Deadlines’. The latest ’Deadline’ first
FACT: LRT is optimal in finding feasible schedule (for
preemptive tasks)

33

LRT: Example

171820D

434C

12110A

T3T2T1 20

18

17 13

13 11

11 9
T1

T2

T3

(D=absolute deadline)

Reverse time: we get the schedule:
T1(9,11)T2(11,13)T3(13,17)T2(17,18)T1(18,20)
OBS: from 0 to 9, soft tasks may be running!

18

17

34

LRT: + and -

It needs Arrival times (-)
It got to be an off-line algorithm (-)
Only for preemptive tasks (-)
It could optimize Response times for soft tasks (+)

35

Least slack time first (LST)

Let Si = Di-Ci (the Slack time for task i)
Si is the maximal (tolerable) time that task i can be delayed

Idea: there is no point to complete a task earlier than
its deadline. Other (soft) tasks may be executed first

Slack stealing

LST: order the queue with nondecreasing slack times

FACT: preemptive LST is optimal in finding feasible
schedules

36

LST: Example

151520D

434C

980A

T3T2T1 0

17 9

8 9

T1

T2

T3

(D=absolute deadline)

4

S=15-9-2=4 at 9

S=15-9-4=2 at 9

13

S=15-13-2=0 at 13

Comment: a task should run until a Slack reaches 0 (to avoid context switch)
And if more than one 0-slack: nonschedulable

7

37

LST: + and –

It needs Computing times (-)
Only for preemptive tasks (-)
Not easy to implement! (-)
But it can run on-line (+)
and it may improve response times?

38

Independent tasks

OBS! we have assumed that tasks are independent!
meaning that we can compute them in arbitrary orderings
only if the orderings (schedules) are feasible

All algorithms we have studied so far are applicable
only to independent tasks

39

Summary: scheduling independent tasks

Tree search Bratley’71
O(n n!), optimal
Spring, Stankovic et al
87
O(n**2), Heuristic

EDF, Horn 74
O(n**2), Optimal
LST, LRT optimal

EDD,Jackson55
O(n log n), optimal

Algorithms
For
Independent
tasks

Non preemptive
Different arrival times

Preepmtive
Different arrival times

Same arrival timesTask types

40

Dependent tasks

In practice, tasks are dependent. We often have
conditions or constraints e.g.

A must be computed before B
B must be computed before C and D

Such conditions are called precedence constraints
which can be represented as Directed Acyclic Graphs
(DAG) known as Precedence graphs

Such graphs are also known as ”Task Graph”

41

Dependent tasks: Examples

Input/output relation
Some task is waiting for output of the others, data flow
diagrams

Synchronization
Some task must be finished before the others e.g. It is
holding a shared resource

Other dependence relations (e.g priority-orderings?)

T1
T2

T3

T4

T5

T6

T7sampling
output

42

Precedence graph: Example

A must be computed before B
B must be computed before C and D

A

C

B

D

8

43

Precedence graph: Examples

A

B C

D

A

B C

D

Not a precedence graph!

A

B C

D

Conjunct and Disjunct join: We will only consider conjunct join!

E

E

FA

44

AND/OR-precedence graphs

AND-node, all incomming edges must be finished first
OR-node: some of the incomming edges must be
finished

45

Scheduling under
Timing and Precedence constraints

Feasible schedules should meet
Timing constraints: deadlines and also
Precedence constraints: Precedence graphs

Overlapping area of blue and red is what we need
Precedence constraints restrict the search area (Guiding!)

All possible schedules
(feasible/infeasible)

Schedules satisfying
Precedence constraints

Schedules Satisfying
Timing constraints

46

Dependent tasks with the same arrival times

Assume a list of tasks:
(A,C1,D1)(A,C2,D2) ...(A,Cn,Dn)

In addition to the deadlines D1...Dn, the tasks are
also constrained by a DAG

Solution: Latest Deadline First (LDF), Lawler 1973

FACT: LDF is optimal (in finding feasible schedules)

47

Latest Deadline First (LDF)

It constructs a schedule from tail to head using a queue:
1. Pick up a task from the current DAG, that

Has the latest deadline and
Does not precede any other tasks (a leaf!)

2. Remove the selected task from the DAG and put it to the queue

Repeat the two steps until the DAG contains no more tasks.
Then the queue is a potentilly feasible schedule. The last task
selected should be run first.

Note that this is similar to LRT

48

LDF: Example

653452D

111111C

T6T5T4T3T2T1

T1
2

T2
5

T3
4

T6
6

T4
3

T5
5

9

49

LDF: Example

653452D

111111C

T6T5T4T3T2T1 T1
2

T2
5

T3
4

T6
6

T4
3

T5
5

LDF: T6

50

LDF: Example

653452D

111111C

T6T5T4T3T2T1 T1
2

T2
5

T3
4

T4
3

T5
5

LDF: T6

51

LDF: Example

653452D

111111C

T6T5T4T3T2T1 T1
2

T2
5

T3
4

T4
3

T5
5

LDF: T6,T5

52

LDF: Example

653452D

111111C

T6T5T4T3T2T1 T1
2

T2
5

T3
4

T4
3

LDF: T6,T5

53

LDF: Example

653452D

111111C

T6T5T4T3T2T1 T1
2

T2
5

T4
3

LDF: T6,T5,T3

54

LDF: Example

653452D

111111C

T6T5T4T3T2T1 T1
2

T2
5

LDF: T6,T5,T3,T4

10

55

LDF: Example

653452D

111111C

T6T5T4T3T2T1 T1
2

LDF: T6,T5,T3,T4,T2

56

LDF: Example

653452D

111111C

T6T5T4T3T2T1

LDF: T6,T5,T3,T4,T2,T1

57

LDF: Example

653452D

111111C

T6T5T4T3T2T1

LDF: T6,T5,T3,T4,T5,T1
Feasible Schedule

58

Earlest Deadline First (EDF)

It is a variant of LDF, but start with the root of the DAG:
1. Pick up a task with earlest deadline among all nodes that have no

fathers (the roots)
2. Remove the selected task from the DAG and put it to the queue

Repeat the two steps until the DAG contains no more tasks.
Then the queue is a feasible schedule.

Unfortunately, EDF is not optimal (see the following example)

59

LDF: Example

653452D

111111C

T6T5T4T3T2T1

T1
2

T2
5

T3
4

T6
6

T4
3

T5
5

60

LDF: Example

653452D

111111C

T6T5T4T3T2T1

T1
2

T2
5

T3
4

T6
6

T4
3

T5
5

EDF: T1

11

61

EDF: Example

653452D

111111C

T6T5T4T3T2T1
T2
5

T3
4

T6
6

T4
3

T5
5

EDF: T1

62

LDF: Example

653452D

111111C

T6T5T4T3T2T1
T2
5

T6
6

T4
3

T5
5

EDF: T1,T3

63

LDF: Example

653452D

111111C

T6T5T4T3T2T1

T6
6

T4
3

T5
5

EDF: T1,T3,T2

64

LDF: Example

653452D

111111C

T6T5T4T3T2T1

EDF: T1,T3,T2,T4,T5,T6

65

LDF: Example

653452D

111111C

T6T5T4T3T2T1

EDF: T1,T3,T2,T4,T5,T6LDF: T6,T5,T3,T4,T2,T1
Feasible Infeasible

T4 will miss its
Deadline: 3

66

Dependent tasks with different arrival times

Assume a list of tasks:
S = (A1,C1,D1)(A2,C2,D2)...(A3,Cn,Dn)

In addition to the deadlines D1...Dn, the tasks are
also constrained by a DAG

Solution: The Complete Search guided by the DAG
The Bratley’s algorithm
The Spring algorithm

12

67

Better algorithms?

Assume a list of tasks:
S = (A1,C1,D1)(A2,C2,D2)...(A3,Cn,Dn)

In addition to the deadlines D1...Dn, the tasks are
also constrained by a DAG

Idea:
Transform the task set S (constrained by the DAG) to an
Independent task set S* such that
S is schedulable under DAG iff S* is schedulable

68

Idea: how to transform S to S*?

Idea:
If Ti ->Tj is in the DAG i.e. Ti must be executed
before Tj, we replace the arrival time for Tj and
deadline for Ti with

Aj* = max(Aj, Ai+Ci)
Tj can not be computed before the completion of Ti

Di*=min(Di,Dj-Cj)
Ti should be finished early enough to meet the deadline for Tj

69

Algorithm (EDF*): transform S to S*

Let arrival times and deadlines be ’absolute times’
Step 1: Transform the arrival times from roots to leafs

For all initial (root) nodes Ti, let Ai* = Ai
REPEAT:

Pick up a node Tj whose fathers arrival times have been modified. If
no such node, stop. Otherwise:
Let Aj* =max(Aj, max{Ai*+Ci: Ti->Tj})

Step 2: Transform the deadlines from leafs to roots
For all terminal (leafs) nodes Tj, let Dj* = Dj
REPEAT:

Pick up a node Ti all whose sons deadlines have been modified. If no
such node, stop. Otherwise:
Let Di* =min(Di, min{Dj*-Cj: Ti->Tj})

Step 3: use EDF to schedule S*=(A1*,C1,D1*)...(An*.Cn,Dn*)

70

EDF*: optimality

FACT:
S is schedulable under a DAG iff S* is schedulable
EDF* is optimal in finding a feasible schedule

71

Example

653452D

111111C

T6T5T4T3T2T1

T1
2

T2
5

T3
4

T6
6

T4
3

T5
5

012010A

0

1 0

2 1 0

72

EDF*: Example(1)

653452D

111111C

T6T5T4T3T2T1

T1
2

T2
5

T3
4

T6
6

T4
3

T5
5

012010A

0

1 1

2 2 2

Step 1: Modifying the arrival times (top-down)

13

73

EDF*: Example(1)

653452D

111111C

T6T5T4T3T2T1

T1
2

T2
5

T3
4

T6
6

T4
3

T5
5

222110A*

0

1 1

2 2 2

Step 1: Modifying the arrival times (top-down)

74

EDF*: Example(2)

653452D

111111C

T6T5T4T3T2T1

T1
2(1)

T2
5(2)

T3
4(4)

T6
6(6)

T4
3(3)

T5
5(5)

222110A*

Step 2: Modifying the deadlines (bottom-up)

75

EDF*: Example(2)

653421D*

111111C

T6T5T4T3T2T1

T1
2(1)

T2
5(2)

T3
4(4)

T6
6(6)

T4
3(3)

T5
5(5)

222110A*

Step 2: Modifying the deadlines (bottom-up)

S*

76

EDF*: Example(3)

653421D*

111111C

T6T5T4T3T2T1

T1
2(1)

T2
5(2)

T3
4(4)

T6
6(6)

T4
3(3)

T5
5(5)

222110A*

Step 3: now we don’t need the DAG any more!

S*

77

EDF*: Example(3)

653421D*

111111C

T6T5T4T3T2T1

222110A*

Step 3: schedule S* using EDF

S*

78

EDF*: Example(3)

653421D*

111111C

T6T5T4T3T2T1

222110A*

Finally we have a schedule: T1,T2,T4,T3,T5,T6

S*

14

79

Summary: scheduling aperiodic tasks

Spring
As above

EDF*
Chetto et al 90
O(n**2) optimal

LDF, Lawler 73
O(n**2)
Optimal

Algorithms for
Dependent
tasks

Tree search Bratley’71
O(n n!), optimal
Spring, Stankovic et al 87
O(n**2) Heuristic

EDF, Horn 74
O(n**2), Optimal
LST, optimal
LRT, optimal

EDD,Jackson55
O(n log n), optimal

Algorithms for
Independent
tasks

Non preemptive
Different arrival times

Preepmtive
Different arrival times

Same arrival timesTask types

