Resource Access Protocols

The Blocking Problem

= Now we remove the assumption that tasks are
independent, sharing no resources, not interacting
= The main problem: priority inversion
= High priority tasks are blocked by lower priority tasks
= The main sources of priority inversion:
= Non preemptable sections (we mentioned this earlier)
= Sharing resources
= Synchronization and mutual exclusion

= The response time calculation should be modified

Contents

= Priority inversion phenomenon
= Resource access protocols
= Highest Priority Inheritance
= Non preemption protocol (NPP)
= Immedate Priority Inheritance
= Highest Locker’s priority Protocol (HLP)
Ada95 (protected object) and POSIX mutexes
= Basic Priority Inheritance Protocol (BIP)

The simpliest form of priority inversion

Task 1 Task 9
- Shared Resource R | -

O = O
Using R “1.Using R
v(s) Resource access v(s)

By semaphore

wa e S

Task 2

= POSIX (RT OS standard) mutexes Task 1 7l:_:|:—» |:| computing
= Priority Ceiling Protocols (PCP) D sing R
usii
= Blocking and response time analysis Tasko | [P(s) (s) Bl biockes
3 4
Un-bounded priority inversion Solutions

Task 1 Task 9 Task 2
- Shared Resource R -
P(S) T 6}
UsingR & .| usingR
Ve Resource access vs)
by semaphore

Task 9

|:| computing

L [ using R

PS) V&) B biocked

= Tasks are ‘forced’ to follow certain rules when locking
and unlocking semaphores (requesting and releasing
resources)

= The rules are called 'Resource access protocols’
= NPP, BIP, HLP, PCP

= A common rule of these protocols: tasks must
release all semaphores before the next instance;
when a task finishes executing, it must have released
all semaphores




Non Preemption Protocol (NPP)

= Modify P(S) so that the caller is assigned
the highest priority if it succeeds in locking S
= Highest priority=non preemtion!

= Modify V(S) so that the caller is assigned its own
priority back when it releases S

This is the simplest method to avoid Priority Inversion!
= The equation for response time calculation:
Ri= Bi + Ci + % . pp(j) [RI/TI G

= Where Bi is the longest time that task i can be blocked by
lower-priority tasks with non preemptive section

Exercise

(1)Show the run-time schedules with(out) NPP
(2) Calculate the worst case response times
(note that R1=85)

Cc |T Blocking
T1 |20 |80 |10
T2 |30 [110 |0

T3 |70 |200 |65

i NPP: + and —

= Simple and easy to implement (+), how?
= Deadlock free (++), why?
= Number of blocking = 1 (+), Why?

= Allow low-priority tasks to block high-priority tasks
including those that have no sharing resources (-)

Missinig all deadlines!

P(s) V(s)

Basic Priority Inheritance Protocol (BIP)

= supported in RT POSIX

= Idea:
= A gets semaphore S
= B with higher priority tries to lock S, and blocked by S
= B transfers its priority to A (so A is resumed and run with
B’s priority)
= Run time behaviour: whenever a lower-
priotity task blocks a higher priority task, it
inherits the priority of the blocked task

i Example
V(S1)

P(s1) P(s2) V(S2)
H Task 1
P(S1)
V(S1)
M —‘ Task 2
P(S2)
r’i V(S2)
L - Task 3
Il Blocked
[] Using S1
Running with pr H [ using S2

i Property/Problem 1: potential deadlock

P(S2)
H |p(51) Task 1
P(S1)
L e i Deadlock! Task 2

Task 2: ... P(S2) ... P(S1)...
Task 1: ... P(S1) ... P(S2)...




Property/Problem 2: chained blocking
(H needs M resources may be blocked M times)

SCB to implement BIP

V(S1)
P(s1) P(S2) V(S2) «  Semaphores Control Block for PIP
I
H Task 1
P(S1) visD)
M = B e W o
P(S2)
V(S2)
L B I Task 3
Holder
Task 1 experiences B Blocked
Chained-blocking [] Using S1
by P(S1) and P(S2)! [ Using S2
13 14
Standard P-operation (without BIP) P-operation with BIP
= P(sch): = P(scb):
Disable-interrupt; Disable-interrupt;
If sch.counter>0 then {scb.counter - -1; If sch.counter>0 then {scb.counter - -1;
else sch.holder:= current-task
{save-context( ); add(current-task.sem-list,scb)}
current-task.state := blocked; else .
) . {save-context( );
m_sert(current-task, sch.queue); current-task.state := blocked;
dispatch(); insert(current-task, sch.queue);
load-context() } /*queue sorted according to task priority? */
Enable-interrupt save(scb.holder.priotiry);
scb.holder.priority := current-task.priority;
dispatch();
load-context() }
Enable-interrupt
15 16
Standard V-operation (without BIP) V-operation with BIP
= V(scb): . V(Sf:b): )
Disable-interrupt; Sljfrz:-tmttaeslug:iority := "original/prvious priority”
If not-empty(scb.queue) then 1 ighest-prioriy of tasks blocked by smaphors ownd by current-task'/
{ next-to-run := get-ﬁrst(scb.queue)' /* check all blocked tasks waiting for sem in current-tcb.sem-list*/
t-to- tate = dy: ! If not-empty(scb.queue) then
_nex o-run.state := ready; { next-to-run := get-first(scb.queue);
insert(next-to-run, ready-queue); /*queue sorted according to task priority ? */
save-context(); next-to-run.state := ready;
schedule(); /* dispatch invoked*/ scb.holder := next-to-run;
load-context() } add(next-to-run.sem-list, scb);
else sch.counter ++1: insert(next-to-run, ready-queue);
Enable-int . " ! save-context();
nable-interrup schedule(); /* dispatch invoked*/
load-context() }
else sch.counter ++1;
Enable-interrupt
17 18




Properties of BIP: + and -

= Bounded Priority inversion (+)

= Reasonable Run-time performance (+)

= Require no info on resource usage of tasks (+)

= potential deadlock, the same reason as in OS (-)

= It may cause chain-blocking (a task needs M
semaphores may be blocked M times!): why,
example? (-)

= Complicated to compute the maximal blocking times
and response times (-)

Immediate Priority Inheritance:
=Highest Locker’s Priority Protocol (HLP)
=Priority Protect Protocol (PPP)

= Adopted in Ada95 (protected object), POSIX mutexes

= Idea: define the ceiling C(S) of a semaphore S to be

the highest priority of all tasks that use S during
execution. Note that C(S) can be calculated statically
(off-line).

20

Run-time behaviour of HLP

= Whenever a task succeeds in holding a semaphor S,
its priority is changed dynamically to the maximum of
its current priority and C(S).

= When it finishes with S, it sets its priority back to
what it was before

i Example

priority use C(S1)=M
Task 1 H S3 C(s2)=L
Taskz  |M s1,s C(S3)=H
C(S)=M
Task 3 L S1,S2
Task 4 Lower S2, S

22

Example: Highest Locker’s Priority Protocol

M and Lower share S

D computing
( [ mnon W N H B plocked
L New release D using resource
EH | el i
F == P(S)  V(S)
l P(S V(S l
[EE N |

i Property 1: Deadlock free (HLP)

released P(S2) T(Sl)

I ‘ Task 1

P(S1) Pl(SZ)

‘ ‘ T Task 2

Once task 2 gets S1, it runs with pri H, task 1 will
be blocked (no chance to get S2 before task 2)

24




Property 2:
Tasks will be blocked at most once
Sy VIS1IV(S2)

Ready and blocked P(S2) i /

Ready and blocked P(S2) V(S2)

P(S1)  V(S1)

HLP: Response Time Analysis

= Let

= CS(k,S) denote the computing time for the critical section
that task k uses semaphore S.

= Use(S) is the set of tasks using S

= Then the maximal blocking time B and response time
Ri for task i is as follows:

« B =max{CS(k,S)| i,k in Use(S), pr(k)<pr(i)<=C(S)}

= Ri=B+Ci+ X pp(j) [RITIFG

25 26
Implementation of HLP SCB to implement HLP
= Calculate the ceiling for all semaphores = Semaphores Control Block for HLP
= Modify SCB
= Modify P and V-operations
Ceiling
27 28
P-operation with HLP V-operation with HLP
= P(sch): = V(scb):
Disable-interrupt; Disable-interrupt;
If scb.counter>0 then current-task.priority := get(previous-priority)
{ scb.counter - -1; If not-empty(scb.queue) then
save(current-task.priority); next-to-run := get-first(scb.queue);
I next-to-run.state := ready;
current-task.priority := C(scb) } next-to-run. priority := C(scb);
else insert(next-to-run, ready-queue);
{save-context(); save-context();
current-task.state := blocked schedule(); /* dispatch invoked*/
insert(current-task, scb.queue); load-context();
dispatch(); end then
load-context() } else scb.counter ++1;
Enable-interrupt end else
Enable-interrupt
29 30




Properties of HLP: + and -

= Bounded priority inversion

= Deadlock free (+), Why?

= Number of blocking = 1 (+), Why?

= HLP is a simplified version of PCP (priority ceiling
protocol, with the same worst case blocking time as
PCP (+)

= The extreme case of HLP=NPP (-)

= E.g when the highest priority task uses all semaphores (even
only once in its whole life), the lower priority tasks will
inherit the highest priority

Summary

NPP | BIP HLP

Bounded Priority Inversion yes yes yes
Avoid deadlock yes no yes
Avoid Un-necessary blocking no yes yes/no

Blocking time calculalation Easy |hard |easy

32

Priority Ceiling Protocol (combining HLP and BIP)

= Each semaphore S has a Ceiling C(S) = the priority
of the highest priority task that can lock S

= Run-time behaviour:

= Assume that S is the semaphore with highest ceiling locked
by other tasks currently

= If a task A wants to lock a semaphore (not necessarily S), it
must have a strictly higher priority than the ceilings of all
semaphors locked by other tasks, i.e. P(A) > C(S).
Otherwise A is blocked, and it transmitts its priority(+¢) to
the task currently holding S

PCP: Response Time Analysis
(precisely the same as HLP)

= Let
= CS(k,S) denote the computing time for the critical section
that task k uses semaphore S.
= Use(S) is the set of tasks using S

= Then the maximal blocking time B and response time
Ri for task i is as follows:

= B=max{CS(k,S)| i,k in Use(S), pr(k)<pr(i)<=C(S)}

= Ri=B+Ci+ X . ppgj) [RITIFG

34

Example: PCP
C D T Priority
Task A |5 10 50 H

Task B | 250 500 500 M
Task C | 1000 3000 3000 L

Al .P(S1)..V(S1)... Thus:
B: ...P(S2)...P(S3)...V(S3)...\(S2)... C(S1)=H
C: ...P(S3)...P(S2)...V(S2)...V(S3) C(S2)=C(S3)=M

Example: PCP
C D T Priority | A: ...P(S1)...V(S1)...
TaskA |5 10 50 H B: ...P(S2)...P(S3)...V(S3)...V(S2)...

Task B | 250 500 500 M
Task C | 1000 3000 3000 L

C: ...P(S3)...P(S2)...V(S2)...V(S3)

P(S1) V(S1)
C(s1)=H
C(S2)=C(S3)=M | ‘

Barives P52 mockedonss | OS2 FSY) V(SHV(S2)
N
P(S3) P(S2) V(S2)V(S3)

Run with its own priority

Run with B’s priority (+¢) 3




Exercise: implementation of PCP

= Implement P,V-operations that follow PCP

Properties of PCP: + and -

= Bounded priority inversion (+)
= Deadlock free (+)
= Number of blocking = 1 (+)

= Better response times for high priority tasks (+)
= Avoid un-necessary blocking

= Not easy to implement (-)

38

Summary

NPP BIP HLP PCP
Bounded Priority Inversion yes yes yes yes
Avoid deadlock yes no yes yes
Avoid Un-necessary blocking no yes yes/no | yes
Blocking time calculalation easy |hard |easy |easy
Number of blocking 1 >1 1 1
Implementation easy |easy |easy |hard




