
1

1

Resource Access Protocols

2

The Blocking Problem

Now we remove the assumption that tasks are
independent, sharing no resources, not interacting
The main problem: priority inversion

High priority tasks are blocked by lower priority tasks

The main sources of priority inversion:
Non preemptable sections (we mentioned this earlier)
Sharing resources
Synchronization and mutual exclusion

The response time calculation should be modified

3

Contents

Priority inversion phenomenon
Resource access protocols

Highest Priority Inheritance
Non preemption protocol (NPP)

Immedate Priority Inheritance
Highest Locker’s priority Protocol (HLP)

Ada95 (protected object) and POSIX mutexes

Basic Priority Inheritance Protocol (BIP)
POSIX (RT OS standard) mutexes

Priority Ceiling Protocols (PCP)

Blocking and response time analysis

4

The simpliest form of priority inversion

Task 1
-
-
P(S)
Using R
V(S)
-
-

Task 9
-
-
P(S)
Using R
V(S)
-
-

Shared Resource R

Resource access
By semaphore

P(S)

P(S)

V(S)

Task 1

Task 9

computing

using R

blocked

5

Un-bounded priority inversion

Task 1
-
-
P(S)
Using R
V(S)
-
-

Task 9
-
-
P(S)
Using R
V(S)
-
-

Shared Resource R

Resource access
by semaphore

P(S)

P(S)

V(S)

Task 1

Task 9

computing

using R

blocked

Task 2
-
-
-
-

V(S)

Task 2 ...

...

6

Solutions

Tasks are ’forced’ to follow certain rules when locking
and unlocking semaphores (requesting and releasing
resources)
The rules are called ’Resource access protocols’

NPP, BIP, HLP, PCP

A common rule of these protocols: tasks must
release all semaphores before the next instance;
when a task finishes executing, it must have released
all semaphores

2

7

Non Preemption Protocol (NPP)

Modify P(S) so that the caller is assigned
the highest priority if it succeeds in locking S

Highest priority=non preemtion!
Modify V(S) so that the caller is assigned its own
priority back when it releases S

This is the simplest method to avoid Priority Inversion!
The equation for response time calculation:

Ri= Bi + Ci + ∑j ∈ HP(i) Ri/Tj*Cj
Where Bi is the longest time that task i can be blocked by
lower-priority tasks with non preemptive section

8

Exercise

6520070T3

011030T2

108020T1

BlockingTC

(1)Show the run-time schedules with(out) NPP
(2) Calculate the worst case response times

(note that R1=85)

9

NPP: + and –

Simple and easy to implement (+), how?
Deadlock free (++), why?
Number of blocking = 1 (+), Why?
Allow low-priority tasks to block high-priority tasks
including those that have no sharing resources (-)

Missinig all deadlines!

P(s) V(s)

10

Basic Priority Inheritance Protocol (BIP)

supported in RT POSIX
Idea:

A gets semaphore S
B with higher priority tries to lock S, and blocked by S
B transfers its priority to A (so A is resumed and run with
B’s priority)

Run time behaviour: whenever a lower-
priotity task blocks a higher priority task, it
inherits the priority of the blocked task

11

Example

H

M

L

P(S1) P(S2)
V(S1)
V(S2)

P(S2)

P(S1)
V(S1)

V(S2)

Task 1

Task 2

Task 3

Blocked

Using S1

Using S2Running with pr H

12

Property/Problem 1: potential deadlock

P(S2)

P(S1)H

L

Task 1

Task 2

P(S2)

P(S1)

Deadlock!

Task 2: ... P(S2) ... P(S1)...
Task 1: ... P(S1) ... P(S2)...

3

13

Property/Problem 2: chained blocking
(H needs M resources may be blocked M times)

H

M

L

P(S1) P(S2)
V(S1)
V(S2)

P(S2)

P(S1)
V(S1)

V(S2)

Task 1

Task 2

Task 3

Task 1 experiences
Chained-blocking
by P(S1) and P(S2)!

Blocked

Using S1

Using S2

14

SCB to implement BIP

Semaphores Control Block for PIP

Holder

Pointer to next SCB

queue

counter

15

Standard P-operation (without BIP)

P(scb):
Disable-interrupt;
If scb.counter>0 then {scb.counter - -1;
else

{save-context();
current-task.state := blocked;
insert(current-task, scb.queue);
dispatch();
load-context() }

Enable-interrupt

16

P-operation with BIP

P(scb):
Disable-interrupt;
If scb.counter>0 then {scb.counter - -1;

scb.holder:= current-task
add(current-task.sem-list,scb)}

else
{save-context();
current-task.state := blocked;
insert(current-task, scb.queue);

/*queue sorted according to task priority? */
save(scb.holder.priotiry);
scb.holder.priority := current-task.priority;
dispatch();
load-context() }

Enable-interrupt

17

Standard V-operation (without BIP)

V(scb):
Disable-interrupt;

If not-empty(scb.queue) then
{ next-to-run := get-first(scb.queue);

next-to-run.state := ready;
insert(next-to-run, ready-queue);
save-context();
schedule(); /* dispatch invoked*/
load-context() }

else scb.counter ++1;
Enable-interrupt

18

V-operation with BIP

V(scb):
Disable-interrupt;
current-task.priority := ”original/prvious priority”

/* highest-priority of tasks blocked by smaphors ownd by current-task*/
/* check all blocked tasks waiting for sem in current-tcb.sem-list*/

If not-empty(scb.queue) then
{ next-to-run := get-first(scb.queue);

/*queue sorted according to task priority ? */
next-to-run.state := ready;
scb.holder := next-to-run;

add(next-to-run.sem-list, scb);
insert(next-to-run, ready-queue);
save-context();
schedule(); /* dispatch invoked*/
load-context() }

else scb.counter ++1;
Enable-interrupt

4

19

Properties of BIP: + and -

Bounded Priority inversion (+)
Reasonable Run-time performance (+)
Require no info on resource usage of tasks (+)
potential deadlock, the same reason as in OS (-)
It may cause chain-blocking (a task needs M
semaphores may be blocked M times!): why,
example? (-)
Complicated to compute the maximal blocking times
and response times (-)

20

Immediate Priority Inheritance:
=Highest Locker’s Priority Protocol (HLP)
=Priority Protect Protocol (PPP)

Adopted in Ada95 (protected object), POSIX mutexes

Idea: define the ceiling C(S) of a semaphore S to be
the highest priority of all tasks that use S during
execution. Note that C(S) can be calculated statically
(off-line).

21

Run-time behaviour of HLP

Whenever a task succeeds in holding a semaphor S,
its priority is changed dynamically to the maximum of
its current priority and C(S).
When it finishes with S, it sets its priority back to
what it was before

22

Example

S2, SLowerTask 4

S1, S2LTask 3

S1, SMTask 2

S3HTask 1

usepriority C(S1)=M
C(S2)=L
C(S3)=H
C(S)=M

23

Example: Highest Locker’s Priority Protocol

New release

V(S)P(S)

computing

blocked

using resource

H

M

L

Lower

M and Lower share S

P(S) V(S)

24

Property 1: Deadlock free (HLP)

P(S1) P(S2)

released

H

L

Task 1

Task 2

P(S2) P(S1)

Once task 2 gets S1, it runs with pri H, task 1 will
be blocked (no chance to get S2 before task 2)

5

25

Property 2:
Tasks will be blocked at most once

Ready and blocked

Ready and blocked

P(S1) V(S1)

P(S2)
P(S1)

P(S2) V(S2)

V(S1)V(S2)

26

HLP: Response Time Analysis

Let
CS(k,S) denote the computing time for the critical section
that task k uses semaphore S.
Use(S) is the set of tasks using S

Then the maximal blocking time B and response time
Ri for task i is as follows:

B =max{CS(k,S)| i,k in Use(S), pr(k)<pr(i)<=C(S)}

Ri= B + Ci + ∑j ∈ HP(i) Ri/Tj*Cj

27

Implementation of HLP

Calculate the ceiling for all semaphores
Modify SCB
Modify P and V-operations

28

SCB to implement HLP

Semaphores Control Block for HLP

Ceiling

Pointer to next SCB

queue

counter

29

P-operation with HLP

P(scb):
Disable-interrupt;
If scb.counter>0 then

{ scb.counter - -1;
save(current-task.priority);
current-task.priority := C(scb) }

else
{save-context();
current-task.state := blocked
insert(current-task, scb.queue);
dispatch();
load-context() }

Enable-interrupt

30

V-operation with HLP

V(scb):
Disable-interrupt;
current-task.priority := get(previous-priority)
If not-empty(scb.queue) then

next-to-run := get-first(scb.queue);
next-to-run.state := ready;
next-to-run.priority := C(scb);
insert(next-to-run, ready-queue);
save-context();
schedule(); /* dispatch invoked*/
load-context();

end then
else scb.counter ++1;
end else
Enable-interrupt

6

31

Properties of HLP: + and -

Bounded priority inversion
Deadlock free (+), Why?
Number of blocking = 1 (+), Why?
HLP is a simplified version of PCP (priority ceiling
protocol, with the same worst case blocking time as
PCP (+)
The extreme case of HLP=NPP (-)

E.g when the highest priority task uses all semaphores (even
only once in its whole life), the lower priority tasks will
inherit the highest priority

32

Summary

easyhardEasyBlocking time calculalation

yes/noyesnoAvoid Un-necessary blocking

yesnoyesAvoid deadlock

yesyesyesBounded Priority Inversion

HLPBIPNPP

33

Priority Ceiling Protocol (combining HLP and BIP)

Each semaphore S has a Ceiling C(S) = the priority
of the highest priority task that can lock S
Run-time behaviour:

Assume that S is the semaphore with highest ceiling locked
by other tasks currently
If a task A wants to lock a semaphore (not necessarily S), it
must have a strictly higher priority than the ceilings of all
semaphors locked by other tasks, i.e. P(A) > C(S).
Otherwise A is blocked, and it transmitts its priority(+ε) to
the task currently holding S

34

PCP: Response Time Analysis
(precisely the same as HLP)

Let
CS(k,S) denote the computing time for the critical section
that task k uses semaphore S.
Use(S) is the set of tasks using S

Then the maximal blocking time B and response time
Ri for task i is as follows:

B=max{CS(k,S)| i,k in Use(S), pr(k)<pr(i)<=C(S)}

Ri= B + Ci + ∑j ∈ HP(i) Ri/Tj*Cj

35

Example: PCP

L300030001000Task C

M500500250Task B

H50105Task A

PriorityTDC

A: ...P(S1)...V(S1)...

B: ...P(S2)...P(S3)...V(S3)...V(S2)...

C: ...P(S3)...P(S2)...V(S2)...V(S3)

Thus:
C(S1)=H
C(S2)=C(S3)=M

36

Example: PCP

L300030001000Task C

M500500250Task B

H50105Task A

PriorityTDC A: ...P(S1)...V(S1)...
B: ...P(S2)...P(S3)...V(S3)...V(S2)...
C: ...P(S3)...P(S2)...V(S2)...V(S3)

C(S1)=H
C(S2)=C(S3)=M

P(S3)

Run with B’s priority (+ε)

B arrives Blocked on S3P(S2)

P(S1) V(S1)

Get S2 P(S3) V(S3)V(S2)

P(S2) V(S2)V(S3)

Run with its own priority

7

37

Exercise: implementation of PCP

Implement P,V-operations that follow PCP

38

Properties of PCP: + and -

Bounded priority inversion (+)
Deadlock free (+)
Number of blocking = 1 (+)
Better response times for high priority tasks (+)

Avoid un-necessary blocking

Not easy to implement (-)

39

Summary

easy easyhardeasyBlocking time calculalation

yes/no yesyesnoAvoid Un-necessary blocking

yes yesnoyesAvoid deadlock

yes yesyesyesBounded Priority Inversion

HLP PCPBIPNPP

11>11Number of blocking

hardeasyeasyeasyImplementation

