Real Time Programming

Part 2: Real time facilities

Real Time Programming: we need support for

« Concurrency (Ada tasking)

» Communication & synchronization (Ada Rendezvous)

» Consistency in data sharing (Ada protected data type)

» Real time facilities (Ada real time packages and delay statements)
— accessing system time so that the passage of time can be measured
— delaying processes until some future time
— Timeouts: waiting for or running some action for a given time period

System Time

A timer circuit programmed to interrupt the processor at fixed rate.
— To approximate the universial time
— For distributed systems, we need clock synchronization

Each time interrupt is called a system tick (time resolution):

* Normally, the tick can vary 1-50ms, even microseconds in RTOS
- LegOS: 1ms
— Linux 2.4, 10ms (100HZ), Linux 2.6, 1ms (1000HZ)

« The tick may (not necessarily) be selected by the user
+ All time parameters for tasks should be the multiple of the tick
* Note: the tick may be chosen according to the given task parameters
« System time = 32 bits
+ One tick = 1ms: your system can run 50 days
+ One tick = 20ms: your system can run 1000 days = 2.5 years
+ One tick = 50ms: your system can run 2500 days= 7 years
* In Ada95, it is required that the system time should last at least 50 years

Real-Time Support in Ada

» Two pre-defined packages to access the system clock
— Ada.Calendar and Ada.Real_Rime
— Both based on the same hardware clock
* There are two delay-statements
— Delay time_expression (in seconds)
— Delay until time_expression
* The delay statements can be used together with select
to program timeouts, timed entry etc.

Package calendar in Ada: specification

package Ada.Calendar is

type Time is private;

--- time is pre-defined based on the system clock
subtype Year Number is Integer range 1901 .. 2099;
subtype Month Number is Integer range 1 .. 12;
subtype Day_ Number is Integer range 1 .. 31;
subtype Day Duration is Duration range 0.0 .. 86 _400.0;

--- Duration is pre-defined type (length of interval,

--- expressed in sec’s) declared in the package: Standard
function Cl

ck return Time;

function Year (Date : Time) return Year Number;
function Month (Date : Time) return Month Number;
function Day (Pate : Time) return Day Number;
function Seconds (Date : Time) return Day Duration;
procedure Split (Date : in Time;

Year : out Year Number;

Month : out Month Number;

Day : out Day Number;

Seconds : out Day_Duration);

Package calendar in Ada: specification (ctn.)

function Time Of (Year : Year_ Number;
Month : Month_ Number;
Day : Day_Number;
Seconds : Day_Duration 0.0)
return Time;
function "+" (Left : Time; Right : Duration) return Time;
function "+" (Left : Duration; Right : Time) return Time;

function "-"
function

(

(

(Left : Time; Right : Duration) return Time;

(Left : Time; Right : Time) return Duration;
function "<" (Left, Right : Time) return Boolean;

(

(

(

function "<="(Left, Right : Time) return Boolean;
function ">" (Left, Right : Time) return Boolean;
function ">="(Left, Right : Time)
Time_Error : exception;
private
-- not specified by the language
-- implementation dependent
end Ada.Calendar;

return Boolean;

Package Real_Time in Ada: specification

package Ada.Real Time is

type Time is private;
Time First : constant Time;
Time_ Last : constant Time;
Time_Unit constant := implementation-defined-real-number;

n is private;

--- as Duration, a Time_Span value M representing

the length of an interval, corresponding to
the real time duration M*Time Unit.

Time_ Span_First : constant Time_ Span;
Time_Span_Last : constant Time_ Span;
Time_Span_Zero : constant Time Span;
Time_Span_Unit : constant Time_ Span;
Tick : constant Time_Span;
function Clock return Time;
function "+" (Left : Time; Right : Time_Span) return Time;
function "+" (Left : Time_Span; Right : Time) return Time;
function "-" (Left : Time; Right : Time_Span) return Time;
function (Left : Time; Right : Time) return Time Span;
function "<" (Left, Right : Time) return Boolean;
function "<="(Left, Right : Time) return Boolean;
function ">" (Left, Right : Time) return Boolean;
function ">="(Left, Right : Time) return Boolean;

Package Real_Time in Ada: specification (cnt.)

function "+" (Left, Right : Time_Span) return Time_Span;
function (Left, Right : Time_Span) return Time_Span;
function (Right : Time_Span) return Time_Span;

function "*" (Left : Time_Span; Right : Integer) return Time_Span;
function (Left : Integer; Right : Time_Span) return Time_Span;
function (Left, Right : Time_Span) return Integer;

function (Left : Time_Span; Right : Integer) return Time_Span;

function "abs" (Right : Time_Span) return Time_Span;
function "<" (Left, Right : Time_Span) return Boolean;
function (Left, Right : Time_Span) return Boolean;
function ">" (Left, Right : Time_Span) return Boolean;
function ">="(Left, Right : Time_Span) return Boolean;
function To_Duration (TS ime_Span) return Duration;
function To_Time Span (D : Duration) return Time Span;
function Nanoseconds (NS : Integer) return Time_Span;
function Microseconds (US : Integer) return Time_Spa
function Milliseconds (MS : Integer) return Time_Span;
type Seconds_Count is range implementation-defined;
procedure Split (T : in Time; SC : out Seconds_Count;

TS : out Time Span);
function Time Of (SC : Seconds_Count; TS : Time_Span) return Time;
private
... -- not specified by the language

end Ada.Real Time;

Programming Delays

Relative Delays

+ Delay the execution of a task for a given period
*+ Relative delays (using clock access)

Start := Clock;
loop
exit when (Clock - Start) > 10.0; -- bust waiting
end loop;
ACTION;

*« To avoid busy-waiting, most languages and OS provide
some form of delay primitive
- In Ada, this is a delay statement delay 10.0
- In UNIX, sleep(10)

Semantics of Delay(20); Action

Granularity
difference
Time specified by between
program clock and
P! delay Executing the
20 sec Ready to run here | Action
but not
hedulled D
Interrupts
disabled

Time >

Absolute Delays

* To delay the execution of a task to a specified time
point (using clock access):
Start := Clock;
FIRST_ACTION;
loop
exit when Clock > Start+10.0; -- b
end loop;
SECOND_ACTION;

» To avoid busy-wait (access “clock” all time every tick!):

START := Clock;
FIRST_ACTION;

delay until :
SECOND_ACTION;

10.0; (this is by interrupt)

* As with delay, delay until is accurate only in its lower bound

Absolute Delays: Example

task Ticket_ Agent is
entry Registration(...);
end Ticket Agent;

task body Ticket Agent is
-- declarations
Shop_Open : Boolean := True;
begin
while Shop Open loop
select
accept Registration(...) do
-- log details
end Registration;
or

delay until
Shop n

-- process registrations
end loop;
end Ticket Agent;

Periodic Task

Periodic_T
Next_Release : Time;
Releaselnterval : Duration := 10

Next_Release := Clock + Releaselnterval;

-- Action
Next_Release;

Next_Rel := Next_Rel + Rell

Periodic T;

every 10 seconds

If Action takes 11 seconds, the delay
statement will have no effect local drift only

Will run on average

Control Example I

with Ada.Real Time; use Ada.Real Time;
with Data Types; use Data_ Types;

with IO; use IO;

with Control Procedures;

use Control Procedures;

procedure Controller is
task Temp Controller;

task Pressure_Controller;

Control Example II

task body Temp Controller is
TR : Temp_Reading; HS : Heater_Setting;
Next : Time;
Interval : Time_Span := Milliseconds(30);
begin
Next := Clock; -- start time
loop
Read (TR) ;
Temp_Convert (TR, HS) ;
Write (HS);
Write (TR) ;
Next := Next + Interval;
delay until Next;
end loop;
end Temp Controller;

Control Example III

task body Pressure_Controller is

PR : Pressure_Reading; PS : Pressure_Setting;
Next : Time;
Interval : Time_Span := Milliseconds(70);
begin
Next := Clock; -- start time
loop
Read (PR) ;
Pressure_Convert (PR, PS);
Write (PS);
Write (PR) ;
Next := Next + Interval;
delay until Next;
end loop;
end Pressure_Controller;
begin
null;

end Controller;

Control Example IIII

task body Pressure_Controller is
PR : Pressure_Reading; PS : Pressure_Setting;
Next : Time;
Interval : Time_Span := Milliseconds(70);
begin
Next := Clock; -- start time
loop
Read (PR) ;
Pressure_Convert (PR, PS);
Write (PS);
Write (PR) ;
Next := Next + Interval;
delay until Next;
end loop;

Here Temp_Controller

end Pressure_Controller;
begin/ & Pressure_Controller

null; start concurrently

end Controller;

Programming Timeouts

Timeout and message passing

Call(T : temperature)
New_temp:=T;
Call;

10.0;
--action for timeout

--other actions

Timeout (by server)

task Server is
entry Call(T : in Temperature);
-- other entries

end Server;

task body Server is
-- declarations
begin
loop
select
accept Call(T : in Temperature) do
New_Temp := T;
end Call;
or
delay 10.0;
-- action for timeout
end select;
-- other actions
end loop;
end Server;

Timeout (by client)

loop
-- get new temperature T
Server.Call(T);

end loop;

loop
-- get new temperature T
select
Server.Call(T);

== other
end select;
end loop;

Timeouts on Entries

* The above examples have used timeouts on inter-task
communication; it is also possible, within Ada, to do
timed (and conditional) entry call on protected objects

select
P.E ; -- E is an entry in pr

or

delay 0.5;
end select;

Timeouts on Actions

select
delay 0.1;

then abort
-- action

end select;

« If the action takes too long, the triggering event
will be taken and the action will be aborted

» This is clearly an effective way of catching run-
away code --- Watchdag

SUMMARY: Language support for RT Programming

Concurrency: multi-tasking
Communication & synchronization
Consistency in data sharing /protected data types
Real time facilities
— Access to system clock/time
— Delay constructs: Delay(10) and Delay until next-time
— Timely execution of tasks (run-time system)

The "“core” of RT Programming Languages

+ Primitive Types
— Basic Types: e.g. Integers, reals, lists, ...
— Abstract data type: Semaphore
« P(S)
.« V()
« Assignment: X:= E
« Control Statements: If, While, ..., goto
« Sequential composition: P;P
« Concurrent composition: P|| P
+ Communication: ale, a?x
* Choice: PorP
» Clock reading: Time
» Delays: Delay(n), Delay until n
* Exception: Loop P until B

RT Programming Languages

"Classic” high-level languages with RT extensions e.g.

— Ada

— Real-Time Java, C + RTOS

— SDL, Soft RT language for telecommunication systems
Synchronous Programming (from 1980’s)

— Esterel (Gerard Berry)

— Lustre (Caspi and Halbwachs)

— Signal (le Guernic and Benveniste)

Design, Modeling, Validation, and Code Generation
(from models to code)

— Giotto (Henzinger et al, not quite synchrnous)

— UPPAAL/TIMES (Uppsala)

— Real-Time UML

— SimuLink

RT Programming Languages

» "Classic” high-level languages with RT extensions e.g.
— Ada, Real-Time Java, C + RTOS
— SDL, Soft RT language for telecommunication systems
* Synchronous Programming
— Esterel (Gerard Berry)
— Lustre (Caspi and Halbwachs)
— Signal (le Guernic and Benveniste)
» Towards Real Real-Time Programming (mostly in
research):
— Giotto (Henzinger et al, not quite synchrnous)
— TIMES (Uppsala)

The History of Computer Science:
Lifting the Level of Abstraction

High-level languages:
Programming with focus on the o
application Compilation:
perhaps “the” success

I story of computer science

The “assembly age”™
Programming with focus on the
platform

The History of Computer Science:
Lifting the Level of Abstraction

Code generation
from specifications:

I still mostly a dream

High-level languages:
Programming with focus on

the application Compilation:
perhaps “the” success

I story of computer science

The “assembly age”™:
Programming with focus on the
platform

Future Goal in Real-Time Software Development

(e.g. UML based tools)

Code Code
generat|on verification
difficult
e.g. Giotto

Efficient code ‘
(scheduled by RTOS) (different platforms)

| e

Harware

