
1

1

UPPAAL tutorial
• What’s inside UPPAAL
• The UPPAAL input languages
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UPPAAL tool
Developed jointly by Uppsala & Aalborg University 
>>20,000 downloads since 1995
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UPPAAL Tool

Modeling

Simulation

Verification
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Architecture of UPPAAL

Linux, Windows, Solaris, MacOS

5

What’s inside UPPAAL
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OUTLINE

Data Structures
DBM’s (Difference Bounds Matrices)
Canonical and Minimal Constraints

Algorithms 
Reachability analysis
Liveness checking

Verification Options
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All Operations on Zones
(needed for verification)

Transformation
Conjunction
Post condition (delay)
Reset

Consistency Checking
Inclusion
Emptiness

S1

S2, S3, ... , Sn

Si    Sj                 
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Zones = Conjuctive constraints
A zone Z is a conjunctive formula:

g1 & g2 & ... & gn

where gi may be xi ~ bi or  xi-xj~bij

Use a zero-clock x0 (constant 0), we have
{xi-xj ~ bij | ~ is < or ≤, i,j≤n}

This can be represented as a MATRIX, DBM
(Difference Bound Matrices)
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Datastructures for Zones in UPPAAL

Difference Bounded Matrices
[Bellman58, Dill89]

Minimal Constraint Form  
[RTSS97]

Clock Difference Diagrams 
[CAV99]

x1 x2

x3x0

-4

4

2
2

5

3 3 -2 -2

1
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Canonical Datastructures for Zones
Difference Bounded Matrices Bellman 1958, Dill 1989

x<=1
y-x<=2
z-y<=2
z<=9

x<=1
y-x<=2
z-y<=2
z<=9

x<=2
y-x<=3
y<=3
z-y<=3
z<=7

x<=2
y-x<=3
y<=3
z-y<=3
z<=7

Z1

Z2

Inclusion

0

x

y

z

1 2

29

0

x

y

z

2 3

37

3

? ?   

Graph

Graph

⊆
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Bellman 1958, Dill 1989

x<=1
y-x<=2
z-y<=2
z<=9

x<=1
y-x<=2
z-y<=2
z<=9

x<=2
y-x<=3
y<=3
z-y<=3
z<=7

x<=2
y-x<=3
y<=3
z-y<=3
z<=7

Z1

Z2

Inclusion

0

x

y

z

1 2

29

Shortest
Path

Closure

Shortest
Path

Closure

0

x

y

z

1 2

25

0

x

y

z

2 3

37

0

x

y

z

2 3

36

3

3 3

Graph

Graph

? ?   ⊆

Canonical Dastructures for Zones
Difference Bounded Matrices

Z1 ⊆ Z2 !
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Bellman 1958, Dill 1989

x<=1
y>=5
y-x<=3

x<=1
y>=5
y-x<=3

Z

Emptiness

0
y

x
1

3

-5

Negative Cycle
iff
empty solution set

Graph

Canonical Datastructures for Zones
Difference Bounded Matrices
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Canonical Datastructures for Zones
Difference Bounded Matrices

x

y

Z
1<=x, 1<=y
-2<=x-y<=3

1<=x, 1<=y
-2<=x-y<=3

y

x

-1

-1

3

2

0

Add new edge
for g

Z∧g

Conjunction

y

x

-1

-1

3

2

0

1<=x, 1<=y
-2<=x-y<=3
3<=x

1<=x, 1<=y
-2<=x-y<=3
3<=x

x

y

-3

y

x

-1

3

2

0

-3
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1<= x <=4
1<= y <=3

1<= x <=4
1<= y <=3

Z
x

y

x

y

Z ↑

0

y

x4

-1

3

-1

Shortest
Path 

Closure

Remove
upper

bounds
on clocks

1<=x, 1<=y
-2<=x-y<=3

1<=x, 1<=y
-2<=x-y<=3

y

x

-1

-1

3

2

0

y

x

-1

-1

3

2

0

4

3

Canonical Dastructures for Zones
Difference Bounded Matrices

Delay
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Canonical Datastructures for Zones
Difference Bounded Matrices

x

y

Z
1<=x, 1<=y
-2<=x-y<=3

1<=x, 1<=y
-2<=x-y<=3

y

x

-1

-1

3

2

0

Remove all
bounds 

involving y
and set y to 0

x

y

{y}Z

y=0, 1<=xy=0, 1<=x

Reset

y

x

-1

0

0 0
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COMPLEXITY
Computing the shortest path closure, the 
cannonical form of a zone: O(n3) [Dijkstra’s alg.]
Run-time complexity, mostly in O(n)
(when we keep all zones in cannonical form) 
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Datastructures for Zones in UPPAAL

Difference Bounded Matrices
[Bellman58, Dill89]

Minimal Constraint Form
[RTSS97]

Clock Difference Diagrams 
[CAV99]

x1 x2

x3x0

-4

4

2
2

5

3 3 -2 -2

1
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Minimal Graph

x1-x2<=-4
x2-x1<=10
x3-x1<=2
x2-x3<=2
x0-x1<=3
x3-x0<=5

x1-x2<=-4
x2-x1<=10
x3-x1<=2
x2-x3<=2
x0-x1<=3
x3-x0<=5

x1 x2

x3x0

-4

10

2
2

5

3

x1 x2

x3x0

-4

4

2
2

5

3

x1 x2

x3x0

-4

2
2

3

3 -2 -2

1

Shortest
Path

Closure
O(n3)

Shortest
Path

Reduction
O(n3) 3

Space worst O(n2)
practice O(n)

(DBM)

(Minimal graph, a.ka.
compact data structure)
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Graph Reduction Algorithm
G: weighted graph

1. Equivalence classes based
on 0-cycles.

20

Graph Reduction Algorithm
G: weighted graph

1. Equivalence classes based
on 0-cycles.

2. Graph based on
representatives. 
Safe to remove redundant edges
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Graph Reduction Algorithm

1. Equivalence classes based
on 0-cycles.

2. Graph based on
representatives. 
Safe to remove redundant edges

3. Shortest Path Reduction
=

One cycle pr. class
+

Removal of redundant edges
between classes

G: weighted graph

22

Datastructures for Zones in UPPAAL

Difference Bounded Matrices
[Bellman58, Dill89]

Minimal Constraint Form  
[RTSS97]

Clock Difference Diagrams 
[CAV99]

x1 x2

x3x0

-4

4

2
2

5

3 3 -2 -2

1
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Other Symbolic Datastructures

NDD’s Maler et. al.

CDD’s UPPAAL/CAV99

DDD’s Møller, Lichtenberg

Polyhedra HyTech

......

CDD-representationsCDD-representations

24

Inside the UPPAAL tool

Data Structures
DBM’s (Difference Bounds Matrices)
Canonical and Minimal Constraints

Algorithms 
Reachability analysis
Liveness checking

Verification Options
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Timed CTL in UPPAAL

P ::= A.l | gc | gd | not p| p or p | p and p | p imply p

Process 
Location
(a location in 
automaton A)

Clock
constraint

predicate
over data variables

EF p | AG p | EG p | AF p | p - -> q

p leads to q
denotes
AG (p imply AF q)
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Timed CTL in UPPAAL

P ::= A.l | gc | gd | not p| p or p | p and p | p imply p

Process 
Location
(a location in 
automaton A)

Clock
constraint

predicate
over data variables

EF p | AG p | EG p | AF p | p - -> q

p leads to q
denotes
AG (p imply AF q)

SAFETY PROPERTIES

27

SAFETY Properties
in UPPAAL

F ::= EF  P  | AG P

Reachability Invariant = ¬ EF ¬ P
Thus,  AG P is also checked by 
reachability analysis!

28

We have a search problem

(n0,Z0)

S2, S3  ......   Sn

T2                 T1

…
..

Reachable?
EF 

Symbolic state
Symbolic transitions

29

Forward Reachability

Passed

Waiting
Final

Init

Init -> Final ?

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

30

Passed

Waiting Final

Init

n,Z

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else (explore) add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’

Forward Reachability
Init -> Final ?
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Passed

Waiting Final

Init

n,Z

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’

m,U

Forward Reachability
Init -> Final ?
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Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’

m,U

n,Z

Forward Reachability
Init -> Final ?
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Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’

m,U

n,Z

Forward Reachability
Init -> Final ?
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Further question

Can we find the path with shortest delay, leading to P ?
(i.e. a state satisfying P)

OBSERVATION:
Many scheduling problems can be phrased naturally as 
reachability problems for timed automata.

35

Verification vs. Optimization

Verification Algorithms:
Checks a logical property of the 
entire state-space of a model.
Efficient Blind search.

Optimization Algorithms:
Finds (near) optimal solutions.
Uses techniques to avoid non-
optimal parts of the state-space 
(e.g. Branch and Bound).

Goal:  solve opt.  problems with 
verification.

80

60

State reachable?State reachable?

Min time of reaching state?Min time of reaching state?

36

The maximal and minimal delay problem

OPTIMAL  REACHABILITY



7

37

Find the trace leading to P with min delay

p
p

p p

p

p

p pp p

p
p

p
p

p
p p

S0

p

There may
be a lot of 
pathes leading
to P

Which one 
with the shortest 
delay?

38

p
p

p p

p

p

p pp p

p
p

p
p

p
p p

S0

p

Idea: delay as ”Cost” to reach 
a state, thus cost increases
with time at rate 1

Find the trace leading to P with min delay

39

An Simple Algorithm for minimal-cost reachability

State-Space Exploration + Use of global variable Cost and global clock δ

Update Cost whenever goal state with min( C ) < Cost is found:

Terminates when entire state-space is explored.
Problem: The search may never terminate! 

80 Cost =80Cost =80
60 Cost =60Cost =60

Cost =∞Cost =∞

δ:=0δ:=0

60≤δ60≤δ

40

Example (min delay to reach G)

m

n

G

x:=0,δ:=0

x =10

x:=0
X=>0

(m,x≥0, x= δ)

(n,x= δ=0) (n,x≥0,x= δ)

(n,x=0, δ=10, δ-x=10) (n,x ≥ 0, δ ≥10, δ-x= 10)

... ... 

G

(n,x=0, δ=30,δ-x=30)

(n,x=0,x=0, δ=20,δ-x=20) (n,x ≥ 0, δ ≥20, δ-x= 20)

(n,x ≥ 0, δ ≥30, δ-x= 30)

(m,x= δ=0)

The minimal delay = 0 but the search may never terminate!
Problem: How to symbolically represent the zone C.

41

Priced-Zone
• Cost = minimal total time 

• C can be represented as the zone Zδ, where:
– Zδ original (ordinary) DBM plus…
– δ clock keeping track of the cost/time.

• Delay, Reset, Conjunction etc. on Z are 
the standard DBM-operations

• Delay-Cost is incremented by Delay-operation on Zδ.

42

Priced-Zone
δ

x

C3 C2 C1

C3 ⊆ C2 ⊆ C1

C1

C2

C3

Then:
But:

• Cost = min total time 

• C can be represented as the zone Zδ, where:
– Zδ is the original zone Z extended with the 

global clock δ keeping track of the cost/time.
– Delay, Reset, Conjunction etc. on C are the 

standard DBM-operations

• But inclusion-checking will be different
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Solution: ()†-widening operation
()† removes upper bound on the δ–clock:

In the Algorithm:
Delay(C†) = ( Delay(C†) )†

Reset(x,C†) = ( Reset(x,C†) )†

C1
† ∧ g = ( C1

† ∧ g )†

It is suffices to apply ()† to the initial state (l0,C0).

δ

x

C3 C2 C1

C3 ⊆ C2 ⊆ C1 C1

C2

C3
†

†

†
† † †

44

Example (widening for Min)

δ

x

Z1 ⊆ Z2
Z2

Z1

45

Example (widening for Min)

δ

x

Z1 ⊆ Z2
Z2

Z1
Z+

2

Z+
1 Z+= Widen(Z)

46

Example (widening for Min)

δ

x

Z+
1 ⊆ Z+2

Z+
2

Z+
1

!

Z+= Widen(Z)

Z1 Z2

47

An Algorithm (Min)
Cost:=∞, Pass := {}, Wait := {(l0,C0)}
while Wait ≠ {} do

select (l,C) from Wait
if (l,C) = P and Min(C)<Cost then Cost:= Min(C)
if (l,C)   (l,C’) for some (l,C’) in Pass then skip

otherwise add (l,C) to Pass
and forall (m,C’) such that (l,C)    (m,C’):
add (m,C’) to Wait

Return Cost

Output: Cost = the min cost of a found trace satisfying P.

One-step reachability relation 

48

cba

Further reading: Priced Timed Automata

Timed Automata + Costs on transitions and locations.
Uniformly Priced = Same cost in all locations (edges may have 
different costs).

Cost of performing transition: Transition cost.
Cost of performing delay d: ( d x location cost ).

4 2 5

4
x<3

y>3

x<3

{x:=0}

1

[Larsen et al]
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cba

Priced Timed Automata

4 2 5

4
x<3

y>3

x<3

{x:=0}

1

(a,x=y=0) (b,x=y=0) (b,x=y=2.5)ε(2.5) (a,x=0,y=2.5)
4 2.5 x 2 0

Cost of Execution Trace:

Sum of costs: 4 + 5 + 0 = 9

Trace:

Problem: Finding the minimum cost of reaching     !c

50

Inside the UPPAAL tool

Data Structures
DBM’s (Difference Bounds Matrices)
Canonical and Minimal Constraints

Algorithms 
Reachability analysis
Liveness checking

Verification Options

51

Timed CTL in UPPAAL

P ::= A.l | gc | gd | not p| p or p | p and p | p imply p

Process 
Location
(a location in 
automaton A)

Clock
constraint

predicate
over data variables

EF p | AG p | EG p | AF p | p - -> q

p leads to q
denotes
AG (p imply AF q)

SAFETY PROPERTIES

LIVENESS PROPERTIES

52

LIVENESS Properties

Possibly always P
is equivalent to (¬ AF ¬ P)

Eventually P
is equivalent to (¬ EG ¬ P)

P leads to Q
is equivalent to 
AG ( P imply AF Q)

in UPPAAL

F ::= EG p | AF p | p - -> q

53

Algorithm for checking AF P

Bouajjani, Tripakis, Yovine’97
On-the-fly symbolic model checking of TCTL

Eventually P

54

Question

AF P ” P will be true for sure in future”

p

x≤ 5

?? Does this automaton satisfy AF P
m
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55

Note that

AF P ” P will be true for sure in future”

p

x≤ 5

m
NO !!!! there is a path:
(m, x=0) (m,x=1) (m,2) ... (m,x=k) ...
Idling forever in location m

56

Note that

AF P ” P will be true for sure in future”

p

x≤ 5 This automaton satisfies AF P

x≤ 5
m

57

Liveness Algorithm

Passed
ST Unexplored

AF φ

¬ φ

S

Bouajjani, Tripakis, Yovine, 97

58

Liveness Algorithm

Passed
ST Unexplored

AF φ

=       ?

¬ φ

59

Liveness Algorithm
Passed

ST Unexplored

AF φ

¬ φ

60

Liveness Algorithm
Passed

ST Unexplored

AF φ

??

¬ φ
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Liveness Algorithm
Passed

ST Unexplored

AF φ

⊆

??

if empty(S) then exit(true) fi

¬ φ

62

Liveness Algorithm
Passed

ST Unexplored

AF φ

¬ φ

63

Liveness Algorithm
Passed

ST Unexplored

AF φ

¬ φ

64

Liveness Algorithm
Passed

ST Unexplored

AF φ

¬ φ

65

Liveness Algorithm
Passed

ST Unexplored

AF φ

¬ φ

66

Liveness Algorithm
Passed

ST Unexplored

AF φ

¬ φ
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Question: Time bound synthesis

AF P ” P will be true eventually”
But no time bound is given.

Can we calculate the Max time bound?
Assume AF P is satisfied by an automaton A.

OBS: we know how to calculate the Min !

68

Assume AF P is satisfied    

Find the  trace leading to P with the max delay

pp p p ppp pp p p p p
p

p

p p

S0

¬ P

p
pp

S0

¬ P

Almost the same
algorithm as for
synthesizing Min

We need
to explore 
the Green part

69

An Algorithm (Max)
Cost:=0, Pass := {}, Wait := {(l0,C0)}
while Wait ≠ {} do

select (l,C) from Wait
if (l,C) = P and Max(C)>Cost then Cost:= Max(C)
else if forall (l,C’) in Pass: C     C’ then

add (l,C) to Pass
forall (m,C’) such that (l,C)    (m,C’):

add (m,C’) to Wait
Return Cost

Output: Cost = the min cost of a found trace satisfying P.
BUT:         is defined on zones where the lower bound of “cost” is removed

One-step reachability relation 

70

Zone-Widening operation for Max

C1

C2

δ

x

C1   ⊆ C2

71

Zone-Widening operation for Max

C+
1

C+
2

δ

x

C+
1 ⊆ C+

2

C1 C2   !

C1   ⊆ C2

72

Inside the UPPAAL tool

Data Structures
DBM’s (Difference Bounds Matrices)
Canonical and Minimal Constraints

Algorithms 
Reachability analysis
Liveness checking
Termination

Verification Options
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73

Verification Options
• Diagnostic Trace

• Breadth-First
• Depth-First

• Local Reduction
• Active-Clock Reduction
• Global Reduction

• Re-Use State-Space

• Over-Approximation
• Under-Approximation

• Diagnostic Trace

• Breadth-First
• Depth-First

• Local Reduction
• Active-Clock Reduction
• Global Reduction

• Re-Use State-Space

• Over-Approximation
• Under-Approximation

74

Inactive (passive) Clock Reduction

x is only active in location S1

x>3x<5

x:=0

x:=0

S x is inactive at S if on all path from
S, x is always reset before being
tested. 

Definition

75

Global Reduction
(When to store symbolic state)

No Cycles:  Passed list not needed for termination

However,
Passed list useful for
efficiency

76

Global Reduction
(When to store symbolic state)

Cycles:
Only symbolic states
involving loop-entry points 
need to be saved on Passed list

[RTSS97]

77

To Store Or Not To Store?

117 statestotal

81 statesentrypoint

9 states

Time OH
less than 10%

[RTSS97,CAV03]

(need to
re-explore
some states)

78

Reuse of State Space

Passed

Waiting

prop1

A[]  prop1 
A[]  prop2
A[]  prop3
A[]  prop4
A[]  prop5
.
.
.
A[]  propn

Search
in existing
Passed
list before
continuing
search

Which order
to search?

prop2
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Reuse of State Space

Passed

Waiting

prop1

A[]  prop1 
A[]  prop2
A[]  prop3
A[]  prop4
A[]  prop5
.
.
.
A[]  propn

Search
in existing
Passed
list before
continuing
search

Which order
to search?Hashtable

prop2

80

Reuse of State Space

Passed

Waiting

prop1

A[]  prop1 
A[]  prop2
A[]  prop3
A[]  prop4
A[]  prop5
.
.
.
A[]  propn

Search
in existing
Passed
list before
continuing
search

Which order
to search?Hashtable Swapped toSwapped to

secondary memorysecondary memory

prop2

81

Reuse of State Space

Passed

Waiting

prop1

A[]  prop1 
A[]  prop2
A[]  prop3
A[]  prop4
A[]  prop5
.
.
.
A[]  propn

Search
in existing
Passed
list before
continuing
search

Which order
to search?

Hashtable
Swapped toSwapped to
secondary memorysecondary memory

REVERSE CREATION
ORDER

generation order

prop2

82

Under-approximation
Bitstate Hashing  (Holzman,SPIN)

Passed

Waiting Final

Init

n,Z’

m,U

n,Z

83

Under-approximation
Bitstate Hashing

Passed

Waiting Final

Init

n,Z’

m,U

n,Z

Passed=
Bitarray

1

0

1

0

0

1

UPPAAL
8 Mbits

Hashfunction
F

84

Bit-state Hashing

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed thenthen STOPSTOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇
Passed(F(n,Z)) = 1

Passed(F(n,Z)) := 1
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Under Approximation
(good for finding Bugs quickly, debugging)

Possitive answer is safe (you can trust)
You can trust your tool if it tells:
a state is reachable (it means Reachable!)

Negative answer is Inconclusive
You should not trust your tool if it tells:
a state is non-reachable
Some of the branch may be terminated by 
conflict (the same hashing value of two states)

86

Over-approximation
Convex Hull

x

y

Convex Hull

1 3 5

1

3

5

87

Over-Approximation
(good for safety property-checking)

Possitive answer is Inconclusive
a state is reachable means Nothing
(you should not trust your tool when it says so)
Some of the transitions may be enabled by 
Enlarged zones

Negative answer is safe
a state is not reachable means Non-reachable
(you can trust your tool when it says so)


