UPPAAL tutorial

¢ What's inside UPPAAL
* The UPPAAL input languages

UPPAAL tool

= Developed jointly by Uppsala & Aalborg University
= >>20,000 downloads since 1995

UPPAAL Tool

(S :]

Verification

Architecture of UPPAAL

- g . ‘
L
]/\E

o

Server

Linux, Windows, Solaris, MacOS

What's inside UPPAAL

OUTLINE

= Data Structures
= DBM'’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints
= Algorithms
= Reachability analysis
= Liveness checking
= Verification Options

All Operations on Zones
(needed for verification)

= Transformation S1
= Conjunction 52‘/53{ Sn
= Post condition (delay) VAR

/
= Reset i S /\\
= Consistency Checking j /[]\

= Inclusion
= Emptiness

Zones = Conjuctive constraints

= A zone Zis a conjunctive formula:
9:80,&..8g,
where g; may be x;~ b; or xi-x;~by
= Use a zero-clock x, (constant 0), we have
{X%; ~ by | ~is < or <, ij<n}
= This can be represented as a MATRIX, DBM
(Difference Bound Matrices)

Datastructures for Zones in UPPAAL

= Difference Bounded Matrices
[Bellman58, Dill89]

= Minimal Constraint Form
[RTSS97]

= Clock Difference Diagrams
[CAV99]

Canonical Datastructures for Zones
Difference Bounded Matrices Bellman 1958, Dill 1989

Inclusion
X

x<=1 1 2
71 Y-x<=§ Graph 0/ \ y

z-y<=

z<=9 Q\A ZA/Z

2S?

22 |x<=2) X3

y-x<=3

y<=3 Graph 0/ 3\ y

z-y<=3

z<=7 7 z‘/3

Canonical Dastructures for Zones
i i Bellman 1958, Dill 1989
Difference Bounded Matrices

Inclusion
X
x<=1 1 2 NG
Z1 |vyx<=2] Grapn 0/ \ Shp?a:ttlfSt /3\.
z-y<=2 Y Closure 0 Y
7ess N, ...
2S? Z1c272!
22 |x<=2 X X
ee 2 3 Shortest 2 3
¥<>(:<3 3 Graph 0/ 3\ y Clzastx?re 0/'*3\‘. y
zy<=3 N~ o,

1

Canonical Datastructures for Zones
Difference Bounded Matrices ~ B¢'™man 1958, Dil 1989

Emptiness
X
Z x<=1 1
y>=5 Graph 0/ 3
y-x<=3 v

Negative Cycle
iff

empty solution set

Canonical Datastructures for Zones
Difference Bounded Matrices

' Conjunction v
Zrg ‘ J
X 1<=x, 1<=y

1<=x, 1<=y -2<=x-y<=3
-2<=x-y<=3 3<=x

y

13

Canonical Dastructures for Zones
Difference Bounded Matrices

Delay

//‘ x 4 X X

-1 Shortest /,1‘ Remove }

0 Path 0 3 3 upper 3
Closure

'1\ y 1\ y

Canonical Datastructures for Zones
Difference Bounded Matrices

' Reset Y|
{y}z

X

1<:x, 1<=y
]

X X
1 Remove all
0 B bounds -1
involving y 0 0
and sety to 0
-1\ y 0\

15

COMPLEXITY

» Computing the shortest path closure, the
cannonical form of a zone: O(n3) [Dijkstra’s alg.]

= Run-time complexity, mostly in O(n)
(when we keep all zones in cannonical form)

Datastructures for Zones in UPPAAL

= Difference Bounded Matrices
[Bellman58, Dill89]

= Minimal Constraint Form
[RTSS97]

= Clock Difference Diagrams
[CAV99]

17

Minimal Graph

Shortest

x1-x2<=-4

x2-x1<=10 Path
x3-x1<=2 Closure
x2-x3<=2 3 2 0(n?)
x0-x1<=3

x3-x0<=5

(DBM)

Shortest
Path_ Space worst O(n2)
Regzl:;:;on 2 practice O(n)

(Minimal graph, a.ka.
compact data structure)
18

Graph Reduction Algorithm

1. Equivalence classes based
on 0-cycles.

19

Graph Reduction Algorithm

G: weighted graph

1. Equivalence classes based
on 0-cycles.

2. Graph based on

representatives.
Safe to remove redundant edges

20

Graph Reduction Algorithm

1. Equivalence classes based
on 0-cycles.

2. Graph based on
representatives.
Safe to remove redundant edges

3. Shortest Path Reduction

One cycle pr. class

+
Removal of redundant edges
between classes

21

Datastructures for Zones in UPPAAL

= Difference Bounded Matrices
[Bellman58, Dill89]

= Minimal Constraint Form
[RTSS97]

= Clock Difference Diagrams
[CAV99]

22

Other Symbolic Datastructures

CDD-representations |

= NDD’s Maler et. al. ™
= CDD’s UPPAAL/CAVS9 a
u DDD’s Mgller, Lichtenberg l-rnr_._l, fral
= Polyhedra HyTech - Tm
oo " oo
a7
¥]
3 fa.1] &
Craa v (x-x) (x-¥)
= Bad™_ el
[)

23

Inside the UPPAAL tool

= Data Structures
= DBM'’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints
|:>. Algorithms
= Reachability analysis
= Liveness checking
= Verification Options

24

Timed CTL in UPPAAL

EFp|AGp | EGp |AFp | p-->q

P:i=Al]|g.| gyl notp| porp | pandp | pimply p

/AN

Process Clock predicate

Location constraint over data variables

(a location in

automaton A) p leadsto q
denotes

AG (p imply AF q)

25

Timed CTL in UPPAAL

|EGp | AFp | p-->q

P:=Al]|g.| gyl notp| porp | pandp | pimply p

Process Clock predicate
Location constraint over data variables
(a location in

automaton A) p leadsto q

denotE§
SAFETY PROPERTIES "€ (PImPVAF®

26

in Up
P,
A4

SAFETY Properties

Fu=EFP | AGP

L\

Reachability Invariant = — EF - P
Thus, AG P is also checked by
reachability analysis!

We have a search problem

(no/Zo) Symbolic state

/1N

Symbolic transitions

® Reachable?

EF®
27 28
Forward Reachability Forward Reachability
Init -> Final ? Init -> Final ?
Fmmmmmmmmmmm e
/ .\ : INITIAL Passed := {; : (.\ INITIAL Passed := @;
Waiting Pl \fl_al_tl_ns_l _:_ f(:\fifo_)}_) _E Waiting Final Waiting := {(n0,20)}
REPEAT REPEAT
OQOQ O -pick (n.2) in Waiting QQ@Q O F= btk ()i Waiting ™~
-if forsomeZ 27 1 -ifforsomeZ 27 :
(n,Z') in Passed then STOP : (n,Z') in Passed then STOP !
- else /explore/ add “"lelsé (exploré)add "~ """ """
{(mV): (n,2) =>(m,U) } {(mV):(n,2) =>(mU)}
to Waiting; to Waiting;
Add (n,Z) to Passed Add (n,Z) to Passed
UNTIL Waiting =0 UNTIL Waiting =0
Passed / or Passed / or
Final is in Waiting Final is in Waiting
29 30

Forward Reachability

Init -> Final ?
/ \ INITIAL Passed := @;

Waiting il Waiting := {(n0,20)}

REPEAT
- pick (n,Z) in Waiting
- if forsome 7' 2 7
,---(0.Z] in Passed then STOP __ _
, - else /explore/ add :
{mU):(n2)=>mU)}
to Waiting; !

Add (n,Z) to Passed

UNTIL Waiting =@
or
Final is in Waiting

31

Forward Reachability

Init -> Final ?

-

\ INITIAL Passed := @;
Final Waiting := {(n0,20)}

REPEAT
- pick (n,Z) in Waiting
- if forsome 7' 2 7
(n,Z") in Passed then STOP
- else /explore/ add

[—— ta Waiting;
1 Add (n,Z) to Passed

UNTIL Waiting = @

Passed / or

Final is in Waiting

{mU): (n.2) => mU)}

32

Forward Reachability

Init -> Final ?
/ \ INITIAL Passed := @;
Final Waiting := {(n0,20)}

REPEAT
- pick (n,Z) in Waiting
- if forsome 7' 2 7
(n,Z") in Passed then STOP

- else /explore/ add
{(mV): (n,2) =>(m,U) }
to Waiting;
Add (n,Z) to Passed

-
! UNTIL Waiting = @ '
| or 1
! Final is in Waiting H

Further question

Can we find the path with shortest delay, leading to P ?
(i.e. a state satisfying P)

OBSERVATION:

Many scheduling problems can be phrased naturally as
reachability problems for timed automata.

34

Verification vs. Optimization

= Verification Algorithms:
= Checks a logical property of the
entire state-space of a model. S
= Efficient Blind search. I

= Uses techniques to avoid non-
optimal parts of the state-space
(e.g. Branch and Bound).
= Goal: solve opt. problems with
verification.

= Optimization Algorithms: —]
. N . in time of reaching state?
= Finds (near) optimal solutions. _
;

35

OPTIMAL REACHABILITY

The maximal and minimal delay problem

36

Find the trace leading to P with min delay

Find the trace leading to P with min delay

S, S,
° There may ° Idea: delay as "Cost” to reach
be a lot of a state, thus cost increases
pathes leading with time at rate 1
- D p toP D p
p P Which one p P
% p with the shortest % p
Pp, Ppp pp Pp, PpP pP
37 38
Example (min delay to reach G)
An Simple Algorithm for minimal-cost reachability
= State-Space Exploration + Use of global variable Cost and global clock § —
= Update Cost whenever goal state with min(C) < Cost is found: %:=0,5:=0
x=10" ™\ ‘ (nx=0, 3=10, 3-x=10) }‘ - '{ (nx= 0, 3210, 5x=10) ‘
0\ J (n,x=0,x=0, =20,3-x=20) “{ (n,x= 0, 8220, 8-x=20)
xi=0 e
X=>0 —
(nx=0, 8=30,8x=30) [{ (n,x= 0, 8230, 5-x=30)
= Terminates when entire state-space is explored. &I/ . ..
Problem: The search may never terminate! The minimal delay = 0 but the search may never terminate!
Problem: How to symbolically represent the zone C.
39 40
¢ Cost = minimal total time e Cost = min total time
e C can be represented as the zone Z3, where: ¢ Ccan be represented as the zone 78, where:
— 78 original (ordinary) DBM plus... - 20 isthe original zone Z extended with the
— & clock keeping track of the cost/time. global clock & keeping track of the cost/time.
— Delay, Reset, Conjunc_tion etc. on C are the
e Delay, Reset, Conjunction etc. on Z are standard DBM-operations
the standard DBM-operations
* But inclusion-checking will be different X
¢ Delay-Cost is incremented by Delay-operation on 7.
Then: C;E C,E C;
But: ©.£C,cCy
41 42

Solution: ()*-widening operation
= () removes upper bound on the 5—clock:
C,E C,=C, 8
T c CZT c C1T

= In the Algorithm:
= Delay(C') = (Delay(C'))*
= Reset(x,C") = (Reset(x,C"))*
= CTAg=(CTAg)

« Itis suffices to apply ()* to the initial state (I,,C,). X

43

Example (widening for Min)
8

Z2,£2,

Example (widening for Min)

Z+= Widen(Z)

Z2,£7,

45

Example (widening for Min)

8 : .
IS Z+= Widen(2)
=,
z,
VArR A !
z,Cz,
X

46

An Algorithm (Min)

Cost:=wn, Pass := {}, Wait := {(1,,Co)}
while Wait # {} do
select (1,C) from Wait
if (1,C) |= P and Min(C)<Cost then Cost:= Min(C)
if (1,C) |;(l,C’) for some (1,C’) in Pass then skip
otherwise add (1,C) to Pass
and forall (m,C’) such that (1,C).—~_,(m,C’"):

dd C’) to Wait » X
add (m,C’) to Wai One-step reachability relation
Return Cost

Output: Cost = the min cost of a found trace satisfying P.

47

Further reading: Priced Timed AutomatdLlarsen et al]

4
x<3 x<3
(®) :
[¥
{x:=0}

= Timed Automata + Costs on transitions and locations.

Uniformly Priced = Same cost in all locations (edges may have
different costs).

= Cost of performing transition: Transition cost.
= Cost of performing delay d: (d x location cost).

48

Priced Timed Automata

{x:=0}
Trace:

2.5)
a,x=y=0) —— (b,x=y=0 E(—- b,x=y=2.5 a,x=0,y=2.5
(a,x=y=0) 2 (bx=y:)2.5><2 (b.x=y)—»0 (y=2.5)

Cost of Execution Trace:
Sum of costs: 4 + 5+ 0 =9

Problem: Finding the minimum cost of reaching@!

49

Inside the UPPAAL tool

= Data Structures
= DBM'’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints
= Algorithms
= Reachability analysis
= Liveness checking
= Verification Options

50

Timed CTL in UPPAAL

I\EGp | AFp | p-->

Pu=Al]lg.|gql pl porp | pandp | pimply p

Process Clock predicate
Location constraint over data variables
(a location in

auomaten) LIVENESS PROPERTIES P!e2dstod

denotes

SAFETY PROPERTIES "¢ (P 'mPVAF®

51

LIVENESS Properties "

F::=EGp | AFp | p-->q

Possibly always P
is equivalent to (- AF - P)

Eventually P
is equivalent to (- EG - P)

P leads to Q
is equivalent to
AG (P imply AF Q)
52

Algorithm for checking AF P Eventually P

Bouajjani, Tripakis, Yovine’97
On-the-fly symbolic model checking of TCTL

53

Question
AF P P will be true for sure in future”
?? Does this automaton satisfy AF P
X< 5

54

Note that

AF P P will be true for sure in future”

NO! there is a path:
X< 5 (M, x=0) >(m,x=1)>(M,2) ... (m,x=k) ...
Idling forever in location m

Note that

AF P “P will be true for sure in future”

X< 5 This automaton satisfies AF P

55 56
Liveness Algorithm Liveness Algorithm
Eventually (5.,) = Eventually (5.,) =
lmsllc' @ L Passed st Unexplored lmsllc' @ L Passed st Unexplored
Passed 1= @ L Passed 1= @ Q)
Search{delay(5o, =) Search{delay(5o, =) /.
exit(true) exit(true)
ond ond
@ proc Search(S) = proc Search(S) =
if loop(S, ST) then exit(false) fi i exit|false) fi
Si=8nw
pushi) push(ST, 5
il unbounded(S) v deadlocked(S) & il unbounded(S) v deadlocked(S)
exit|false) fi exit|false) fi
95 € Passed . S @ 5 95 € Passed . S @ 5
then foreach 5 - 5 = 5" da then foreach 5 - 5 = 5" da
Search(delay(S, ~2)) Search(delay(S, ~2))
od od
. . \
Passed Passed U [pop(ST)} Passed Passed U [pop(ST)}
end end =0
57 58
Liveness Algorithm Liveness Algorithm
proc Eventually (S, ¢) = proc Eventually (S, ¢) =
ST :=9 (S Passed ST Unexplored ST :=9 (S Passed ST Unexplored
Passed i g Passed 1= @ -9
Search{delay{So, =) Search(delay(So, =)
exit(true) exit(true)
ond ond
Search(5) =
if loop(s,ST) t) it false) B
@ push(ST, 5) push(ST, 5)
if unbounded(S) v deadlocked(S) then @ if unbounded(S) v deadlocked(S) 9
exit|false) fi exit|false) fi
95 € Passed . S @ 5 95 € Passed . S @ 5
then foreach 5 - 5 = 5" da then foreach 5 - 5 = 5" da
Search(delay(S, ~2)) Search(delay(S, ~2))
od od
Passed Passed U [pop(ST)} Passed Passed U [pop(ST)}
cnd cnd
60

59

Liveness Algorithm

Liveness Algorithm

Eventually(So,) = Eventually(Ss.) =
lmsllc' @ L Passed st Unexplored lmsllc' @ L Passed st Unexplored
Passed 1= @ 0 Passed 1= B -0
Search(delay(So, =) Search(delay(So, =) f
oxit(true) oxit(true)
ond ond
proc Search(5) = if empty(S) then exit(true) fi proc Search(5) =
i 5, ST) then exit(false) i if loop(S, ST) then exit(false) fi
e >
push(ST, 5) pHSh(ST., S
if unbounded(S) v deadlocked(S) th if unbounded(S) v deadlocked(S) then
exit(false) exit(false)
® i[5 £ Passed : S 5 95 € Passed . S @ 5
then foreach 5 : 5 =% 5" da ® then foreach 5 - 5= 5" da
Search(delay(S', ~2)) O ‘/ Search(delay(S', ~2))
od ?? od
Passed Passed U [pop(ST)} Passed Passed U [pop(ST)}
end end
61 62
Liveness Algorithm Liveness Algorithm
Eventually(So,) = Eventually(Ss.) =
lmsllc' @ L Passed st Unexplored lmsllc' @ L Passed st Unexplored
Passed = & ¢ Passed := @ - ¢
Search(delay(So, =) Search(delay(So, =)
exit(true) exit(true)
ond ond
proc Search(S) =
ST) then exit(false) i if loop(5, 5T) then exit|false) i
e >
push(ST, 5) push(ST, 5)
il unbounded(S) v deadlocked(S) il unbounded(S) v deadlocked(S)
exit(false) exit(false)
If 5" € Passed : 5 ¢ If 5" € Passed : 5 ¢
then foreach 5 - 5 = 5" da then foreach 5 - 5 = 5" da
Search(delay(S, ~2)) Search(delay(S, ~2))
L4 od od
i
Passed := Passed U [pop(ST)} @ Passed := Passed U [pop(ST)}
end end
63 64
Liveness Algorithm Liveness Algorithm
Eventually(So,) = Eventually(Ss.) =
lmsllc' @ L Passed st Unexplored lmsllc' @ L Passed st Unexplored
Passed = & —¢ Passed := @ - ¢
Search(delay(So,) Search(delay(So, ~)) /.
exit(true) exit(true)
[ond
proc Search(S) = proc Search(S) =
if loop(s, ST) then exit(false) if loop(s, ST) then exit(false)
5 e 5= 5]
push(ST. 5) push(ST. 5)
if unbounded(S) v deadlocked(S) then if unbounded(S) v deadlocked(S) then
exit(false) exit(false)
Passed : 5 ¢ 8§ 95 € Passed . S @ 5
then foreach 5 - 5 = 5" da then foreach 5 - 5 = 5" da
Search(delay(S, ~2)) Search(delay(S, ~2))
od od
i i
@ Passed := Passed U [pop(ST)} @ Passed := Passed U [pop(ST)}
end end
65

66

Question: Time bound synthesis

AFP P will be true eventually ”
But no time bound is given.

Assume AF P is satisfied by an automaton A.
Can we calculate the Max time bound?

OBS: we know how to calculate the Min !

67

Assume AF P is satisfied

Find the trace leading to P with the max delay

Almost the same
algorithm as for
synthesizing Min

We need
to explore
p the Green part

12}3

P PPpPPp,p pPppp

68

An Algorithm (Max)

Cost:=0, Pass := {}, Wait := {(1,,Co)}
while Wait # {} do
select (1,C) from Wait
if (1,C) |= P and Max (C)>Cost then Cost:= Max(C)
else if forall (1,C’) in Pass: C g C’ then
add (1,C) to Pass
forall (m,C’) such that (1,C) —_,(m,C"):
add (m,C’) to Wait

One-step reachability relation
Return Cost

Output: Cost = the min cost of a found trace satisfying P.
BUT: L s defined on zones where the lower bound of “cost” is removed

69

Zone-Widening operation for Max

8

GG
y 4

70

Zone-Widening operation for Max

8

GG

Crec Cn

CCEGI

71

Inside the UPPAAL tool

= Data Structures]
= DBM'’s (Difference Bounds Matrices) t‘j?PVJL
= Canonical and Minimal Constraints —

= Algorithms [\ [
= Reachability analysis | SRS £ Smana u v wRad
= Liveness checking e
= Termination

E==) Verification Options

72

Verification Options
[o Diagnostic Trace

Fin Towplates View Curies | Options |

Sysiom Fidtor | Simulatos | ver| - Disgnostic Trace
S e S v * Eraadin First — o Breadth-First

Dreciivee - Depth-First

Local Reduction
Active-Clock Reduction
Global Reduction

Re-Use State-Space

Over-Approximation
Under-Approximation

73

Inactive (passive) Clock Reduction

5 50

x is only active in location S1

Definition
S X is inactive at S if on all path from
S, x is always reset before being
tested.
x:=0
x:=0
x<5 \ x>3

74

Global Reduction
(When to store symbolic state)

0

0

However,
Passed list useful for
efficiency

No Cycles: Passed list not needed for termination
75

Global Reduction trrssen
(When to store symbolic state)

S0
O

Cycles:
Only symbolic states
involving loop-entry points
need to be saved on Passed list

76

[RTSS97,CAV03]

To Store Or Not To Stoe?

117 statesig,

81 statesenurypoint

9 states

Time OH
less than 10%
(need to
re-explore
some states)

Reuse of State Space
4 N

Waiting C)l-‘*f"l-‘*2 A[] propl
A[] prop2
A[] prop3
A[] prop4 SEED.
in existing
All propS Passed
. list before
continuing
. search
A[] propn
Which order

to search?

78

Reuse of State Space
4 N

Reuse of State Space
4 N

Waiting OproPZ A[] propl Waiting (DP"’P2 A[] propl
A[] prop2 A[] prop2
A[] prop3 A[] prop3
All propd iear;:t_n A[] prop4 iea.—;:t.n
A[] prop5 o All propS Pacsed
. list before . list before
continuing continuing
- search - search
A[] propn A[] propn
Passed / Which order Passed / Which order
Hashtable to search? Hashtable @ gl to search?
SECONUAATIETIOLY)
79 80
Under-approximation
Reuse of State Space Bitstate Hashing (Holzman,SPIN)
4 ° 4 °)
Waiting prop2 A[l propl waiting [O @ O]
O
a 2 O
Al prgs | (s SA(fe
All propd :1 exnst:’ng
asse
All props list before
REVERSE CREATION continuing
search
A Which order
ALl propn to search?
Passed j
Hashtable
. @) SWeppPEaito)
———— generation order Secondary Memory, 81 8
Under-approximation Bit-state Hashing
Bitstate Hashing
/ \ INITIAL Passed := @;
(] 1 p q Waiting := {(n0,20)}
Waiting O @ O Final / 0 Bitarray REPEAT
O O /-\ 1 - L . Passed(F(n,2)) =1
O @ O 0 UPPAAL
8 Mbits

Hashfunction
F

83

{(muU): (n,Z) =>(mU) }
to Waiting;
Add (n,Z) to Passed Passed(F(n,2)) :=1
UNTIL Waiting =@

or

Final is in Waiting

84

Under Approximation
(good for finding Bugs quickly, debugging)

= Possitive answer is safe (you can trust)
= You can trust your tool if it tells:
a state is reachable (it means Reachable!)
= Negative answer is Inconclusive
= You should not trust your tool if it tells:
a state is non-reachable

= Some of the branch may be terminated by
conflict (the same hashing value of two states)

85

Over-approximation
Convex Hull

86

Over-Approximation
(good for safety property-checking)

= Possitive answer is Inconclusive
= a state is reachable means Nothing
(you should not trust your tool when it says so)

= Some of the transitions may be enabled by
Enlarged zones

= Negative answer is safe
= a state is not reachable means Non-reachable
(you can trust your tool when it says so)

87

