

Formal Semantics of CTL	
$s \models p$	$\inf p \in Label(s)$
$s \models \neg \phi$	$\inf \neg (s \models \phi)$
$s \models \phi \lor \psi$	$iff (s \models \phi) \lor (s \models \psi)$
$s \models EX \phi$	$\text{iff } \exists \sigma \in P_{\mathcal{M}}(s). \sigma[1] \models \phi$
$s\modelsE\left[\phiU\psi\right]$	$\mathrm{iff} \; \exists \sigma \in P_{\mathcal{M}}(s). (\exists j \geqslant 0. \sigma[j] \models \psi \; \land \; (\forall 0 \leqslant k < j. \sigma[k] \models \phi))$
$s\models A\left[\phiU\psi\right]$	$\mathrm{iff} \; \forall \sigma \in P_{\mathcal{M}}(s). (\exists j \geqslant 0, \sigma[j] \models \psi \; \land \; (\forall 0 \leqslant k < j, \sigma[k] \models \phi)).$
Where $P_{i}(s)$ denotes the set of naths starting from s	
and $\sigma[i]$ deno	between the lement of σ
	21

 $\begin{array}{c} \textbf{function } Sat_{AU}(\phi,\psi:Formula): \textbf{set of } State; \\ (* \text{ precondition: true }*) \\ \textbf{begin var } Q,Q': \textbf{set of } State; \\ Q,Q':=Sat(\psi), \varnothing; \\ \textbf{do } Q \neq Q' \longrightarrow \\ Q':=Q; \\ Q:=Q \cup (\{s \mid \forall s'.(s,s') \in R \Longrightarrow s' \in Q\} \cap Sat(\phi)) \\ \textbf{od;} \\ \textbf{return } Q \\ (* \text{ postcondition: } Sat_{AU}(\phi,\psi) = \{s \in S \mid \mathcal{M}, s \models \mathsf{A}[\phi \mathsf{U} \psi] \} *) \\ \textbf{end} \end{array}$

Fixpoint Characterizations (SMV)

$$\mathsf{EF}p \equiv p \lor \mathsf{EXEF}p$$

Let A be the set of states satisfying EF p then

$$A \equiv p \lor EXA$$

49

in fact A is the smallest one of sets satisfying the equations (the least fixpoint)

Remaining operators

 $AF p = \mu y.(p \lor AX y)$ $AG p = yy.(p \land AX y)$ $E(pUq) = \mu y.(q \lor (p \land EX y))$ $A(pUq) = \mu y.(q \lor (p \land AX y))$

55

