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Lecture 1
Branching time logics and CTL
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Peterson-Fischer: Possible Specifications

y1 := true

y2 \/ t = 1

t := 2

l0 l1

l3 l2

Variables: y1, y2: boolean, t: {1,2}
Initially y1 = y2 = false,  t = 1

y1 := false

y2 := true

y1\/ t = 2

t := 1

m1

m3 m2

y2 := false

m0

Mutual Exclusion: the two processes never simultaneously reach l3,m3

Absence of Starvation: If the left process is at l1, it will later reach l3

Bounded Overtaking: If the left process is at l1, the other process will reach
m3 at most once (twice?) before the left process reaches l3
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Two Classes of Formalizations

at P1 free at P2

Branching Time Properties:
Specify properties that hold for 
the computation tree (unfolding)

at P1
free

free

at P2

free

free

always possible to reach free ;
always possible to reach at P1 ;
free is always eventually reached

free

Linear Time Properties:
Specify properties that hold for 
all computations

free at P1 free at P2 free

free at P2 free at P2 free

free at P1 free at P1 free

Free in every 2nd state ;
at P1 always followed by free
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Two Classes of Formalizations

at P1 free at P2

Branching Time Properties:

at P1
free

free

at P2

free

free

In all computations,
always 

in some computation
possible to reach free 

free

Linear Time Properties:

free at P1 free at P1 free

Specification says:
In all computations,
Free in every 2nd state ;

In all computations,
at P1 always followed by free

5

Two Classes of Formalizations

at P1 free at P2

Branching Time Properties:

at P1
free

free

at P2

free

free

In all computations (paths),
always 

in some computation (path)
possible to reach free 

free

Linear Time Properties:

free at P1 free at P1 free

Specification says:
In all computations,
Free in every 2nd state ;

In all computations,
at P1 always followed by free
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Structure of CTL Formulas

Operators in branching time logic typically have two components:
<in all/some (future) path(s)> <temporal property>

CTL syntax:
A/E  G/F/U φ
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Structure of CTL Formulas

p p

AG p EG p EF p AF p
Invariant Potentially globally Possible Inevitable

Operators in branching time logic typically have two components:
<in all/some (future) path(s)> <temporal property>

CTL syntax:
A/E  G/F/U φ

p p

8

E[φ U ψ]

S

ψ
φ

φφφφ
φφ

φ
φ

E[φ U ψ] is valid in s if some path from s satisfies the above

9

A[φ U ψ]

S

ψ
φ

φφφφ
φφ

φ
φ

A[φ U ψ] is valid in s if all pathes from s satisfy the above

10

Computation Tree Logic, CTL
Clarke & Emerson 1980

φ :: = P | ¬ φ | φ ∨ φ | EX φ | E[φ U φ] | A[φ U φ]

Syntax

where P ∈ AP (atomic propositions)

11

S

Computations vs. States
Linear time formula satisfied by state in certain computation
Branching time formula satisfied by state in the computation tree.
Meaning of nested formula different

◊□ p

12

S

Computations vs. States
Linear time formula satisfied by state in certain computation
Branching time formula satisfied by state in the computation tree.
Meaning of nested formula different

◊□ p
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S

Computations vs. States
Linear time formula satisfied by state in certain computation
Branching time formula satisfied by state in the computation tree.
Meaning of nested formula different

◊□ p

14

S

Computations vs. States
Linear time formula satisfied by state in certain computation
Branching time formula satisfied by state in the computation tree.
Meaning of nested formula different

In branching time AF ( ? G p )

15

S

Computations vs. States
Linear time formula satisfied by state in certain computation
Branching time formula satisfied by state in the computation tree.
Meaning of nested formula different

In branching time AF ( A G p )

16

S

Computations vs. States
Linear time formula satisfied by state in certain computation
Branching time formula satisfied by state in the computation tree.
Meaning of nested formula different

In branching time AF ( A G p )
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Computations vs. States
Linear time formula satisfied by state in certain computation
Branching time formula satisfied by state in the computation tree.
Meaning of nested formula different

In branching time AF ( A G p )
But then, we cannot let each computation ”decide” when to start G p 

S

18

Computations vs. States
Linear time formula satisfied by state in certain computation
Branching time formula satisfied by state in the computation tree.
Meaning of nested formula different

In branching time AF ( A G p )
But then, we cannot let each computation ”decide” when to start G p 

p p¬p
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Computations vs. States
Linear time formula satisfied by state in certain computation
Branching time formula satisfied by state in the computation tree.
Meaning of nested formula different

In branching time AF ( A G p )
But then, we cannot let each computation ”decide” when to start G p 

p p¬p

This Transition system satisfies ◊□ p
But not                                      AF ( A G p )

20

Why?

21

Formal Semantics of CTL

Where PM(s) denotes the set of paths starting from s
and σ[i] denotes i’th element of σ

22

Theorem

All operators are derivable from

• EX f 
• EG f  
• E[ f U g ]

and boolean connectives

All operators are derivable from

• EX f 
• EG f  
• E[ f U g ]

and boolean connectives

[ ] ( )[ ] ggfggf ¬¬∧¬∧¬¬¬≡ EGUEUA

23

CTL Model-Checking Algorithms

24

Labeling Methods [Clarke et al 81]

• Sat(φ) = all states where φ is true

• Compute Sat(φ) recursively as follows:
– For each sub-formula φi of φ,  compute Sat(φi)
– This is easier: e.g. Sat(P) = {s | P∈Label(s)}

• Compose Sat(φi) to get Sat(φ)
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Labeling Methods [Clarke et al 81]

• Sat(φ) = all states where φ is true

• Compute Sat(φ) recursively as follows:
– For each sub-formula φi of φ,  compute Sat(φi)
– This is easier: e.g. Sat(p) = {s | p∈Label(s)}

• Compose Sat(φi) to get Sat(φ)

This is a GLOBAL model checking algorithm:
Compute all states that satisfy φ

Compare with LOCAL model checking algorithm:
Check whether some (e.g., initial) state satisfies φ

26

Simpler mutex

t = 1

t := 2

l1

l3 l2

Variables: t: {1,2}
Initially t = 1

t = 2

t := 1

m1

m3 m2

Mutual Exclusion:          AG ¬(at l2 /\ at m3)

Absence of Starvation: AG (at l2 -> AF at l3 )
Bounded Overtaking: AG(at l2 -> A[¬at m3 U A[at m3 U A[¬at m3 U at l3 ]]])

27

Simpler state space

t = 1

l1          l2         l3 

m1

m2 

m3 

t = 2

l1          l2         l3 

28

Simpler state space

t = 1

l1          l2         l3 

m1

m2 

m3 

t = 2

l1          l2         l3 

Absence of Starvation: AG (at l2 -> AF at l3 )

29

Simpler state space

t = 1

l1          l2         l3 

m1

m2 

m3 

t = 2

l1          l2         l3 

Absence of Starvation: AG (at l2 -> AF at l3 )

30



6

31

How to Compute Sat(E[φ U ψ])

φ

ψ

Passed

32

How to Compute Sat(E[φ U ψ])

φ

E[φ U ψ]

ψ

Passed

33

How to Compute Sat(E[φ U ψ])

φ

E[φ U ψ]

ψ

Passed

New (not in Passed!)

34

How to Compute Sat(E[φ U ψ])

φ

E[φ U ψ]

ψ

∈
??

Passed

35

How to Compute Sat(E[φ U ψ])

φ

E[φ U ψ]

ψ

∈
Yes!

Passed

36

How to Compute Sat(E[φ U ψ])

φ

E[φ U ψ]

ψ

Passed
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37

How to Compute Sat(E[φ U ψ])

φ

E[φ U ψ]

ψ

Passed

38

How to Compute Sat(E[φ U ψ])

φ

E[φ U ψ]

ψ

Passed

No new more state, Done!

39

How to Compute Sat(A[φ U ψ])

?

40

How to Compute Sat(A[φ U ψ])

φ

ψ

Passed

41

How to Compute Sat(A[φ U ψ])

φ

A[φ U ψ]

ψ

Passed

42

How to Compute Sat(A[φ U ψ])

φ

A[φ U ψ]

ψ

Passed

New (not in Passed!)
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43

How to Compute Sat(A[φ U ψ])

φ

A[φ U ψ]

ψ

∈
??

Passed

44

How to Compute Sat(A[φ U ψ])

φ

A[φ U ψ]

ψ

∈
Yes!

Passed

45

How to Compute Sat(A[φ U ψ])

φ

A[φ U ψ]

ψ

Passed

46

How to Compute Sat(A[φ U ψ])

φ

E[φ U ψ]

ψ

Passed

No new more state, Done!

47

))(}')','.(|({ φSatQsRssss ∩∈⇒∈∀

48

More efficient algorithm for A[φ U ψ]

The preceding algorithm has quadratic complexity.
We can do better by excluding states that satisfy

E[¬ψ W (¬φ /\ ¬ψ)]
1. Include states that satisfy ψ
2. Exclude states that satisfy ¬φ /\ ¬ψ
3. Exclude states that satisfy φ /\ ¬ψ and either

1. can reach a state that satisfies ¬ φ /\ ¬ψ
2. or are blocked
3. or are in a non-trivial (with at least 2 states) strongly 

connected component in states that satisfy ¬ φ /\ ¬ψ
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Fixpoint Characterizations (SMV)

ppp EFEXEF ∨≡

Let  A be the set of states satisfying   EF p then

AEXA ∨≡ p

in fact  A  is the smallest one of sets satisfying
the equations (the least fixpoint)

50

Fixed points of monotonic functions

• Let τ be a function S → S
• Say τ is monotonic when

• Fixed point of τ is y such that 

• If τ monotonic, then it has
– least fixed point µy. τ(y)
– greatest fixed point νy. τ(y)

)()(  implies  yxyx ττ ⊆⊆

yy =)(τ

51

Iteratively computing fixed points

• Suppose S is finite
– The least fixed point µy. τ(y) is the limit of

– The greatest fixed point νy. τ(y) is the limit of

Λ⊆⊆⊆ (false))((false)false τττ

Λ⊇⊇⊇ (true))((true)true τττ

Note, since S is finite, convergence is finite

52

Example:  EF p

• EF p is characterized by

• Thus, it is the limit of the increasing series...
)(. yEXpypEF ∨= µ

pp ∨ EX pp ∨
EX(p ∨ EX p)

. . .

53

Example:  EG p

• EG p is characterized by

• Thus, it is the limit of the decreasing series...

)(. yEXpypEG ∧=ν

p ∧ EX p pp ∧
EX(p ∧ EX p)

...

54

Example, continued

p

q

p,q

EF q

p

1 2

3

4

}3,2,1{
}3,2,1{

}3,2{

3

2

1

0

=
=
=
=

A
A
A

ØA

)(. yEXqyqEF ∨= µ
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55

Remaining operators

))((.)(
))((.)(

)(.
)(.

yAXpqyqUpA
yEXpqyqUpE

yAXpypAG
yAXpypAF

∧∨=
∧∨=

∧=
∨=

µ
µ
ν
µ

56

Complexity

However Ssys may be EXPONENTIAL in 
number of parallel components!
--
FIXPOINT COMPUTATIONS may be carried
out using 

ROBDD’s 
(Reduced Ordered Binary Decision Diagrams)

Bryant,  86

However Ssys may be EXPONENTIAL in 
number of parallel components!
--
FIXPOINT COMPUTATIONS may be carried
out using 

ROBDD’s 
(Reduced Ordered Binary Decision Diagrams)

Bryant,  86

57

You will need
• Lecture Handouts
• A few papers (will be distributed)
• SPIN documentation
Reference texts: You can from
• SPIN MODEL CHECKER Primer and Reference Manual by Gerard Holzmann, 

good textbook for the course.
• Design and Validation of Computer Protocols, G.J. Holzmann, Prentice Hall 

1991, older book, can be downloaded from the net.
• Old notes prepared by me some years ago.
I will borrow a few slides by
• G. Holzmann
• J.-P. Katoen
• T. Ruys
You can inspect these slides yourself (see the course page).

Course Material

58

A CTL-model is a Kripke Structure
(=transition systems with labeled nodes)

M = <S, E, Label> where
– S is a non-empty set of states
– E ⊆ S×S is a transition relation
– Label: S 2AP is a labeling function 


