
1

1

Lecture 1
Infinite-state and parameterized systems

2

Model Checking

?Model of
Dynamic Behavior

Satisfies Correctness
Property

•Distributed Algorithm
•Communication Protocol
•Model of Software Module
•Design Model

•Assertions
•Temporal Logic Formula
•Abstract Test

3

Reachability Problem:

I F

?
Transition Graph

Initial States “Bad” States

4

Repeated Reachability Problem:

I F

?
Transition Graph

Initial States “Bad” States

“Bad” Loop

5

Verification of Finite-State Systems

• A rather mature technology
• Efficient representations

– Hash tables
– Symbolic representations: BDDs, SAT-based

• Exploitations of Model structure
– Concurrency (partial order reduction)

• Partial approximations
– Symbolic Trajectory Evaluation
– Exploration of part of State-Space.

6

Infinite-State Systems

Why are Models infinite-state?
• Unbounded data structures

– Stacks, Queues, Numbers, …

• Unbounded Control Structures
– Process Networks, Distributed Algorithms, Dynamic Process

Creation

• Clocks
– Timed and hybrid Systems

• Unbounded Communication Channels
• …

2

7

Some classes of Infinite-State Models

Extending State Vectors by
• Integer Variables

– Petri Nets, Programs with Integers
– Unstructured Process Networks.

• Strings over Finite Alphabet
– Linear Data Structures (Stacks, Queues, Lists)
– Numbers
– Linear/Ring-shaped process networks

• (labeled) Graphs
– General Distributed Algorithms,
– Heaps, …

8

Recepy for Infinite-State Verification

• Choose symbolic representation of (infinite) sets of
system states.

• Sets of sucessors/predecessors computed by applying
predicate transformers

• Explore state-space by repeatedly computing sets of
successors/predecessors of already explored states.

• Safety properties reduces to reachability
• Liveness reduces to repeated reachability (at least in

some cases).

9

Pre- and PostConditions

S Post(S)

10

Pre- and PostConditions

Spre(S)
Post(S)

11

Generating strong(est) invariant:

I

InfiniteTransition Graph

Initial States

Which of these states are reachable?

12

Generating strong(est) invariant:

I

InfiniteTransition Graph

Initial States

post(I)post2(I)
post3(I)

post*(I)

3

13

Reachability Problem:

I F

?
InfiniteTransition Graph

Initial States “Bad” States

14

Forward Reachability Analysis:

I F

InfiniteTransition Graph

Initial States “Bad” States

post(I)post2(I)
post3(I)

post*(I)

15

Backward Reachability Analysis:

InfiniteTransition Graph

Initial States
“Bad” States

FI
pre(I)

pre2(I)
pre3(I)

pre*(I)

16

Acceleration/Widening

I

InfiniteTransition Graph

Initial States

post(I)post2(I)
post3(I)

post*(I)

Extrapolate to
limit

17

Process Networks: Simple Cache Protocol

Combine all Processors for one Cache line.

Invalid

Shared

Exclusive

S
1

S-1

1
1

sign(E)

sign(E)+1

1

Initially: S = E = 0
Actions

I ≥ 1 → I := I-1
S := S + sign(E) + 1
E := E - sign(E)

S ≥ 1 → I := I + S -1
S := 0
E := E + 1

E ≥ 1 → I := I+1
E := E-1

18

Backwards Reachability Analysis

Bad: E ≥ 2
Pre(r-m,Bad): E ≥ 1, S ≥ 1 ϕ
Pre(r-s,Bad): E ≥ 3
Pre(inv,Bad): E ≥ 3
Pre(r-m, ϕ): false
Pre(r-s, ϕ): E ≥ 2 , I ≥ 1
Pre(inv, ϕ): E ≥ 2 , S ≥ 1

Pre*(Bad): E ≥ 2 \/ E ≥ 1, S ≥ 1
Unreachable!!

Initially: S = E = 0
Actions

I ≥ 1 → I := I-1
S := S + sign(E) + 1
E := E - sign(E)

S ≥ 1 → I := I + S -1
S := 0
E := E + 1

E ≥ 1 → I := I+1
E := E-1

4

19

The fact that backwards reachability
analysis converged is not an accident.

It is because the model is a
well-structured transition system

[Finkel][Abdulla,Cerans,Jonsson,Tsay]

20

• There is partial ordering ≤ on configurations
{I → 0 , S → 1 , E → 2} ≤ {I → 2 , S → 1 , E → 3}

such that
– A: Transition relation is monotone wrp. to ≤
– B: ≤ on configurations is a well-quasi-ordering:

Any UCS has finite set of minimal elements

• The set Bad is Upward Closed (UCS)
• by A: Bad is UCS implies pre(Bad) is UCS

implies pre*(Bad) is UCS

Well-Structured Transition Systems

21

Petri Nets

22

States = Markings

23

Firing
t

Transitions

t

24

t is disabled

Transitions

t

5

25

Monotonicity

26

Petri Nets: infinite state

27

W

C

R=1?

R:=0

R:=1

R=1?

R:=0

R:=1
R=1?

R:=0

R:=1
R=1?

R:=0

R:=1

Mutual Exclusion

28

R=1?

R:=0

R:=1
R=1?

R:=0

R:=1
R=1?

R:=0

R:=1

Mutual Exclusion

Initial states:
• R=1
• All processes in

Infinitely
many

Bad states:
Two or more processes in

29

R=1?

R:=0

R:=1
R=1?

R:=0

R:=1
R=1?

R:=0

R:=1

Mutual Exclusion

WC R=1

30

Mutual Exclusion

WC R=1Set of initial states :

infinite

6

31

Mutual Exclusion

WC R=1

WC R=1

32

Mutual Exclusion

WC R=1

WC R=1

33

• mutual exclusion:
#tokens in critical section > 1

Ideal = Upward closed set of markings

safety
=

reachability of ideals

critical section

Safety Properties

34

Petri Nets

• Concurrent systems

• Infinite-state: symbolic representation

• Monotonic behaviour

• Safety properties: reachability of ideals

35

IPre(I)

Monotonicity
ideals closed under computing Pre

36

Fin

Backward Reachability Analysis

Ideals

7

37

Ideals: Symbolic Representation

index (generator)

38

Ideals: Symbolic Representation

Index for bad states

C

39

Each ideal can be characterized by
a finite set of generators

40

Index is minimal element
of its ideal

If i j then j

i

41

pre(Bad)
pre2(Bad)

pre3(Bad)

Backward Exploration [Abdulla Jonsson 93]

InfiniteTransition Graph

Initial States
“Bad” States

BadI

pre*(Bad) is an UCS

Minimal elements

•Eventually, all minimal elements reached => termination
42

Index for bad states

C

Indices of Pre

Monotonicity
ideals closed under computing Pre

i: index
Pre(i) computable

8

43

Backward Reachability Analysis

Step 0 :

C

Step 1 :

Step 2 :

Step 3 :
44

Backward Reachability Analysis

Step 0 :

C

Step 1 :

Step 2 :

Step 3 :

45

What did we need?

1. Computable ordering
2. Monotonicity, Computability of Pre
3. Termination -- Ordering is WQO

”nice properties”

46

Well Quasi-Ordering (WQO)

(A ,) is WQO if
a0 a1 a2 a3

i,j: i<j and ai aj

(Nat ,) is WQO
x0 x1 x2 x3 : natural numbers

i,j: i<j and xi xj

WQO : Simple Example

47

Properties of WQO

(A , =) is WQO if A is finite
a0 a1 a2 b a3 a4 a5 b a6

Finite Sets

48

Examples -- WQO

(A* ,)

A : finite alphabet

w1 w2 : w1 subword of w2

e.g. ab xaybz

9

49

Why are words over a finite set WQO?

[Higmans lemma]
Proof by contradiction:
• Assume that there is a sequence of words

w0 w1 w2 w3 w4 w5 w6 w7 . . .
where never wi ≤ wj for i < j

• Let this be the least such sequence lexicographically, meaning that
– w0 is as short as possible
– if w0 w1 w2 w3 are fixed, then w4 is as short as possible

• There must be infinite subsequence starting with, say, a
w0 w1 aw2’ w3 aw4’ w5 w6 aw7’ . . .

• But then
w0 w1 w2’ w4’ w7’ . . .

is a smaller such sequence
Contradiction

50

Protocol Model

Control Part Channel Part:
•Ordered (FIFO)/Unordered
•Lossy/Nonlossy

c1

c2

c1!a

c2?b

c1!b

c1?ac2!b
c2!a

c2?b

State: < q , w1 , w2 >
Transitions: send , receive , loss

a b b aX

51

r0

r3 r2

r1

Alternating Bit Protocol

Sender

Lossy FIFO
Channels

D

A

Receiver

Send

Send

A?a0A?a1

D!m0

D!m1

A?a1

A?a0

D?m0

D?m1

RecRec

D?m1
A!a1

D?m0
A!a0

q0 q1

q3 q2

Messages: { m0 , m1 , a0 , a1 }

52

Global Control Graph

Send

D!m0A?a1

D?m0

Rec

00 10 20 30
A?a1A?a1 SendA?a0

D!m1
A?a0

Send

D!m0
A?a1

01 11 21 31
A?a1A?a1 SendA?a0

D!m1
A?a0

Send

D!m0
02 12 22 32

A?a1A?a1 SendA?a0

D!m1
A?a0

Send

D!m0
A?a1

03 13 23 33
A?a1A?a1 SendA?a0

D!m1
A?a0

Rec

Rec Rec Rec

Rec
RecRec

Rec Rec RecRec

D?m0 D?m0 D?m0

D?m1 D?m1 D?m1 D?m1

A?a1

D?m1
A!a1

D?m1
A!a1

D?m0
A!a0

D?m1
A!a1

D?m1
A!a1

D?m0
A!a0

D?m0
A!a0

D?m0
A!a0

SenderState

Receiver

53

Monotonicity

< qi, rj , wD , wA > < qi, rj , wD , wA >

< qi, rj , wD ’ , wA ’ >
Since messages can
be lost.

54

Ideal Index

denotes all larger states< qi, rj , wD , wA >

< q0 , r0 , <m0> , <> >

< q0 , r0 , <m0 m1> , <> >

< q0 , r0 , <m0 m1> , <a0 a0 a1> >

< q0 , r0 , <> , <a1 a0 a1> >

10

55

Each ideal can be characterized by
a finite set of generators

By WQO of

56

Example

Pre ()

!b
if a d

!d
if a d b

?d
if d a d b

a d b

57

Methodology (applied to LCS)

1. Computable ordering
2. Monotonicity, Computability of Pre
3. Ordering is WQO

58

LCS -- Forward vs Backward Analysis

Pre*(w) is regular and computable

Post*(w) is regular but not computable

59

r0

r3 r2

r1

Alternating Bit Protocol

Sender

Lossy FIFO
Channels

D

A

Receiver

Send

Send

A?a0A?a1

D!m0

D!m1

A?a1

A?a0

D?m0

D?m1

RecRec

D?m1
A!a1

D?m0
A!a0

q0 q1

q3 q2

State: < qSender , rReceiver , wD , wA >
Initial State: < q0 , r0 , <> , <> >

wD

wA

60

Analysis of AB Protocol

Send

D!m0A?a1

D?m0

Rec

00 10 20 30
A?a1A?a1 SendA?a0

D!m1
A?a0

Send

D!m0
A?a1

01 11 21 31
A?a1A?a1 SendA?a0

D!m1
A?a0

Send

D!m0
02 12 22 32

A?a1A?a1 SendA?a0

D!m1
A?a0

Send

D!m0
A?a1

03 13 23 33
A?a1A?a1 SendA?a0

D!m1
A?a0

Rec

Rec Rec Rec

Rec
RecRec

Rec Rec RecRec

D?m0 D?m0 D?m0

D?m1 D?m1 D?m1 D?m1

A?a1

D?m1
A!a1

D?m1
A!a1

D?m0
A!a0

D?m1
A!a1

D?m1
A!a1

D?m0
A!a0

D?m0
A!a0

D?m0
A!a0

Reachable??

11

61

Analysis of AB Protocol

Send

D!m0A?a1

D?m0

Rec

00 10 20 30
A?a1A?a1 SendA?a0

D!m1
A?a0

Send

D!m0
A?a1

01 11 21 31
A?a1A?a1 SendA?a0

D!m1
A?a0

Send

D!m0
02 12 22 32

A?a1A?a1 SendA?a0

D!m1
A?a0

Send

D!m0
A?a1

03 13 23 33
A?a1A?a1 SendA?a0

D!m1
A?a0

Rec

Rec Rec Rec

Rec
RecRec

Rec Rec RecRec

D?m0 D?m0 D?m0

D?m1 D?m1 D?m1 D?m1

A?a1A?a1

D?m1
A!a1

D?m1
A!a1

D?m0
A!a0

D?m1
A!a1

D?m1
A!a1

D?m0
A!a0

D?m0
A!a0

D?m0
A!a0

<ε , ε>

<m1,ε>

<ε,a0>

<m1,ε>

<ε,a0>

<m1,ε>

<m1,ε>

<m1,ε>

<ε,a1a0>

<m0m1,ε>

<m1,ε>

<m1,a1>

<m0m1,ε><m0m1,ε>

<m1,a1>

62

Methodology

Start from a finite domain

Build more complicated data structures:
words, multisets, lists, sets, etc.

63

Properties of WQO

if (A ,) is WQO

Multisets

then (AM , M) is WQO

M1
M2

M1
M M2

64

Properties of WQO

if (A ,) is WQO

w2 : b0 b1 b2 b3 b4 b5 b6

Words

w1 : a0 a1 a2

*

then (A ,) is WQO**

65

Examples -- WQO

Words of natural numbers

3 7 1 4 2 8

5 2 7 w1

w2

w1 w2

66

Multisets over a finite alphabet

12

67

Words of multisets over a finite alphabet

68

Parameterized Systems

Family of Systems
• infinite number of parameter values
• Each system instance can be finite-state
• Examples: Process Networks, Distributed Algorithms

– Parameter: system size, system topology, …
– Example: Linear system parameterized by its size

69

Parameterized Systems

Family of Systems
• infinite number of parameter values
• Each system instance can be finite-state
• Examples: Process Networks, Distributed Algorithms

– Parameter: system size, system topology, …
– Example: Linear system parameterized by its size

n processes

critical resource
70

Verifying Parameterized Systems

Undecidable in general [Apt, Kozen]

Different Approaches:
• Verify system for some parameter values

– Sometimes, results can be generalized

• Induction over system structure [Kurshan, Wolper/Lovinfosse]

– Must find Inductive Hypothesis, “Network Invariant”.

• Generate Finite-State Abstraction
• Extend Symbolic Model Checking to Infinite Sets

– Try to compute reachable states and reachable loops by
symbolic techniques

71

Potential applications to Word Structures

• Parameterized Systems with Linear or Ring Structure
[Clarke,Grumberg,Jha], [Kesten,Maler,Pnueli,Shahar]

• Unbounded FIFO Channels [Boigelot,Godefroid,Wolper],
[Bouajjani,Habermehl], [Abdulla,Bouajjani,Jonsson,Annichini]

• Pushdown Systems [Finkel,Willems,Wolper], [Bouajjani,Esparza,Maler],
[Esparza,Schwoon], [Caucal], [Ball,Rajamani]

• Regular Hardware Structures [Basin,Klarlund et al],

• Systems with Integers and Reals [Boigelot,Wolper]

• Turing Machines
Implemented Tools
• MONA, LASH, TLV, PAX, …

72

Linear Process networks: Token passing

N N NNC

Action: Enter Critical Section

13

73

Token passing: Formal Model

Alphabet: Σ = {N , T , C}
Configuration: word over Σ
Initial Configurations: T N* (regular set over Σ)
Transition: pair of equally long words

e.g., N N T N N → N N N T N

74

Token passing: Formal Model

Alphabet: Σ = {N , T , C}
Configuration: word over Σ
Initial Configurations: T N* (regular set over Σ)
Transition: pair of equally long words

e.g., N N T N N → N N N T N
represent as sequence of pairs: 〈N,N〉 〈N,N〉 〈T,N〉 〈N,T〉 〈N,N〉

75

Token passing: Formal Model

Alphabet: Σ = {N , T , C}
Configuration: word over Σ
Initial Configurations: T N* (regular set over Σ)
Transition: pair of equally long words

e.g., N N T N N → N N N T N
represent as sequence of pairs: 〈N,N〉 〈N,N〉 〈T,N〉 〈N,T〉 〈N,N〉

Transition Relation: length-preserving relation on Σ*
represented by regular language over Σ×Σ :

〈N,N〉* 〈T,N〉 〈N,T〉 〈N,N〉* is {Ni+1 T Nj → Ni T Nj+1 , i,j ≥ 0}

76

Representing Actions (transition relations)

As transducers (finite automata over Σ×Σ): [Kesten+ 97]

〈N,T〉
[Σ]

〈T,N〉
[Σ]

Notation:
[S] denotes {〈a,a〉 : a ∈ S} i.e., “copy any symbol in S”

77

Representing Actions (transition relations)

As transducers (finite automata over Σ×Σ): [Kesten+ 97]

〈N,T〉
[Σ]

〈T,N〉
[Σ]

Notation:
[S] denotes {〈a,a〉 : a ∈ S} i.e., “copy any symbol in S”

As regular expressions over Σ×Σ :

[Σ]* 〈T,N〉 〈N,T〉 [Σ]*

78

Representing Actions in MSO over strings

• Alphabet encoded by (typically boolean) configuration variables
• x[i] is the value of x at position i

14

79

Actions of the Token Ring Example

Pass token to right: [Σ]* 〈T,N〉 〈N,T〉 [Σ]*

Pass token around(if ring): 〈N,T〉 [Σ]* 〈T,N〉

Enter Critical Section: [Σ]* 〈T,C〉 [Σ]*

Exit Critical Section: [Σ]* 〈C,T〉 [Σ]*

Idle: [Σ]*

80

Verification Problems

Safety properties reduce to reachability
Mutual Exclusion:

• Is some configuration in Σ* C Σ* C Σ* reachable?

81

Verification Problems

Safety properties reduce to reachability
Mutual Exclusion:

• Is some configuration in Σ* C Σ* C Σ* reachable?
Liveness properties
• Token will reach righmost position:

T N* leads to N*T

82

Verification Problems

Safety properties reduce to reachability
Mutual Exclusion:

• Is some configuration in Σ* C Σ* C Σ* reachable?
Liveness properties
• Token will reach righmost position:

T N* leads to N*T
needs specification of fairness properties
e.g., infinitely often Pass-Token

83

Szymanski’s Algorithm (idealized)

Mutual Exclusion algorithm for linear network of processes,
indexed 1, … ,n

Pseudocode for process i

1: await ∀j : j ≠ i :: ¬sj
2: wi , si := true,true
3: if ∃j : j ≠ i :: (pcj ≠ 1 /\ ¬wj)

then si := false; goto 4
else wi := false; goto 5

4: await ∃j : j ≠ i :: (sj /\ ¬wj)
then wi , si := false,true

5: await ∀j : j ≠ i :: ¬wj
6: await ∀j : j < i :: ¬sj
7: si := false; goto 1

84

Szymanski’s Algorithm (idealized)

Mutual Exclusion algorithm for linear network of processes,
indexed 1, … ,n

Pseudocode for process i

1: await ∀j : j ≠ i :: ¬sj
2: wi , si := true,true
3: if ∃j : j ≠ i :: (pcj ≠ 1 /\ ¬wj)

then si := false; goto 4
else wi := false; goto 5 “synchronized” moves

4: await ∃j : j ≠ i :: (sj /\ ¬wj)
then wi , si := false,true

5: await ∀j : j ≠ i :: ¬wj
6: await ∀j : j < i :: ¬sj
7: si := false; goto 1 critical section

15

85

Encoding Szymanski’s Algorithm

Alphabet: {(pc,w,s) : pc∈{1,2, … ,7} , w,s∈{0,1}}
(encoded in 5 bits)

Initially : (1,0,0)*
Transition relation: union of transducer for each

action

86

Szymanski’s Algorithm: Statement 6:

6: await ∀j : j < i :: ¬sj

¬s /\
(pc,w,s) = (pc’,w’,s’)

pc = 6 /\ pc’ = 7
/\ (w,s) = (w’,s’)

left context right contexttransformation

(pc,w,s) = (pc’,w’,s’)

87

Verification Problems for Szymanski

Mutual Exclusion:
• Is some configuration in

Σ* pc=7 Σ* pc=7 Σ*
reachable?

In token ring, can be checked by backward reachability:
• Token ring is (almost) well-structured system

• (actions are local) [Abdulla,Cerans,Jonsson,Tsay 96]

• Σ* C Σ* C Σ* is an upward closed set

Szymanski is not well-structured
• (actions have global conditions)

88

Verification Problems for Szymanski

Mutual Exclusion:
• Is some configuration in

Σ* pc=7 Σ* pc=7 Σ*
reachable?

Non-starvation:
More about this later …

89

Systems operating on numbers

• Sequence numbers, e.g., in communication protocols
– Represented in “unary”, i.e, as an array of states, msgs.
– Typical configuration:

s3

Control state of sender s3,
Next sequence number is 0

m

Channel contains message
with sequence number 3

90

Representing Pushdown Systems

Control Part Stack

push(a)

pop(a) Stack symbols from
finite alphabet M

push(b)push(c) push(b)

pop(a)

Alphabet: S U M U {⊥}
control states stack symbols empty slot

Typical configuration: ⊥ ⊥ ⊥ ⊥ ⊥ s5 m1 m2 m5 m7

Initial configurations: ⊥* s0
(empty stack)

16

91

Representing Pushdown Systems

Alphabet: S U M U {⊥}
Typical configuration: ⊥ ⊥ ⊥ ⊥ ⊥ s5 m1 m2 m5 m7

Initial States: ⊥* s0

Actions:

[⊥]* 〈⊥,s’〉 〈s,m〉 [M]*

[⊥]* 〈s,⊥〉 〈m,s’〉 [M]*

push(m)
s s’

pop(m)
s s’

92

Verification Algorithms

• Assume model with
– Set of initial states Init

– Transition relation Trans

• How to compute
– Reachable configurations Init ° Trans*

Post* (Trans,Init)
– Transitive closure Trans* of Trans (or of some other transition

relation) for finding loops

93

Set of Initial states

Pass token

Product

Project and
Minimize

Using Automata for Reachability

T
N

〈N,T〉
[Σ]

〈T,N〉
[Σ]

〈N,T〉〈T,N〉
[N]

[T]

[N]

TN
N

94

What about Termination?

Set of initial states: T N*
After exploring pass-action T N* U NT N*

After exploring k pass-actions Ui ≤ k Ni T N*

How find the limit N*T N* ?

Compute post*(pass-token, T N*) = N*T N*
by Acceleration/Widening.

95

For Transitive Closure

Pass action : [Σ]* 〈T,N〉 〈N,T〉 [Σ]*
Transitive Closure not regular

Restrict by Reachable states : [N]* 〈T,N〉 〈N,T〉 [N]*
Composing at most k pass-actions

Ui ≤ k [N]* 〈T,N〉 [N]i-1 〈N,T〉 [N]*

How find the limit [N]* 〈T,N〉 [N]* 〈N,T〉 [N]* ?

96

Verification Techniques and Results

• Rules for actions with certain forms [Abdulla, Jonsson, Nilsson
CAV99][Fisman Pnueli Shahar, CAV00]

• Decidability result for systems with “bounded local
depth” [Jonsson,Nilsson,TACAS00]

• Extrapolation [Bouajjani,Jonsson,Nilsson,Touili,CAV00, Touili VEPAS 01]

• Techniques based on merging states in transducer
[Dams,Lakhnech,Steffen,CAV01] [Abdulla,Jonsson,Nilsson,d’Orso,Saksena,CONCUR02,CAV03]

• And more…

17

97

Acceleration for Token Passing

N

N

T

N

T

N

T

N

N

[N]

[N]

Init ° Pass-Action2

98

Acceleration for Token Passing

N

N

N

N

NT

N

T

N

TNN

T

N

N

N

[N]

[N]

[N]

Pass-Action3

99

Acceleration for Token Passing

N

N

N

N

NT

N

T

N

NNN

T

N

N

N

TNNN

N

N

N

T

N
[N]

[N]

[N]

[N]

Pass-Action4

100

Column Transducer

N

N

N

N

NT

N

T

N

NNN

T

N

N

N

TNNN

N

N

N

T

N
[N]

[N]

[N]

[N]

Pass-Actionω = Uk Pass-Actionk

Initial state transition accepting state

101

Acceleration for Token Passing

N

N

N

N

NT

N

T

N

NNN

T

N

N

N

TNNN

N

N

N

T

N
[N]

[N]

[N]

[N]

Making a Loop

N

T

T

N
[N]

N
N

102

Acceleration for Token Passing

N

N

N

N

NT

N

T

N

NNN

T

N

N

N

TNNN

N

N

N

T

N
[N]

[N]

[N]

[N]

Making a Loop

N

T

T

N
[N]

N
N

Make equivalent

18

103

Acceleration for Token Passing

N

N

N

N

NT

N

T

N

NNN

T

N

N

N

TNNN

N

N

N

T

N
[N]

[N]

[N]

[N]

N

T

T

N
[N]

N
N

merge

104

Acceleration for Token Passing

N

N

N

N

NT

N

T

N

NNN

T

N

N

N

TNNN

N

N

N

T

N
[N]

[N]

[N]

[N]

N

T

T

N
[N]

N
N

Formally: Simulates merged states

right (forward)
left (backward)

105

Acceleration for Token Passing

N

N

N

N

NT

N

T

N

NNN

T

N

N

N

TNNN

N

N

N

T

N
[N]

[N]

[N]

[N]

N

T

T

N
[N]

N
N

Other new computation

106

Acceleration for Token Passing

N

N

N

N

NT

N

T

N

NNN

T

N

N

N

TNNN

N

N

N

T

N
[N]

[N]

[N]

[N]

N

T

T

N
[N]

N
N

Formally: Simulates merged states

right (forward)
left (backward)

107

Acceleration for Token Passing

N

N

N

N

NT

N

T

N

NNN

T

N

N

N

TNNN

N

N

N

T

N
[N]

[N]

[N]

[N]

N

T

T

N
[N]

N
N

If simulations are congruences, the trick can be
repeated for more loop iterations

merge

108

MergingTheorem
[Dams,Lakhnech,Steffen01][Abdulla et al 03]

Merge states q and q’ if there are dominating p and r

Simulations must be congruences and commute.

q q’

p

r

left simulation

≤

≤

≤

≤

right simulation

19

109

] Application to Token Passing

Merge states q and q’ if there are dominating p and r

Simulations must be congruences and commute.

left simulation

≤

≤

≤

≤

right simulation

110

Special case: Unary actions

qL qR

Left Context:
Copying,
forward
deterministic

Right Context
Copying,
backward
deterministic

Noncopying
states

c

d

a b

Complete characterization for c ≠ d
[Abdulla Jonsson NilssonCAV99]

111

Special case: Unary actions

qL qR

Left Context:
Copying,
forward
deterministic

Right Context
Copying,
backward
deterministic

Noncopying
states

b

a

a b

112

Limit Trans+

qL qR

Left Context:
Copying,
forward
deterministic

Right Context
Copying,
backward
deterministic

Noncopying
states

a b

q
b

ε
ε

a

b
a

113

Szymanski’s Algorithm: Statement 6:

6: await ∀j : j < i :: ¬sj

¬s /\
〈pc,w,s〉 = 〈pc’,w’,s’〉

s /\
pc = 6 /\ pc’ = 7
/\ 〈w,s〉 = 〈w’,s’〉

left context right contexttransformation

〈pc,w,s〉 = 〈pc’,w’,s’〉

invariant

No ac
cele

rati
on

114

Szymanski’s Algorithm: Statement 6+7:

6: await ∀j : j < i :: ¬sj

¬s /\
〈pc,w,s〉 = 〈pc’,w’,s’〉

left context right contexttransformation

〈pc,w,s〉 = 〈pc’,w’,s’〉

7: si := false; goto 1

s /\ ¬s’
pc = 6 /\ pc’ = 1
/\ w = w’

20

115

Acceleration of Statement 6+7:

6: await ∀j : j < i :: ¬sj

¬s /\
〈pc,w,s〉 = 〈pc’,w’,s’〉

〈pc,w,s〉 = 〈pc’,w’,s’〉

7: si := false; goto 1

s /\ ¬s’
pc = 6 /\ pc’ = 1
/\ w = w’ ε

ε

116

Words of multisets over a finite alphabet

117

Timed Petri Nets

2.1
8.5

0.5
6.2

4.6

[1,5][4,7]

[0,3]
[4,) [1,2]

[3,6]

118

2.1
3.5

0.5
6.2

4.6

[1,5][4,7]

[0,3]

[1,2]

States = Markings

2.1 3.5 0.5 6.2 4.6

[4,)

[3,6]

119

2.1
3.5

0.5
6.2

4.6

[1,5][4,7]

[0,3]

[1,2]

3.4
4.8

1.8
7.5

5.9

[1,5][4,7]

[0,3]

[1,2]

increase
age
by
1.3

2.1 3.5 0.5 6.2 4.6

3.4 4.8 1.8 7.5 5.9

[4,)

[4,)

[3,6]

Timed Transitions

120

3.1
4.5

1.5
7.2

5.6

[1,5][4,7]

[0,3]

[1,2]

t

3.1 7.2

5.6

[1,5][4,7]

[0,3]

[1,2]

t

0.8

Firing
t

3.1 7.2 0.8 5.6

3.1 4.5 1.5 7.2 5.6

[4,)

[4,)

[3,6]

Discrete Transitions

21

121

Timed Petri Nets

• Concurrent timed systems

• Infinite-state: symbolic representation

• Monotonic behaviour

• Safety properties: reachability of ideals

122

Equivalence on Markings
3.1 7.2

5.6

[1,5][4,7]

[0,3]

[1,2]

t

0.8[4,)

• max = 7

• ages > max behave identically

[3,6]

123

Markings equivalent if they agree on:
colours
integral parts of clock values
ordering on fractional parts

3.1 4.8 1.5 6.2 5.6

3.2 4.8 1.6 6.4 5.7

3.1 1.5 4.8

3.2 1.6 4.7

Equivalence on Markings

124

3.1 4.8 4.8 1.1 5.4

3.2 4.7 4.7 1.2 5.5
5 3

1
4
4

words over multisets over a finite alphabet

Markings equivalent if they agree on:
colours
integral parts of clock values
ordering on fractional parts

Equivalence on Markings

125

Ordering on Markings

M1 M2 iff M3 :

M1 M3

M3 M2
<

3.1 4.8 1.5 6.2 5.6

4.8 6.4 5.7

4.8 6.2 5.6

126

6 5 4

3 6 1 5 4

subword

subword

3.1 4.8 1.5 6.2 5.6

4.8 6.4 5.7

4.8 6.2 5.6

6 5 4

=

22

127

M1 M2 iff M3 :

M1 M3

M3 M2

3.2 1.2 4.7

<

3.1 4.8 4.8 1.1 5.4

Ordering on Markings

3.1 4.8 1.1

128

subword

subword

4 3
1

5 3
1

4
4

4 3
1

=

3.2 1.2 4.7

3.1 4.8 4.8 1.1 5.4

3.1 4.8 1.1

129

is a well quasi-ordering

=
subword ordering on multisets
over a finite alphabet

Properties of

130

Properties of -- Monotonicity

M1
M3

M2

M4
M5

M6

131

Methodology (applied to TPN)

1. Computable ordering
2. Monotonicity, Computability of Pre
3. Ordering is WQO

132

There are many other
well-structured systems.

• Systems with integer variables and monotone
operations
• Petri Nets, Broadcast Protocols[Bouajjani Esparza Mayr]

• Timed Automata,
• Relational Automata [Cerans]

• Finite State systems with Lossy FIFO Channels
• Timed Petri Nets (without urgency)

