Lecture 1
Infinite-state and parameterized systems

Model Checking

Model of Sa Tg fies Correctness
Dynamic Behavior Property
-Distributed Algorithm +Assertions
*Communication Protocol +Temporal Logic Formula
*Model of Software Module +Abstract Test
+Design Model

Reachability Problem:

Transition Grap

A

Initial States “Bad" States

Repeated Reachability Problem:

Transition Grap

A

“Bad" Lo.o/{f

Initial States “Bad" Stateg

Verification of Finite-State Systems

¢ A rather mature technology
Efficient representations
— Hash tables
— Symbolic representations: BDDs, SAT-based
¢ Exploitations of Model structure
— Concurrency (partial order reduction)
¢ Partial approximations
— Symbolic Trajectory Evaluation
— Exploration of part of State-Space.

Infinite-State Systems

Why are Models infinite-state?
¢ Unbounded data structures
— Stacks, Queues, Numbers, ...
Unbounded Control Structures

— Process Networks, Distributed Algorithms, Dynamic Process
Creation

¢ Clocks
— Timed and hybrid Systems
¢ Unbounded Communication Channels

Some classes of Infinite-State Models

Extending State Vectors by
¢ Integer Variables
— Petri Nets, Programs with Integers
— Unstructured Process Networks.
e Strings over Finite Alphabet
— Linear Data Structures (Stacks, Queues, Lists)
— Numbers
— Linear/Ring-shaped process networks
¢ (labeled) Graphs
— General Distributed Algorithms,
— Heaps, ...

Recepy for Infinite-State Verification

e Choose symbolic representation of (infinite) sets of
system states.

e Sets of sucessors/predecessors computed by applying
predicate transformers

» Explore state-space by repeatedly computing sets of
successors/predecessors of already explored states.

o Safety properties reduces to reachability

o Liveness reduces to repeated reachability (at least in
some cases).

Pre- and PostConditions

Post(S)

.

Pre- and PostConditions

Post(S)

Generating strong(est) invariant:

InfiniteTransiti

Which of these states are reachable?

Initial States

Generating strong(est) invariant:

InfiniteTransiti

Initial States

Reachability Problem:

InfiniteTransition-Grap

A

Initial States "Bad" States

InfiniteTransiti

Forward Reachability Analysis:

Initial States

"Bad" States

Backward Reachability Analysis:

InfiniteTransition-Grap

pre™(T)

Acceleration/Widening

Initial States

Extrapolate to
limit

Process Networks: Simple Cache Protocol

Combine all Processors for one Cache line.

Initially: S=E=0
Actions

I>1— I:=1I-1
S +sign(E) + 1
E - sign(E)
I+5-1

)]

v

-

{
MH MO Mo

[T TR L TR
o

Backwards Reachability Analysis

Bad: E>2
Pre(r-mBad):E>1,5>1 o
Pre(r-s,Bad): E>3
Pre(inv,Bad): E>3

Pre(r-m, ¢): false

Pre(r-s, @) E=22,I2>1
Pre(inv, @): E>22,521

Pre*(Bad):E>2\/E>1,5>1
Unreachablel!!

Initially: S=E=0
Actions

I>1— I:=1I-1
1= S +sign(E) + 1
E - sign(E)
I+S-1

»
v
-
{

m
v
-
{

[TR TR T TI
o

MHEHMO MO

The fact that backwards reachability
analysis converged is not an accident.

It is because the model is a
well-structured transition system

[Finkel][Abdulla,Cerans,Jonsson, Tsay]

Well-Structured Transition Systems

e There is partial ordering < on configurations
{I-0,5S51,E52}<{I»2,S51,E>3}

such that

— A: Transition relation is monotone wrp. to <

— B: < on configurations is a well-quasi-ordering:
Any UCS has finite set of minimal elements

e The set Bad is Upward Closed (UCS)

e by A: Badis UCS implies pre(Bad)is UCS
implies pre*(Bad) is UCS

20

Petri Nets

States = Markings

Transitions

N\t

Firing
t

Gess] =

23

Transitions

[c o] pY

t is disabled

Monotonicity

Petri Nets: infinite state

I\
................................... | ® 6 0 o |
[0 @ @ @ of >0 9.0 0.0
25 26
Mutual Exclusion Mutual Exclusion
R=1? R=17 R=1? R=1?
R:=1 R=1{) v, R:=1
R:=1 R:=0 R:=0 R:=0
R:=0
Initial states:
e R=1 Infinitely
¢ All processesin @ many
R=17 R=17 R=1?
R:=1 R=1{) i, R:=1 Bad states:
R:=0 R:=0 R:=0 Two or more processes in @
27 28
Mutual Exclusion |Mutual Exclusion
Set of initial states : C R=1

R=1? R=1? R=1?
R:=1 R=1{) e, R:=1
R:=0 R:=0 R:=0

C R=1

29

infinite

| Mutual Exclusionl

[e o o o] C -1

|Mutual Exclusionl

|o) o| C®RJ

32

Safety Properties

e mutual exclusion:
#tokens in critical section > 1

Ideal = Upward closed set of markings

critical section

—_—

Petri Nets

¢ Concurrent systems

¢ Infinite-state: symbolic representation

* Monotonic behaviour

safety e Safety properties: reachability of ideals
reachability of ideals
33 34
Monotonicity _

ideals closed under computing Pre

® /
Y,
[

Pre(I)

Backward Reachability Analysis

Ideals: Symbolic Representation Ideals: Symbolic Representation

II' +— index (generator) I:l +— Index for bad states
[0 o @ | |[®@ o @ @ 0] [e @ o o] [0 @

Index is minimal element
of its ideal

Each ideal can be characterized by
a finite set of generators

If igj then J

<

40

Backward Exploration [Abdulla Jonsson 93] Monotonicity ——
ideals closed under computing Pre

InfiniteTransiti

I:l <+«— Index for bad states

i: index
Indices of Pre Pre(i) computable

+Eventually, all minimal elements reached => termination II' I:l

41

42

Backward Reachability Analysis

Step 0 : I:l

Backward Reachability Analysis

Step 0 : I:l

Step 3 : |. e 6 o o .l | (J .l Step 3 : |.><<.| |>Q|
|Well Quasi-Ordering (WQO) |
What did we need? (A, C) is WQO if

1. Computable ordering
2. Monotonicity, Computability of Pre
3. Termination -- Ordering is WQO

|

| “nice properties” |

45

WQO : Simple Example
(Nat, £) is WQO

W Xg X1 Xp Xz evenene : natural numbers

3ij: i and x; £ x

46

| Properties of WQO |

Finite Sets
(A, =) is WQO if A is finite

47

Examples -- WQO

(A*,E)
A : finite alphabet

w; Ew,: w; subword of w,

e.g. ab C xaybz

48

Why are words over a finite set WQO?

[Higmans lemma]
Proof by contradiction:
e Assume that there is a sequence of words
wOo wl w2 w3 w4 wh wb w7 ...
where never wi < wjfori<j
e Let this be the least such sequence lexicographically, meaning that
- w0 s as short as possible
- if wO wl w2 w3 are fixed, then w4 is as short as possible
e There must be infinite subsequence starting with, say, a
wOo wl aw2' w3 aw4 wh wé aw7' . ..
e Butthen
wo wl w2 wé' w7' ...
is a smaller such sequence
Contradiction

49

Protocol Model

Control Part Channel Part:
*Ordered (FIFO)/Unordered
+Lossy/Nonlossy

Statei<q,wl,w2 >
Transitions: send , receive , loss

50

Alternating Bit Protocol

Sender
Lossy FIFO Receiver
Aval Channels Domi
(Al

D
— @
A Rec Rec
C—

Send D?m1
(—@ ()
DILmPA?aO A!aOU
‘ D?m0
Messages: {mO,ml,a0,al}

Send D?m0

A?al A?a0

Global Control Graph

SenderState
D"ml D’ml D"ml | D?2m1
M;ig P(ed) DAr,ngoCi)
A?cl Send A?a0 Send A2al
om0 ? Dm0 D?m
om DImO Dim1
2 2
(o1) A2al ey (a1 Ve
A?al Send N A?2a0 Send A?al
ec Re.
R R
¢ om0 Dlm0(])?mo (55)D’mo Dimt ("[ND2mo
Alal I I
02 A?al 12 Ala0 A?a 32A.a0
A?al Send A?a0 Send A2al
>2mi D?m] b2mi
D'mO Dim1
(03 Aralrs A200 723
A2al ‘1/ Send A2a0 ‘T Send \f A2al
Receiver Rec Rec Rec Rec

52

Monotonicity

<Qi,rj, Wy, Wa> ———— < qi,rj, Wy, W, >

In

Since messages can

ST Wo WA be lost.

denotes all larger states
<q0,r0,<m0>, > | c——m—m—

“q0,F0,<mOm1>,<>>‘

‘<q0,r‘O,<mOm1>,<anOal>>‘

‘<q0,r0,<>,<q1gou1>>‘

54

Each ideal can be characterized by
a finite set of generators

/'

By WQO of C

Pre ([adb])

it @——@

Methodology (applied to LCS)

1. Computable ordering
2. Monotonicity, Computability of Pre
3. Ordering is WQO

LCS -- Forward vs Backward Analysis

Pre*(w) is regular and computable

Post*(w) is regular but not computable

58

Alternating Bit Protocol

Sender
Lossy FIFO Receiver
Aval Channels Domi
b (@
S O @
A Rec Rec
Wa
D?m1 C
A!aOU
D?m0

State! < Qsender + Mreceiver + Wp + Wa>
Initial State: < qq, g, <>, <> >

Analysis of AB Protocol

ahoomt Dom Dot g Dmt

m 2m ?m 1 2m

Alal W‘?@ Alal ”@Eb DAE“(}@AIM
30

A?al Send A?a0 Send A2al
D?m
? D?m0
b "‘Ol Dlmoil Diml D(%
2 2
1 A?al A?a @
A?al Send A?2a0 Send A?al
Re
Dm0 DlmO Dm0)D’mo Dim ("abom0
Ala0 A>q1 3 Ala0 e S3Al0

S

A’>cl Send A?a0 Send A2al
D2mil D?m1 D?m1 D?ml
DImO Dim1
) A?a 13 A?a0 733

A?uIT Send \f A?2a0 Send
Rec Rec Reae Clble‘y)

Analysis of AB Protocol

Qi iy ey

FmOmitig> <mOmd, s> <mOmi;, s>

g)

ez

N
<ml &> <ml;ec <mlie> |<m1,al>

Ol e

¥ml,gsnd mlzs> <mle> mi;al>

o

Methodology

= Start from a finite domain

* Build more complicated data structures:
words, multisets, lists, sets, etc.

Qe e o
<g,a0> c,a0> s &> <g,ala0>
|Properties of WQOl |Properties of WQOl
if (A,) is WQO if (A,C) is WQO
then (AM y EM) is WQO Wiyt a, a, a,
1M« 1N 1N 1N
....... T, Wi by by by by by by b
e R ° o
M1 CM M2 @ E [) " e .
. e o © then (A, ©) is WQO
M1 - ‘\esMZ 64
Examples -- WQO Multisets over a finite alphabet
| Words of natural numbers |
L4)
................................... .
A N A g °

65

66

Words of multisets over a finite alphabet

e ep9 e
é o I e o LK) :o
) ° ° LA

67

Parameterized Systems

Family of Systems
¢ infinite number of parameter values
¢ Each system instance can be finite-state

o Examples: Process Networks, Distributed Algorithms
— Parameter: system size, system topology, ...
— Example: Linear system parameterized by its size

68

Parameterized Systems

Family of Systems

¢ infinite number of parameter values

e Each system instance can be finite-state

e Examples: Process Networks, Distributed Algorithms
— Parameter: system size, system topology, ...
— Example: Linear system parameterized by its size

n processes

O 00 00

critical resource

69

Verifying Parameterized Systems

Undecidable in general (apt, kozen]

Different Approaches:

o Verify system for some parameter values
— Sometimes, results can be generalized

o Induction over system structure kurshan, wolper/Lovinfosse]
— Must find Inductive Hypothesis, “Network Invariant”.

¢ Generate Finite-State Abstraction

¢ Extend Symbolic Model Checking to Infinite Sets

— Try to compute reachable states and reachable loops by
symbolic techniques

70

Potential applications to Word Structures

e Parameterized Systems with Linear or Ring Structure
[Clarke,Grumberg,Jha], [Kesten,Maler,Pnueli,Shahar]

e Unbounded FIFO Channels [Boigelot,Godefroid, Wolper],
[Bouajjani,Habermehl], [Abdulla,Bouajjani,Jonsson,Annichini]

e Pushdown Systems [Finkel,Willems,Wolper], [Bouajjani,Esparza,Maler],
[Esparza,Schwoon], [Caucal], [Ball,Rajamani]

e Regular Hardware Structures [Basin,Kiarlund et al],
¢ Systems with Integers and Reals [Boigelot,Wolper]
e Turing Machines

Implemented Tools

e MONA, LASH, TLV, PAX, ...

Linear Process networks: Token passing

Action: Enter Critical Section

O ©® O OO0

72

Token passing: Formal Model

Alphabet: ={N,T,C}
Configuration: word over X

Initial Configurations: T N* (regular set over X)
Transition: pair of equally long words

eg,NNTNN - NNNTN

73

Token passing: Formal Model

Alphabet: ={N,T,C}
Configuration: word over X

Initial Configurations: T N* (regular set over X)
Transition: pair of equally long words

eg,NNTNN - NNNTN
represent as sequence of pairs: (N,N) (N,N) (T,N) (N, T) (N,N)

74

Token passing: Formal Model

Alphabet: 2={N,T,C}
Configuration: word over %

Initial Configurations: T N* (regular set over X)
Transition: pair of equally long words

eg,NNTNN -» NNNTN
represent as sequence of pairs: (N,N) {N,N) (T,N) (N, T) {N,N)
Transition Relation: length-preserving relation on =*
represented by regular language over ZxZ :

(NNY* (T, NY (N, Ty (N NY* is {N™* T N0 — N'T Ni*t | jj > 0}

75

Representing Actions (transition relations)

As transducers (finite automata over XxX): [Kesten+ 97]

|
- CO TN~) @ -

Notation:
[S] denotes {{a,):a e S} ie., "copyany symbolin S"

76

Representing Actions (transition relations)

As transducers (finite automata over XxX): [Kesten+ 97]

|
- CO TN~) @ -

As regular expressions over ZxX :
EF* (TN)(NT) [Z]*

Notation:
[S] denotes {{a,):a e S} ie., “copyany symbolin S"

77

Representing Actions in MSO over strings

* Alphabet encoded by (typically boolean) configuration variables
o X[i] is the value of x at position i

78

Actions of the Token Ring Example

Pass token to right: [Z1* (T,Ny (N, Ty [Z]*
Pass token around(if ring): (N, T) [Z]* (T,N)

Enter Critical Section: [Z1*(T,C) [Z]*
Exit Critical Section: [Z1*(C, Ty [Z]*
Idle: Z1*

79

Verification Problems

Safety properties reduce to reachability
Mutual Exclusion:

e Is some configuration in X* C X* C X* reachable?

Verification Problems

Safety properties reduce to reachability

Mutual Exclusion:

o Is some configuration in X* C X* C Z* reachable?
Liveness properties

¢ Token will reach righmost position:
TN* leads to N*T

Verification Problems

Safety properties reduce to reachability
Mutual Exclusion:

o Is some configuration in X* C X* C Z* reachable?
Liveness properties
¢ Token will reach righmost position:
T N* leads to N*T
needs specification of fairness properties
€.g., infinitely often Pass-Token

Szymanski’s Algorithm (idealized)

Mutual Exclusion algorithm for linear network of processes,
indexed 1, ... n

Pseudocode for process i

L await Vj: j# i s

2: w;,s; = frue,true

3uif3jrj=in(pe= 1 /\—w)
then s, := false; goto 4
else w; := false; goto 5

4 await 3j =i (s /\ -w)

then w;, s, := false,true

Cawait Vi i aw

Cawait Vi j<ii=s;

. s;:= false; goto 1

~N o O

83

Szymanski’s Algorithm (idealized)

Mutual Exclusion algorithm for linear network of processes,
indexed 1, ... ,n

Pseudocode for process i

L await Vj: j# i s
2: w;,s; = frue,true
3uif3jrj=in(pe=1 /\—w)
then s, := false; goto 4
else w; := false; goto 5 “synchronized" moves
4 await 3j:j =i (s /\ —w)
then w;, s, := false,true
Cawait Vi i aw ¥
Pawait Vi j<ii=s;
s; = false; goto 1 critical section

——

No o

Encoding Szymanski’s Algorithm

Alphabet: {(pc.w,s) : pce{t,2,.. 7} ,w,se{0,1}}
(encoded in 5 bits)

Initially : (1,0,0)*

Transition relation: union of transducer for each
action

85

Szymanski’s Algorithm: Statement 6:

6: await Vj:j< i

\ pc=6/\pc'=7
/\ (ws) =(w's)
(s

(pcw.s) = (pc w's') (pec.w.s) = (pcw's)

left context transformation right context

Verification Problems for Szymanski

Mutual Exclusion:
¢ Is some configuration in
T* pc=7 Z* pc=7 IL*
reachable?

In token ring, can be checked by backward reachability:
+ Token ring is (almost) well-structured system
+ (actions are local) (abdulla,Cerans Jonsson Tsay 961

© X* C Z* CX* is an upward closed set

Szymanski is not well-structured
+ (actions have global conditions)

87

Verification Problems for Szymanski

Mutual Exclusion:
¢ Is some configuration in
Z* pc=7 Z* pc=7 IT*
reachable?

Non-starvation:
More about this later ...

Systems operating on numbers

e Sequence numbers, e.g., in communication protocols
— Represented in “unary”, i.e, as an array of states, msgs.
— Typical configuration:

ol [Im[[[| |

Control state of sender S3,
Next sequence number is O

Channel contains message
with sequence number 3

89

Representing Pushdown Systems

Control Part Stack
. push(a
h b ush(b)
push(c) p:}s{‘é%) N\ Stack symbols from
finite alphabet M
pop(a)
Alphabet: S u M uv {1}

7
control states stack symbols empty slot
Typical configuration: L L 1 L 1 ss m;m,msm,
Initial configurations: L1* s;
(empty stack)
90

Representing Pushdown Systems

Alphabet: S uMu {L}
Typical configuration: L1 111 s mym,msm,
Initial States: 1*s,

Actions:

: push(m) @
pop(m)
() 5®l]* (s,L) {m,s) [M]*

[LT* (LS (s;m) [M]*

Verification Algorithms

o Assume model with
— Set of initial states Init
— Transition relation Trans
e How to compute
— Reachable configurations Init . Trans*
Post* (Trans,Init)
— Transitive closure Trans* of Trans (or of some other transition
relation) for finding loops

92

Using Automata for Reachability

L o
N

Pass token - Cé) (T.N) O (N, T) @ -

\\S\
PO

Product l <
(T.N) (N, T)
L e o

Project and l

L N T
Minimize O O @ N

93

Set of Initial states

What about Termination?

Set of initial states: T N*
After exploring pass-action TN*u NT N*

After exploring k pass-actions U, . N' T N*
How find the limit N*T N* ?
Compute post*(pass-token, T N*) = N*T N*

by Acceleration/Widening.

94

For Transitive Closure
Pass action : [Z]* (T,N) (N,T) [Z]*
Transitive Closure not regular

Restrict by Reachable states : [N]* (T,N) (N, T) [N]*
Composing at most k pass-actions
U < INT* (T,N) [N]™2 (N, T) [N]*

How find the limit [NJ* (T,N) [NJ* (N, T) [N]* ?

95

Verification Techniques and Results

e Rules for actions with certain forms tasauia, sonsson, nisson
‘CAV99][Fisman Pnueli Shahar, CAV00]

¢ Decidability result for systems with “bounded local
depth" [Jonsson,Nilsson, TACAS00]

L] Extrapolation [Bouajjani,Jonsson,Nilsson, Touili,CAVO0, Touili VEPAS 01]

¢ Techniques based on merging states in transducer
[Dams, Lakhnech, Steffen,CAV01] [Abdulla,Jonsson, Nilsson,d'Orso,Saksena, CONCUR02,CAV03]

¢ And more...

96

Acceleration for Token Passing

Init o Pass-Action?
o0—O0—0—0D
O T ~ N ~ N ©:> N

N

T N
O '®) O O [N]
N N T OD

97

Acceleration for Token Passing

Pass-Action3

98

Acceleration for Token Passing

Pass-Action*

T N N N N

A A A A NI
N T N N N

O O O O e) @ IN]
N N T N N

O O O O O Q) Hm
N N N T N

IN]
N N N N T

99

Column Transducer

Pass-Action® = U, Pass-Actionk

T N N N N
A A i~

N T N N N
O O [N]

N N T N N

D O O
D O O

[N]

oooo O O

O
@ IN]
O

O
'®)
N N N N T
.
. .
° .

Initial state accepting state

100

Acceleration for Token Passing

Making a Loop

T N N

@) O O oo " @D IN]
N T N N N

O—O0—O0—O0—O0——@Dm
N N T N

N
O—O0—0—O0—O0—0ODm
N N N T N
O—O0—O0—O0—O0—Q O
=

N N N N
T N N
@) _.©:> IN]
N T

101

Acceleration for Token Passing

Make equivalent

Making GV
T // N

N N N

@] O:> IN]
N T N N N

o—fol—ol—ol—ol—@ D
N N T N N

O O O O O O Hm

N N N T N
@) :> IN]
N N T

N N
T N N
0r: o

102

Acceleration for Token Passing

103

Acceleration for Token Passing

Formally: Simulates merged states

left (backward) /

104

Acceleration for Token Passing

Other new computation

i j IN]

N N T N P
O—O0—0—O0—O0—Q
N N N T N
O—O0—O0—O0—O0—Q O
N N N N T

O&%—@ N

105

Acceleration for Token Passing

Formally: Simulates merged states

left (backward)
right (forward)

106

Acceleration for Token Passing

If simulations are congruences, the trick can be
repeated for more loop iterations

merge.

L@D IN]
N N
O ©:> IN]
N N :>[N]
T N
O——0—@D™

O O O

107

MergingTheorem

[Dams, Lakhnech, Steffen01][Abdulla et al 03]

Merge states g and q' if there are dominating p and r

left simulation

N
7

Simulations must be congruences and commute.

108

1Application to Token Passing

Merge states g and q’ if there are dominating p and r

efT simulation right simulation
AN
@,

d

Simulations must be congruences and commute.

109

Special case: Unary actions

O

Left Context:

Copying. Noncopying RaghT Context
forward states Copying,

L. backward
deterministic

deterministic

Complete characterization forc # d
[Abdulla Jonsson NilssonCAV99]

Special case: Unary actions
b
g/ Oy b O
5
. a

Left Context:

Copying, Noncopying nghT Context
N Copying,
forward states
L backward
deterministic

deterministic

111

Limit Trans™

Left Context:

Copying, Noncopying nghT Context
N Copying,
forward states
L backward
deterministic

deterministic

112

Szymanski’s Algorithm: Statement 6:

6: await Vj:j<iii—s

s A c,c° o

cw,s) = (pc'w's
(pew.sy =(p \&9 {pews) =p)
left context transformation right context

113

Szymanski’s Algorithm: Statement 6+7:

6: await Vj:j<i:=s; 7: s;:= false; goto 1

s /\=s'
\ pc=6/\pc=1

=s /\ C:/\wzw’ ©:>

(pc,w,s) = (pc' w' s’ (pew.s) = (pc.w.s)

left context transformation right context

114

Acceleration of Statement 6+7:

6: await Vj: j<i:=s; 7 s = false; goto 1

Words of multisets over a finite alphabet

\ s /\=s' o @ o0
pc=6/\pc =1 H g e o
Nws=w \»Q i HE H H

\] S P
C U € @ Lo

DN — {pc.w,s) ={pc' w's) ® o e 0 ® o : ® Y

{pc.w,s) = {pc' W' s’y o o0 ® ® ([]

115 116
Timed Petri Nets States = Markings

[3,6] /‘ 1471 [1,5] !

|
[0,3]
[4,00) (121 2.1 3.5 0.5 6.2
117 118
Timed Transitions Discrete Transitions
13,61
[21 3505 62 16 | [31 451572506 | ==
[0,31
increase %) n.21
age Firin
1.3
34 48 1.8 7.5 |3.1 7.2 |

Timed Petri Nets

e Concurrent timed systems
¢ Infinite-state: symbolic representation
* Monotonic behaviour

e Safety properties: reachability of ideals

121

Equivalence on Markings

* max="7

* ages > max behave identically

122

Equivalence on Markings

Markings equivalent if they agree on:
= colours
= integral parts of clock values
= ordering on fractional parts

Equivalence on Markings

Markings equivalent if they agree on:
= colours
= integral parts of clock values
= ordering on fractional parts

[3.1 48 156256 | —— [3.1 48 48 11 |\
1l 1l — I I
[3.2 4.8 1.6 6.4 — . [32 47 47 1.2 55
123 words over multisets over a finite alphabet 124
Ordering on Markings
= 4.8 6.2
M, C M, iff 3IM,: In
"M, = M, iasisez]| 7
*M; £M,

48 6.4
=
N = 48 6.2

Giasisers|

125

126

Ordering on Markings

M, C M, iff 3IM,:
"M, = M,
*M; <M,

3.2 12 4.7
s
n 3.1 48 1.1

b7,
[31 4.8 4.8 1154 7

127

3212 4.7
=

I 31 48 11
/
31 s as11:1] 7

3
iEE.

subvaord

3] . [subword
5 -

B)
........... HE

128

Properties of C

C -

subword ordering on multisets
over a finite alphabet

C is a well quasi-ordering

Properties of = -- Monotonicity

M, M,
N p

| ﬂ M, — M; | ﬂ
7/ |

M, M,

130

Methodology (applied to TPN)

1. Computable ordering
2. Monotonicity, Computability of Pre
3. Ordering is WQO

There are many other
well-structured systems.

+ Systems with integer variables and monotone
operations

+ Petri Nets, Broadcast Protocolsiouajjani Esparza Mayr]
- Timed Automata,
+ Relational Automata [cerans]
+ Finite State systems with Lossy FIFO Channels
+ Timed Petri Nets (without urgency)

132

