Lecture 1
linear time temporal logic

y1:= false

Peterson-Fischer: Possible Specifications

Variables: y1, y2: boolean, 1: {1,2}
Initially ~ yl1=y2 =false, =1

\‘ yl:= true

Mutual Exclusion: the two processes never simultaneously reach 13,m3
Absence of Starvation: If the left process is at I1, it will later reach I3

Bounded Overtaking: If the left process is at 11, the other process will reach
m3 at most once (twice?) before the left process reaches 13

Two Classes of Formalizations

o & P

Branching Time Properties:
Specify properties that hold for Specify properties that hold for
all computations the computation tree (unfolding)

@
.

Linear Time Properties:

© 0| 95 ¥
3

always possible to reach free ;
always possible to reach at P1 ;
free is always eventually reached

Free in every 2nd state ;
at P1 always followed by free

3

O
@ o @

Transition Systems (formal definition)

A Transition System is a tuple (S, S, ->, V, L) where
S s a set of states
So is a set of initial states
-> (asubsetof S x S) is a transition relation
V is a set of variables
L: S->(V->Val) gives a valuation of variables in each state

Write s ->s' for (s,s) e -

A Computation is a finite or infinite sequence of states
So S; S, S3 S; S5 S S; Sg So

such that
s, is an initial state
(s;,s.,) €-> forall (relevant) i

Linear Time Properties

o Properties of Computations

* Specify "what happens when the system executes”
Technical convenience

— Consider only infinite computations

— For finite computations, repeat the last state:
So S; S; S3 S, S5 Sy Sy

becomes
So S1 S, S3 S; S5 S¢ S; S; S; Sy..
e In essence
Linear time property ¢ = set of computations
o Transtion system T satisfies linear time property o
T I=9
if all computations of T are in (satisfy) ¢

Linear Time Properties: examples

¢ Start from properties about states p , q
eg., Yy0<1l x=y atm3
p s invariant

p s stable O O @ @ @ eo o0
p precedes q O @ O O @ 000
O ® O O @©---

p leadsto q

Peterson-Fischer: Possible Specifications

Variables: y1, y2: boolean, 1: {1,2}
Initially ~ yl1=y2 =false, =1

yl+

ylvt=2 @

Mutual Exclusion: -(at 13 /\ at m3) is invariant

Absence of Starvation: atll leads to atl3

Bounded Overtaking: 2?2?77

Linear Time Temporal Logic: formulas

e State formulas (denoted by p, q): properties about states
eg., Yy0<l x=zy atm3

e Formulas built using temporal operators
o "inthe next state "
0@ "always (in all future states) @"
O @ "“sometimes (in some future states) ®"
Uy " untily”
oWy "¢ unless y"

¢ And boolean connectives
- \/ A ->

Linear Time Temporal Logic: interpretation
¢ Formulas interpreted over computations

« A formula is either true or false in each state of a computation
e Example:

OGO B @

¢ The following formulas hold at the particular state

p /\gq
o (p/\q)

¢ The following formula does not hold at the particular state

Meaning of operators

°e O @O O O---
e CRCRCERONOREE
Ce O OO @O---

iy @ @ @ @ O

PWY (pUy v 09)

Operators: Formal semantics

Let B be computation s, s; s, S3 S5 S5 Sg S7 Sg Sg...

+ (B,i) |= ¢ denotes that o is true in state s;

- (B.i) |= p (for p state formula) iff p holds in state s;

e Boolean connectives work as usual

s B |Fo iff Bi+l) = o

C@Bi)l=oe iff Vi2i®i) = o

B0 iff Fj2i@i) = @

s @) l=eUy iff 3Fj2i(8,))|=wand
Vkiick<j:BKk) = @

B l=eWy iff @) I=eUy or Bi)l= 9

11

Linear Temporal logic: examples

cap p s invariant

s o(p->op) p is stable

* ~qgW(p /\=q) p precedes q
*o(p->904q) p leadsto q
*00p infinitely often p

- Qop from some point on p

Peterson-Fischer: Possible Specifications

Variables: y1, y2: boolean, 1: {1,2}
Initially ~ yl1=y2 =false, =1

\‘ yl:= true

y1:= false

y2\/1=13 yl\/'r=2€

Mutual Exclusion: 0 =(at 13 /\ at m3)

Absence of Starvation: O (at I1 -> ¢ at 13)
Bounded Overtaking: O (at 11 -> (~at m3 U (at m3 U(=at m3 U at 13)))

Specifying linear properties by automata

¢ A linear time property is a set of computations.
¢ Can be seen as a language of (infinite) words,

— Alphabet: possible assignments of truth-values to occurring state
formulas

* A language can be specified by an automaton
o It turns out that it is better to represent the complement, i.e.,
the set of computations that violate the property

Automata Specifications: examples
Top l%—M’ OJ
* o (p->op) T@"—E&LQQT
T AqW (A9 :6“—(@:) T

*o(p>90q) ?

*00p
- Qop

15

Superposing Automaton on Transition system

Superposition of Automaton (2, Q, Q,, -> , @)
onto Transition System (S, Sy, ->, V, L) has

S x Q as the set of states
<
<s,q>-><s'q> ifs ->s andq ->¢

Accepting condition adapted from &

Safety vs. Liveness properties.

« Safety property is of the form
"nothing bad will ever happen”

A computation that violates the property will do so after a finite
number of transitions

Enough to specify set of finite violating prefixes

» Liveness property is of the form
"something good will eventually happen”

A computation that violates the property can never so after a finite
number of transitions

We must specify set of infinite violating computations

* Any regular property is conjunction of safety and liveness
properties.

Automata over infinite words

Automaton over infinite words: (X, Q, Qy, ->, @)
where,
2 is an alphabet (typically set of assignments of truth values
to state formulas)
Q is a set of states
Qq is a set of initial states

-> (asubsetof S x Z x S) is a transition relation
& is an acceptance condition
A run over infinite word a; a, a3 a, as a, a;is
a G a3 4 G5 Qg Gy Gqg
90>91->92->93>94>q5->qs > q7 > Qg

which satisfies the acceptance condition &

Classes of acceptance conditions

Buchi automata
One set of accepting states F

Acceptance condition oo F

Generalized Buchi automata
Collection of sets of accepting states F,, ..., F,
Acceptance condition = SVANAN ALl

Rabin automata
Collection of pairs of accepting states (F,,&,), ..., (F,,6,)
Acceptance condition \/, (00 F; /A =00 G;)

Streett automata
Collection of pairs of accepting states (F,, &,), ..., (F,,6,)
Acceptance condition /\; (00 F; -> 00 G;)

Examples of Buchi Automata
. o T P
oP S oursof
T T
P oo “O0——a) »
-p V/ P/\~q
Catpeoq NG 0

+ O(p/ O-q)

O

20

Translation Results

* Any property expressible in linear temporal logic is
accepted by some Buchi automaton

¢ There are properties accepted by some Buchi
automaton that can not be expressed in linear
temporal logic
— e.g., "p istrue in every even state”

~0Z 70

Convenience of expression

* Some properties are easier to understand as
automata
¢ Bounded Overtaking:
(at 11 -> (~at m3 U (at m3 U(~at m3 U at 13)))

~at m3 at m3

~at 11
at It atm3 O -atm3 D .
S
at I3

Convenience of expression

* Some properties are easier to understand as
automata
¢ Bounded Overtaking:
(at 11 -> (mat m3 U (at m3 U(~at m3 U at I3)))

~at m3 at m3

~at 11
at It atm3 (¥ -atm3 D .
=SS e D
at 13

Negation: ~at I3

~at m3 at m3 ~at m3 T

.
_)@ at It 6 at m3 @mm@ at m3 ©f3

Convenience of expression

* Some properties are easier to understand as
automata
¢ Bounded Overtaking:
(at 11 -> (~at m3 U (at m3 U(~at m3 U at I3)))

~at m3 at m3

~at 11
at It atm3 O -atm3 D .
ﬁ%/CD —
at I3 I Find bug I

Negation: ~at I3

~at m3 at m3 ~at m3 T

.
_)@ at It C@v at m3 @mm@ at m3 ©f3

Model checking Linear Temporal logic

Automata-Theoretic Approach [Vardi Wolper 1986]

e Question ?
T |= ®
« Construct '
Buchi Automaton A-w
¢ Combine /
X AL,
¢ Find

accepting computation (error trace)

25

Searching for accepting computations

Safety properties:
- T x A_“p has self-loops on all accepting states
— Find a sequence of transitions from an initial state to a final states
— This is the reachability problem
— Can be solved by search from initial states

* Visit all reachable states,
« If accepting state is encountered, sequence of transitions = error trace

Liveness properties:

— Infinite computation of T x A,w must visit some accepting state
infinitely many times
— Find a path to an accepting state, wich a loop to itself
— This is the repeated reachability problem
— Can be solved by doble search from initial states
« Visit all reachable accepting states,
« Search for loops from accepting states
« If accepting loop (“lasso”, “bad loop”) is encountered = error trace

Searching for reachable accepting loops

[Alur Courcoubetis Dill]
1. Perform depth-first search of the reachable states
2. List reachable accepting states in post-order
ql, ...qn
3. Search from each qi (starting with q1) to find a loop
back to itself.

4. When post-order used, when searching states from
qj, one need not reconsider states that were
reached from states qi with i < j

Why post-order is good

Post-order is order of
popping states in DFS

If q1, ..., gn in post-order
path from gi to qj with
i < j must pass ancestor
of gi

Hence if state reached
from qi has path to qj
then qi is in cycle

Why post-order is good

Post-order is order of
popping states in DFS

If q1, ..., gn in post-order
path from gi to qj with
i < j must pass ancestor
of qi

Hence if state reached
from qi has path to gj
then qi is in cycle

Why post-order is good

Post-order is order of
popping states in DFS

If q1, ..., gn in post-order
path from gi to qj with

i < j must pass ancestor g6
of qi q4
. q1
Hence if state reached q3
from qi .ha.s path to qj @
then qi is in cycle 95

State-space exploration of PF

Reachable states

w
S

DFS tree

t=1 t=

N

yl: F T T T F T T T
I 10 11

% o oem?ﬁ?@

T mi %}—(l) O—0O2
" e o@;
T m3 %}%%) Wﬁ—mg

9

DFS tree with automaton

¥

yl: F T T
1 IO Il

% o oem?ﬁ?@

T mi %}—(l) O—0O2
" e o@&
T m3 %}%%) Wﬁ—mg

The graph has no loops that do not visit I3

T

Add self-loops at 10 and mO

:6 at Il ©:) at 13
ﬁ%fé?%:%&

2:
é‘%o O—0
mz:

?9\@%@%9 %lb

The graph has no loops that do not visit I3

Y

Add self-loops at 10 and mO

1
@L@ -at 13
yli F T

rab bbbl

é‘%o O—0
mz:

?9\@%@%9 %lb

The graph has a bad loop that does not visit I3

Add self-loops at |0 and mO

:6 at Il QD"C‘T 3

ylF T T

y2:
F

. é‘)%o ww
w@% =P T
P9 9o g

This is the first to be visited

Peterson-Fischer: Possible Specifications

Variables: y1, y2: boolean, 1: {1,2}
Initially ~ yl1=y2 =false, =1

yl+

ylvit=2 @)

Mutual Exclusion: 0 =(at 13 /\ at m3)

Absence of Starvation: O (at 11 -> ¢ at 13)
Bounded Overtaking: O (at 11 -> (~at m3 U (at m3 U(=at m3 U at 13)))

38

Simpler mutex

Variables: t: {1,2}
Initially t=1

Mutual Exclusion: O =(at 12 /\ at m3)

Absence of Starvation: O (at 12 -> ® at13)
Bounded Overtaking: O (at 12 -> (=at m3 U (at m3 U(=at m3 U at 13)))

39

Simpler state space

t=1 t=2

11 12 13 I 12 13

m OQO—O—Q

40

DFS tree

DFS tree

41

42

DFS tree

43

DFS tree

t=1 t=2
11 12 13 11 12 13
m1 O—>O—>O—)$—>$ (fz
m2 é O—0O O»
é |
m3 %)4%“ HU

44

Bad states are unreachable

t=1 t=2
o3 o3

mi O—>O—>04)$—>$ (l)D

S Y

45

Reachable states

t=1 t=2
11 12 13 11 12 13
m1 O—>O—>OA)$—>$
m2 % O—0O

m3

46

Accepting states for absence of starvation

t=1 t=2

11 12 13

m1 O—>O—>O

m2 é"

m3

47

Accepting states for absence of starvation

t=1 t=2
I 12 13 I 12 13
mt O O
m2 O

m3

48

Post-order

49

No loops can be found

50

Simpler mutex with self-loops

Variables: t: {1,2}
Initially t=1

Mutual Exclusion: O =(at 12 /\ at m3)

Absence of Starvation: O (at 12 -> ® at13)

Bounded Overtaking: O (at 12 -> (=at m3 U (at m3 U(=at m3 U at 13)))

51

State space with self-loops

52

Idle loop found

SBEE B

m2 @ O

m3

Corresponding bad reachable loop

t=1 t=2

I?l 13

54

Peterson-Fischer with idle loops

Variables: y1, y2: boolean, t: {1,2}
Initially y1=y2 =false, t=1

yl:= true

y2\/‘r=1© yl\/‘r=2@

We need mechanism to avoid computations that only
perform idle steps

Fairness

Fairness

e Assumption that some part of a transition system
eventually progresses, without quantitative
restrictions

e Can be viewed as an abstraction of many possible
concrete transition scheduling policies.

e There are many different notions of fairness.
e The most common is weak fairness
¢ Another not uncommon is strong fairness

56

Fairness (definition)

e action A : any set of transitions (e.g., of one process)

e A computation
sO sl s2 s3 s4 s5 s6 s7...
is
o weakly fair wrp. to A if
— whenever A is enabled in all sj with j>i
then some transition A is taken from some sk with k > i
- (o enabled A -> ¢ taken A)
- o0 enabled A -> 00 taken A
e strongly fair wrp. to A if
— whenever A is enabled in infinitely many sj with j > i
then some transition A is taken from some sk with k > i
- o(o ©enabled A -> ¢ taken A)
- 0¢ enabled A -> 00 taken A

Fairness (definition)

e action A : any set of transitions (e.g., of one process)

e A computation
sO sl s2 s3 s4 s5 s6 s7...
is
e Weakly fair wrp. to A if
— whenever A is enabled in all sj with j>i
— then some transition A is taken from some sk with k > i
— o(oenabled A -> ¢ taken A)
— oo enabled A -> 00 faken A
e Strongly fair wrp. to A if
— whenever A is enabled in infinitely many sj with j > i
— then some transition A is taken from some sk with k > i
— o(o oenabled A -> © taken A)
— 00 enabled A -> 00 taken A

58

Checking fairness in exploration algorithm

To verify ¢ under fairness assumption

* Naive algorithm searches for bad loops that satisfy
fairness assumption /\=¢

More efficient solution for weak fairness:

¢ search for bad loops that satisfy =@

in which each action A with weak fairness is once
either disabled or taken

Add self-loops at 10 and mO

T
t 11

3 a D-af 13

yli F T T

raddrddbebed 4,
T %—() O—0=

T O—>O—>O ?D

The loop does not have left process disabled or taken

60

Translating formulas to Automata

O(p A o-q)

Translating formulas to Automata

O(p A o-q)

Translating formulas to Automata

O(p A 0-q)

/

63

Translating formulas to Automata

O(p A 0-q)

/

@ =pnopl \/ q /N op2

64

Decomposing temporal operators

Pushing negations

lsi) =0 N o
=0 @ 079 Volgy
S(QUY) =y W (~p A\ -y)

S (OWUY)IZayU (a0 /\ -y)

Putting on Normal form

mf0)} =9 N oDy
Lo} =P Vvodo
pUy YV @NnopUY

Wy VA CRACICRUA D)

65

Translating formulas to Automata

9 =0(pA 1)

66

Translating formulas to Automata

9=0(pAT-9)=(pAD-q) V oO(pA 0-q)

67

Translating formulas to Automata

9=0(pA0-9)= (pAD-q) V oO(pA 0-q)
=(pA-g/N 00-q) V oO(p/ 0-q)

68

Translating formulas to Automata

O=0(pNC~q)=(pNT-q) V oO(p/N 1q)

(pA-g/N 00-q) V oO(p/ 0-q)

P/A-q

69

Translating formulas to Automata

O=0(pNC-q)=(pNT-q) V oO(p/N 1Iq)
=(pN-g/N o0-q) VV o Q(p/ O-q)

T -q

P/A-q

70

Adding accepting states

O=0(pNC-q)=(pNT-q) V oO(p/N 1q)

(pA-g/N 00-q) V oO(p/ 0-q)

71

