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Lecture 1
linear time temporal logic
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Peterson-Fischer: Possible Specifications

y1 := true

y2 \/ t = 1

t := 2

l0 l1

l3 l2

Variables: y1, y2: boolean, t: {1,2}
Initially y1 = y2 = false,  t = 1

y1 := false

y2 := true

y1\/ t = 2

t := 1

m1

m3 m2

y2 := false

m0

Mutual Exclusion: the two processes never simultaneously reach l3,m3

Absence of Starvation: If the left process is at l1, it will later reach l3

Bounded Overtaking: If the left process is at l1, the other process will reach
m3 at most once (twice?) before the left process reaches l3

3

Two Classes of Formalizations

at P1 free at P2

Branching Time Properties:
Specify properties that hold for 
the computation tree (unfolding)

at P1
free

free

at P2

free

free

always possible to reach free ;
always possible to reach at P1 ;
free is always eventually reached

free

Linear Time Properties:
Specify properties that hold for 
all computations

free at P1 free at P2 free

free at P2 free at P2 free

free at P1 free at P1 free

Free in every 2nd state ;
at P1 always followed by free

4

A Transition System is a tuple (S, S0 , -> , V , L) where
S is a set of states
S0 is a set of initial states
-> ( a subset of S x S)  is a transition relation
V is a set of variables
L :  S -> (V -> Val) gives a valuation of variables in each state

Write    s  -> s’ for   (s , s’)  ∈ ->

A Computation is a finite or infinite sequence of states
s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

such that
• so is an initial state
• (si , si+1)  ∈ -> for all (relevant)  i

Transition Systems (formal definition)

5

Linear Time Properties

• Properties of Computations
• Specify ”what happens when the system executes”
• Technical convenience

– Consider only infinite computations
– For finite computations, repeat the last state:

s0 s1 s2 s3 s4 s5 s6 s7

becomes
s0 s1 s2 s3 s4 s5 s6 s7 s7 s7 s7 …..

• In essence
Linear time property  φ =  set of computations

• Transtion system T satisfies linear time property  φ
T |=  φ

if all computations of T are in (satisfy) φ
6

Linear Time Properties: examples

• Start from properties about states p ,  q
e.g., y0 < 1      x = y at m3

• p  is invariant   

• p is stable

• p precedes   q

• p leads to   q

ppp

qp

qp
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Peterson-Fischer: Possible Specifications

y1 := true

y2 \/ t = 1

t := 2

l0 l1

l3 l2

Variables: y1, y2: boolean, t: {1,2}
Initially y1 = y2 = false,  t = 1

y1 := false

y2 := true

y1\/ t = 2

t := 1

m1

m3 m2

y2 := false

m0

Mutual Exclusion:          ¬(at l3 /\ at m3) is invariant

Absence of Starvation: at l1  leads to at l3

Bounded Overtaking:     ?????
8

Linear Time Temporal Logic: formulas

• State formulas (denoted by p ,  q ): properties about states 

e.g., y0 < 1      x = y at m3

• Formulas built using temporal operators

º φ ”in the next state φ”
□φ ”always (in all future states) φ”
◊ φ ”sometimes (in some future states) φ”
φ U ψ ”φ untilψ”
φ W ψ ”φ unless ψ”

• And boolean connectives 
¬ \/         /\ ->    

9

Linear Time Temporal Logic: interpretation

• Formulas interpreted over computations 
• A formula is either true or false in each state of a computation
• Example: 

• The following formulas hold at the particular state

¬p /\ q

º (p /\ q)

• The following formula does not hold at the particular state

□ p

p,qp,q¬p,q¬p,q¬p,¬qp,q

10

Meaning of operators

º φ

□φ

◊ φ

φ U ψ

φ W ψ

φ

φ

φ

φφφ φφ

φ φ ψ

(φ U ψ \/ □φ)
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Operators: Formal semantics

Let ß be computation s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 ….
• (ß,i) |= φ denotes that φ is true in state si

• (ß,i) |= p (for p state formula) iff p holds in state si

• Boolean connectives work as usual

• (ß,i) |= º φ iff (ß,i+1) |= φ
• (ß,i) |= □ φ iff ∀j ≥ i (ß,j) |= φ
• (ß,i) |= ◊ φ iff ∃j ≥ i (ß,j) |= φ
• (ß,i) |= φ U ψ iff ∃j ≥ i (ß,j) |= ψ and  

∀k : i ≤ k <j :(ß,k) |= φ
• (ß,i) |= φW ψ iff (ß,i) |= φ U ψ or    (ß,i) |= □ φ

12

Linear Temporal logic: examples

• □ p                           p  is invariant   

• □ ( p -> □p ) p is stable

• ¬ q W (p /\ ¬q)     p precedes   q

• □( p -> ◊ q) p leads to   q

• □◊ p infinitely often p

• ◊□ p from some point on p
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Peterson-Fischer: Possible Specifications

y1 := true

y2 \/ t = 1

t := 2

l0 l1

l3 l2

Variables: y1, y2: boolean, t: {1,2}
Initially y1 = y2 = false,  t = 1

y1 := false

y2 := true

y1\/ t = 2

t := 1

m1

m3 m2

y2 := false

m0

Mutual Exclusion:          □ ¬(at l3 /\ at m3)

Absence of Starvation:  □ (at l1 -> ◊ at l3 )
Bounded Overtaking:     □ (at l1 -> (¬at m3 U (at m3 U(¬at m3 U at l3 )))
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Specifying linear properties by automata

• A linear time property is a set of computations.
• Can be seen as a language of (infinite) words,

– Alphabet: possible assignments of truth-values to occurring state 
formulas

• A language can be specified by an automaton
• It turns out that it is better to represent the complement, i.e., 

the set of computations that violate the property

15

Automata Specifications: examples

• □ p

• □ ( p -> □p )

• ¬ q W (p /\ ¬q)

• □( p -> ◊ q)

• □◊ p

• ◊□ p

T
¬p

T

T p T¬p
T

¬p
q

T

?

16

Superposition of Automaton (Σ, Q, Q0 , -> , Φ)
onto  Transition System (S, S0 , -> , V , L) has

S x Q as the set of states
s’

<s,q> -> <s’,q’> if s -> s’ and q -> q’

Accepting condition adapted from Φ

Superposing Automaton on Transition system
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Safety vs. Liveness properties.

• Safety property is of the form
”nothing bad will ever happen”

A computation that violates the property will do so after a finite 
number of transitions

Enough to specify set of finite violating prefixes

• Liveness property is of the form
”something good will eventually happen”

A computation that violates the property can never so after a finite 
number of transitions

We must specify set of infinite violating computations

• Any regular property is conjunction of safety and liveness 
properties.
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Automata over infinite words

Automaton over infinite words: (Σ, Q, Q0 , -> , Φ)
where,
Σ is an alphabet (typically set of assignments of truth values              

to state formulas)
Q is a set of states
Q0 is a set of initial states
-> (a subset of S x Σ x S)  is a transition relation
Φ is an acceptance condition

A run over infinite word a1 a2 a3 a4 a5 a6 a7 is

a1       a2 a3 a4 a5      a6 a7      a8
q0 -> q1 -> q2 -> q3 -> q4 -> q5 -> q6 -> q7 -> q8

which satisfies the acceptance condition Φ
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Classes of acceptance conditions

Buchi automata
One set of accepting states F
Acceptance condition         □◊ F

Generalized Buchi automata
Collection of sets of accepting states F1 , … , Fn

,Acceptance condition         □◊ F1 /\ … /\ □◊ Fn 

Rabin automata
Collection of pairs of accepting states (F1 , G1 ) , … , (Fn ,Gn )

,Acceptance condition      \/i (□◊ Fi /\ ¬□◊ Gi )

Streett automata
Collection of pairs of accepting states (F1 , G1 ) , … , (Fn ,Gn )

,Acceptance condition      /\i (□◊ Fi ->  □◊ Gi )

20

Examples of Buchi Automata

• □◊ p

• ◊□ p

• □( p -> ◊ q)

• ◊( p /\ □¬q)

T p
pT

T
p

T

¬p \/q p /\¬q
¬q

q

T
¬q

p /\¬q

21

Translation Results

• Any property expressible in linear temporal logic is 
accepted by some Buchi automaton

• There are properties accepted by some Buchi 
automaton that can not be expressed in linear 
temporal logic 
– e.g.,   ”p is true in every even state”

p

T

22

Convenience of expression

• Some properties are easier to understand as 
automata

• Bounded Overtaking: 
□ (at l1 -> (¬at m3 U (at m3 U(¬at m3 U at l3 )))

¬at l1
at l1 at m3

¬at m3
¬at m3

at m3

¬at m3

at l3
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Convenience of expression

• Some properties are easier to understand as 
automata

• Bounded Overtaking: 
□ (at l1 -> (¬at m3 U (at m3 U(¬at m3 U at l3 )))

¬at l1
at l1 at m3

¬at m3
¬at m3

at m3

¬at m3

at l3
Negation:

T
at l1 at m3

¬at m3
¬at m3

at m3 ¬at m3
¬at l3

at m3
T
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Convenience of expression

• Some properties are easier to understand as 
automata

• Bounded Overtaking: 
□ (at l1 -> (¬at m3 U (at m3 U(¬at m3 U at l3 )))

¬at l1
at l1 at m3

¬at m3
¬at m3

at m3

¬at m3

at l3 Find bug
Negation:

T
at l1 at m3

¬at m3
¬at m3

at m3 ¬at m3
¬at l3

at m3
T



5

25

Model checking Linear Temporal logic

Automata-Theoretic Approach [Vardi Wolper 1986]
• Question                      ?

T |=                  φ
• Construct 

Buchi Automaton A¬φ
• Combine

T  x A¬φ

• Find
accepting computation (error trace)

26

Searching for accepting computations

Safety properties:
– T  x A¬φ has self-loops on all accepting states
– Find a sequence of transitions from an initial state to a final states
– This is the reachability problem
– Can be solved by search from initial states

• Visit all reachable states,
• If accepting state is encountered, sequence of transitions = error trace

Liveness properties:
– Infinite computation of T  x A¬φ must visit some accepting state 

infinitely many times
– Find a path to an accepting state, wich a loop to itself 
– This is the repeated reachability problem
– Can be solved by doble search from initial states

• Visit all reachable accepting states,
• Search for loops from accepting states
• If accepting loop (”lasso”, ”bad loop”) is encountered = error trace

27

Searching for reachable accepting loops          
[Alur Courcoubetis Dill]

1. Perform depth-first search of the reachable states
2. List reachable accepting states in post-order                 

q1, ..., qn
3. Search from each qi (starting with q1) to find a loop 

back to itself.
4. When post-order used, when searching states from 

qj, one need not reconsider states that were 
reached from states qi with i < j
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Why post-order is good

Post-order is order of 
popping states in DFS

If q1, ..., qn in post-order 
path from qi to  qj with 
i < j must pass ancestor 
of qi

Hence if state reached 
from qi has path to qj
then qi is in cycle
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Why post-order is good

Post-order is order of 
popping states in DFS

If q1, ..., qn in post-order 
path from qi to  qj with 
i < j must pass ancestor 
of qi

Hence if state reached 
from qi has path to qj
then qi is in cycle

30

Why post-order is good

Post-order is order of 
popping states in DFS

If q1, ..., qn in post-order 
path from qi to  qj with 
i < j must pass ancestor 
of qi

Hence if state reached 
from qi has path to qj
then qi is in cycle

q1

q2

q3

q4
q6

q5
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State-space exploration of PF

t = 1

y1:  F          T           T         T
l0         l1          l2         l3 

y2:
F    m0

T    m1

T    m2 

T    m3 

t = 2

F          T           T         T
l0         l1          l2         l3 

32

Reachable states

t = 1

y1:  F          T           T         T
l0         l1          l2         l3 

y2:
F    m0

T    m1

T    m2 

T    m3 

t = 2

F          T           T         T
l0         l1          l2         l3 
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DFS tree

t = 1

y1:  F          T           T         T
l0         l1          l2         l3 

y2:
F    m0

T    m1

T    m2 

T    m3 

t = 2

F          T           T         T
l0         l1          l2         l3 

34

DFS tree with automaton

y1:  F          T           T         T
l0         l1          l2         l3 

y2:
F    m0

T    m1

T    m2 

T    m3 

F          T           T         T
l0         l1          l2         l3 

T
¬at l3

at l1

The graph has no loops that do not visit l3
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Add self-loops at l0 and m0

y1:  F          T           T         T
l0         l1          l2         l3 

y2:
F    m0

T    m1

T    m2 

T    m3 

F          T           T         T
l0         l1          l2         l3 

T
¬at l3

at l1

The graph has no loops that do not visit l3
36

Add self-loops at l0 and m0

y1:  F          T           T         T
l0         l1          l2         l3 

y2:
F    m0

T    m1

T    m2 

T    m3 

F          T           T         T
l0         l1          l2         l3 

T
¬at l3

at l1

The graph has a bad loop that does not visit l3
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Add self-loops at l0 and m0

y1:  F          T           T         T
l0         l1          l2         l3 

y2:
F    m0

T    m1

T    m2 

T    m3 

F          T           T         T
l0         l1          l2         l3 

T
¬at l3

at l1

This is the first to be visited
38

Peterson-Fischer: Possible Specifications

y1 := true

y2 \/ t = 1

t := 2

l0 l1

l3 l2

Variables: y1, y2: boolean, t: {1,2}
Initially y1 = y2 = false,  t = 1

y1 := false

y2 := true

y1\/ t = 2

t := 1

m1

m3 m2

y2 := false

m0

Mutual Exclusion:          □ ¬(at l3 /\ at m3)

Absence of Starvation:  □ (at l1 -> ◊ at l3 )
Bounded Overtaking:     □ (at l1 -> (¬at m3 U (at m3 U(¬at m3 U at l3 )))

39

Simpler mutex

t = 1

t := 2

l1

l3 l2

Variables: t: {1,2}
Initially t = 1

t = 2

t := 1

m1

m3 m2

Mutual Exclusion:          □ ¬(at l2 /\ at m3)

Absence of Starvation:  □ (at l2 -> ◊ at l3 )
Bounded Overtaking:     □ (at l2 -> (¬at m3 U (at m3 U(¬at m3 U at l3 )))
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Simpler state space

t = 1

l1          l2         l3 

m1

m2 

m3 

t = 2

l1          l2         l3 

41

DFS tree

t = 1

l1          l2         l3 

m1

m2 

m3 

t = 2

l1          l2         l3 

42

DFS tree

t = 1

l1          l2         l3 

m1

m2 

m3 

t = 2

l1          l2         l3 
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DFS tree

t = 1

l1          l2         l3 

m1

m2 

m3 

t = 2

l1          l2         l3 

44

DFS tree

t = 1

l1          l2         l3 

m1

m2 

m3 

t = 2

l1          l2         l3 

45

Bad states are unreachable

t = 1

l1          l2         l3 

m1

m2 

m3 

t = 2

l1          l2         l3 

46

Reachable states

t = 1

l1          l2         l3 

m1

m2 

m3 

t = 2

l1          l2         l3 

47

Accepting states for absence of starvation

t = 1

l1          l2         l3 

m1

m2 

m3 

t = 2

l1          l2         l3 

48

Accepting states for absence of starvation

t = 1

l1          l2         l3 

m1

m2 

m3 

t = 2

l1          l2         l3 
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Post-order

t = 1

l1          l2         l3 

m1

m2 

m3 

t = 2

l1          l2         l3 

1

2

3

4

5

50

No loops can be found

t = 1

l1          l2         l3 

m1

m2 

m3 

t = 2

l1          l2         l3 

1

2

3

4

5
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Simpler mutex with self-loops

t = 1

t := 2

l1

l3 l2

Variables: t: {1,2}
Initially t = 1

t = 2

t := 1

m1

m3 m2

Mutual Exclusion:          □ ¬(at l2 /\ at m3)

Absence of Starvation:  □ (at l2 -> ◊ at l3 )
Bounded Overtaking:     □ (at l2 -> (¬at m3 U (at m3 U(¬at m3 U at l3 )))

52

State space with self-loops

t = 1

l1          l2         l3 

m1

m2 

m3 

t = 2

l1          l2         l3 

1

2

3

4

5

53

Idle loop found

t = 1

l1          l2         l3 

m1

m2 

m3 

t = 2

l1          l2         l3 

1

2

3

4

5

54

Corresponding bad reachable loop

t = 1

l1          l2         l3 

m1

m2 

m3 

t = 2

l1          l2         l3 

1

2

3

4

5
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Peterson-Fischer with idle loops

y1 := true

y2 \/ t = 1

t := 2

l0 l1

l3 l2

Variables: y1, y2: boolean, t: {1,2}
Initially y1 = y2 = false,  t = 1

y1 := false

y2 := true

y1\/ t = 2

t := 1

m1

m3 m2

y2 := false

m0

We need mechanism to avoid computations that only 
perform idle steps

Fairness

56

Fairness

• Assumption that some part of a transition system 
eventually progresses, without quantitative 
restrictions

• Can be viewed as an abstraction of many possible 
concrete transition scheduling policies.

• There are many different notions of fairness.
• The most common is weak fairness
• Another not uncommon is strong fairness

57

Fairness (definition)

• action A : any set of transitions (e.g., of one process)

• A computation
s0    s1    s2    s3    s4    s5    s6    s7  .  .  . 

is 
• weakly fair wrp. to A if

– whenever A is enabled in all sj with j > i
then some transition A is taken from some sk with k > i

– □(□ enabled A ->  ◊ taken A ) 
– ◊□ enabled A ->  □◊ taken A

• strongly fair wrp. to A if
– whenever A is enabled in infinitely many sj with j > i

then some transition A is taken from some sk with k > i
– □(□ ◊enabled A ->  ◊ taken A ) 
– □◊ enabled A ->  □◊ taken A

58

Fairness (definition)

• action A : any set of transitions (e.g., of one process)

• A computation
s0    s1    s2    s3    s4    s5    s6    s7  .  .  . 

is 
• Weakly fair wrp. to A if

– whenever A is enabled in all sj with j > i
– then some transition A is taken from some sk with k > i
– □(□ enabled A ->  ◊ taken A ) 
– ◊□ enabled A ->  □◊ taken A

• Strongly fair wrp. to A if
– whenever A is enabled in infinitely many sj with j > i
– then some transition A is taken from some sk with k > i
– □(□ ◊enabled A ->  ◊ taken A ) 
– □◊ enabled A ->  □◊ taken A

59

Checking fairness in exploration algorithm

To verify φ under fairness assumption
• Naive algorithm searches for bad loops that satisfy            

fairness assumption /\¬φ
More efficient solution for weak fairness: 

• search for bad loops that satisfy  ¬φ
in which each action A with weak fairness is once 
either disabled or taken

60

Add self-loops at l0 and m0

y1:  F          T           T         T
l0         l1          l2         l3 

y2:
F    m0

T    m1

T    m2 

T    m3 

F          T           T         T
l0         l1          l2         l3 

T
¬at l3

at l1

The loop does not have left process disabled or taken
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Translating formulas to Automata

◊( p /\ □¬q)

62

Translating formulas to Automata

◊( p /\ □¬q)

φ

φ1

φ2

63

Translating formulas to Automata

◊( p /\ □¬q)

φ

φ1

φ2

p

q

64

Translating formulas to Automata

◊( p /\ □¬q)

φ

φ1

φ2

p

q

φ Ξ p /\ ºφ1          \/      q /\ ºφ2 

65

Decomposing temporal operators

Pushing negations

¬□φ Ξ ◊ ¬φ φ /\ º□φ
¬◊ φ Ξ □¬φ \/  º ◊ φ
¬ ( φ U ψ ) Ξ ¬ψ W (¬φ /\ ¬ψ)
¬ ( φ W ψ ) Ξ ¬ψ U (¬φ /\ ¬ψ)

Putting on Normal form
□φ Ξ φ /\ º□φ
◊ φ Ξ φ \/  º ◊ φ
φ U ψ Ξ ψ \/  (φ /\ º φ U ψ)
φ W ψ Ξ ψ \/  (φ /\ º φ W ψ)

66

Translating formulas to Automata

φ Ξ ◊( p /\ □¬q) 

φ
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Translating formulas to Automata

φ Ξ ◊( p /\ □¬q) Ξ ( p /\ □¬q)  \/  º ◊( p /\ □¬q) 

φ

68

Translating formulas to Automata

φ Ξ ◊( p /\ □¬q) Ξ ( p /\ □¬q)  \/  º ◊( p /\ □¬q)

Ξ ( p /\ ¬q /\ º□¬q)  \/  º ◊( p /\ □¬q) 

φ

69

Translating formulas to Automata

φ Ξ ◊( p /\ □¬q) Ξ ( p /\ □¬q)  \/  º ◊( p /\ □¬q)

Ξ ( p /\ ¬q /\ º□¬q)  \/  º ◊( p /\ □¬q) 

φ □¬q
p /\ ¬q

T

70

Translating formulas to Automata

φ Ξ ◊( p /\ □¬q) Ξ ( p /\ □¬q)  \/  º ◊( p /\ □¬q)

Ξ ( p /\ ¬q /\ º□¬q)  \/  º ◊( p /\ □¬q) 

φ □¬q
p /\ ¬q

T ¬q

71

Adding accepting states 

φ Ξ ◊( p /\ □¬q) Ξ ( p /\ □¬q)  \/  º ◊( p /\ □¬q)

Ξ ( p /\ ¬q /\ º□¬q)  \/  º ◊( p /\ □¬q) 

φ □¬q
p /\ ¬q

T ¬q


