

Linear Time Properties	
Properties of Computations	
• Specify "what happens when the system executes"	
Technical convenience	
 Consider only infinite computations 	
 For finite computations, repeat the last state: 	
\mathbf{s}_0 \mathbf{s}_1 \mathbf{s}_2 \mathbf{s}_3 \mathbf{s}_4 \mathbf{s}_5 \mathbf{s}_6 \mathbf{s}_7	
becomes	
$s_0 \ s_1 \ s_2 \ s_3 \ s_4 \ s_5 \ s_6 \ s_7 \ s_7 \ s_7 \ s_7 \ s_7 \dots$	
In essence	
Linear time property ϕ = set of computations	
• Transtion system T satisfies linear time property ϕ	
$T \mid = \varphi$	
if all computations of T are in (satisfy) ϕ	
	5

Safety vs. Liveness properties.	
Safety property is of the form "anthing had will over happen"	
A computation that violates the property will do so after a fini number of transitions	te
Enough to specify set of finite violating prefixes	
Liveness property is of the form	
"something good will eventually happen"	
A computation that violates the property can never so after a number of transitions	finite
We must specify set of infinite violating computations	
Any regular property is conjunction of safety and liveness properties.	
	17

Classes of acceptance conditions

Searching for accepting computations

Safety properties:

- T \times A₁₀ has self-loops on all accepting states
- Find a sequence of transitions from an initial state to a final states
- This is the reachability problem
 - Can be solved by search from initial states • Visit all reachable states,

Liveness properties:

– Infinite computation of $T \, \times \, \textbf{A}_{\neg \phi}$ must visit some accepting state infinitely many times

26

- Find a path to an accepting state, wich a loop to itself
- This is the repeated reachability problem
- Can be solved by doble search from initial states
 - Visit all reachable accepting states,
 Search for loops from accepting states
 - Search for loops from accepting states
 If accepting loop ("lasso", "bad loop") is encountered = error trace

Fairness

- Assumption that some part of a transition system eventually progresses, without quantitative restrictions
- Can be viewed as an abstraction of many possible concrete transition scheduling policies.

56

- There are many different notions of fairness.
- The most common is weak fairness
- Another not uncommon is strong fairness

