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Lecture 2

Untimed Systems: Modeling
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Model is a simplification of a system for understanding and analysing
particular aspects

In e.g., control engineering, models describe relation between (real-
valued) quantities

In protocol and software verification, models should describe possible 
combinations of sequences of computation steps

=>
Models will have discrete states and transitions between states.

Modeling: informal motivation
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Model to describe the operational behavior of systems
Example: Resource Allocation System: 

Transition Systems

States
Initial state Transitions

Variables: status                     (what can be “observed”)

free at P1 freeComputation: at P2 free

at P1 free at P2
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A Transition System is a tuple (S, S0 , -> , V , L) where
S  is a set of states
S0  is a set of initial states
-> ( a subset of S x S)  is a transition relation
V is a set of variables
L :  S -> (V -> Val) gives a valuation of variables in each state

Write    s  -> s’ for   (s , s’)  ∈ ->

Transition Systems (formal definition)
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A Transition System is a tuple (S, S0 , -> , V , L) where
S  is a set of states
S0  is a set of initial states
-> ( a subset of S x S)  is a transition relation
V is a set of variables
L :  S -> (V -> Val) gives a valuation of variables in each state

Write    s  -> s’ for   (s , s’)  ∈ ->

A Computation is a finite or infinite sequence of states
so s1 s2 s3 s4 s5 s6 s7 s8 s9

such that
• so is an initial state
• (si , si+1)  ∈ -> for all relevant  i

Transition Systems (formal definition)
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Drawing large graphs is very inconvenient.

We need constructs to define transition systems conveniently
• variables
• processes
• communication channels

Structured Descriptions of Transition 
Systems
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Example: simple incrementation of stored variable 

Adding Variables (Action Systems)

fetch

addstore

Action System
Variables: x, r: integer
Initially x = 0

r := x

r < 9  ->  r := r+1

x := r

Transition system

States:
locations × evaluations of variables
(add, {x -> 0 , r -> 0} )

Transitions:
(add, {x -> 0 , r -> 0} )

->
(store, {x -> 1 , r -> 0} )
Variables:
loc x,    r

Valuation:  
(add, {x -> 0 , r -> 0} ) (x)   =  0

(add, {x -> 0 , r -> 0} ) (loc)   =  add

locations

guard effect

8

Corresponding Transition System

fetch

addstore

Program graph
Variables: x, r: integer
Initially x = 0

r := x

r < 9  ->  r := r+1

x := r

(fetch, {x -> 0 , r -> 0} )

locations

guard effect

(add, {x -> 0 , r -> 0} )

(store, {x -> 0 , r -> 1} )

(fecth, {x -> 1 , r -> 1} )

(add, {x -> 8 , r -> 8} )
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Program graphs can be put in parallel

Parallel Processes

fetch

addstore

Variables: x, r, t: integer
Initially x = 0

r := x

r := r+1

x := r

fetch

addstore

t := x

t := t+1

x := t

States: (add, fetch, {x -> 0 , r -> 0 , t -> 0} )
Transitions: (add, fetch, {x -> 0 , r -> 0 , t -> 0} ) -> (store, fetch, {x -> 0 , r -> 1 , t -> 0})
Variables:   loc[1], loc[2], x,    r , t

10

Peterson-Fischer Mutual Exclusion prot.

y1 := true

y2 \/ t = 1

t := 2

l0 l1

l3 l2

Variables: y1, y2: boolean, t: {1,2}
Initially y1 = y2 = false,  t = 1

y1 := false

y2 := true

y1\/ t = 2

t := 1

m1

m3 m2

y2 := false

m0

States: ( l1 , m1, {y1 -> true ,y2 -> true , t -> 1} )
Initial States: ( l0 , m0,  {y1 -> false ,y2 -> false , t -> 1} )
Transition:
( l0 , m0,  {y1 -> false ,y2 -> false , t -> 1} )       ( l1 , m0,  {y1 -> true ,y2 -> false , t -> 1} )
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Transitions of parallel components are merged or “interleaved”
• as if the model is “executed” on a single processor
The order between transitions of different components is completely arbitrary
• as if there is a scheduler with an unknown strategy
• possible that some components are scheduled “very seldom” or never at all
Particular scheduling strategies can be enforced by adding a “scheduler” into 

the model
• e.g., by using shared variable(s) to model the state of a scheduler
Certain minimal assumptions on scheduling can be represented using fairness 

(more about this later)

Interleaving
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Peterson-Fischer: Transition System

t = 1

y1:  F          T           T         T
l0         l1          l2         l3 

y2:
F    m0

T    m1

T    m2 

T    m3 

t = 2

F          T           T         T
l0         l1          l2         l3 
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Each transition is atomic, i.e., it is an undivisible operation, which has no 
“intermediate states”, i.e., can not be stopped “in the middle”

Atomicity

l1

l2

Variables: x: integer
Initially x = 0

x := x+1

m1

m2

x := x+1

This transition system will “terminate” with the value of x  being  2
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How much detail must be modeled?

l2

l3

Variables: x, r, t: integer
Initially x = 0

r := r+1

l1

l4

r := x

x := r

m2

m3

t := t+1

m1

m4

t:= x

x := t

All possible sequences of 
”externally interesting” 
transitions must be modeled

Critical event is an operation, for 
which is makes a difference how
it is interleaved
•Reading shared varialbe
•Writing to shared variable

Recepy:
•Each transition should involve
at most one critical event
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Also a faithful model

l2

l3

Variables: x, r, t: integer
Initially x = 0

l1

r := x

x:=r+1

m2

m3

m1

t:= x

x:=t+1

All possible sequences of 
”externally interesting” 
transitions must be modeled

Critical event is an operation, for 
which is makes a difference how
it is interleaved
•Reading shared varialbe
•Writing to shared variable

Recepy:
•Each transition should involve
at most one critical event
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• “Principle of relativity” (simultaneity can not be 
observed)

• Fewer transitions to consider in analysis

Arguments for using Interleaving

x := x+1 x := x+1 x := x+1

• In general:  2n possible transitions
• With interleaving:  n possible transitions
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• Some (noninteresting) “pathological” properties are satisfied 
when using interleaving

Limitations of interleaving

• Interleaving makes the system satisfy the (uninteresting) property: 
“there must be a (short) instant when x and y are different”

l1

l2

Variables: x,y: integer
Initially x = y = 0

x := x+1

m1

m2

y := y+1
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Small Example: Mars Pathfinder 1997

Typical properties of synchronization in real-time systems
• Mutual exclution

– A process cannot access the data-bus unless it owns a mutex-lock

• Scheduling priority
– Saving data to memory has higher priority than processing data
– Low priority process cannot execute when high priority process is ready to 

execute

Small Idealized Example from Reality
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Idealized model of processes

idle

wait

run

Variables: l: integer
Initially l = 1

High@idle -> l := 1

High@idle ^ l = 1  ->  l := 0

idle

wait

run

l := 1

l = 1  ->  l := 0

High priority process Low priority process


