
1

1

Modeling and Analysis
of Timed Systems

Bengt Jonsson
Wang Yi
Uppsala University, Sweden

With contributions from
Tobias Amnell, Elena Fersman, Pavel Krcal, Leonid Mokrushin,
Paul Pettersson

Trento, Feb. 2007
2

OUTLINE

• Untimed systems: modeling and specification
– Motivation, Transition systems, Temporal logics,
– Promela, Examples

• Untimed systems: model checking
– Model checking algorithms, SPIN,

• Infinite-State and Parameterized Systems:
– Model checking algorithms, decidability results,

• Timed Systems: modeling and theory
– Modeling timed systems, Timed automata,
– Verification of timed systems

• UPPAAL
– Modeling, data stuctures & algorithms

• TIMES
– From models to code ”guaranteeing” timing constraints

3

Lecture 1
Introduction: Motivation and Sketch of Verification
History

4

Why want bug-free programs?

• Testing consumes ~half of software development
effort

• Several “expensive” accidents caused by bugs
– Ariane 5 crash 1996
– Pentium division bug
– Mars pathfinder ceased to work 1997
– Viruses, ….

5

Better Development tools
Programming languages
development environments
Libraries
Software architectures

Better Skills
Better designers
better programmers
Better testers and verifiers

Better Processes
Better Collaboration
better specifications,

Better Verification Techniques
Testing and verification: Eliminating bugs

Some of the Improvements needed

6

Dream: Program verifier

Code

Specification

Yes!
Automatic

Verifier
No!

List of bugs

2

7

The dream started 40 years ago in 1960’s
aiming at ”bug-free software”

start
y1;y2:=x1,x2

print(y1) stop

y2:=y2-y1y1:=y1-y2

y1>y2

y1==y2
Y

N

NY

What does this program do?
[Floyd 1967, Hoare 1969]

It computes the Greatest Common
Divisor (gcd) of x1 and x2

8

How can a program check this fact?

start
y1,y2:=x1,x2

print(y1) stop

y2:=y2-y1y1:=y1-y2

y1>y2

y1==y2
Y

N

NY

x1>0, x2>0

y1>0, y2>0, gcd(y1,y2)=gcd(x1,x2)

y1=gcd(x1,x2)

Can you check this ?

9

Yes, you construct it manually
by finding the right loop invariant
And checking the appropriate conditins.

10

Yes, you construct it manually
by finding the right loop invariant
And checking the appropriate conditins.

Software verification (now, a hot topic)

Question: can you automate the proof ?

11

One more example (Total correctness)

Function foo(n)
begin
if n==1 then 1

else if even(n) then foo(n/2)
else foo(3*n+1)

end

Does this program terminate for any n? (WCET?) 12

How are these techniques used today?

• This style of verification technique has been extended to
concurrent, distributed, real-time ,... programs.

• It is a wide-spread tool for manual proofs,
• And for specifying procedures (pre-postconditions, contracts) in

Eiffel, Java.
• It has been very difficult to automate

– Difficult to find and prove invariants and variant functions
– lt to write complete specifications: what I really want?

3

13

History: Model-checking invented in 70’s/80s
[Pnueli 77, Clarke et al 83, POPL83, Sifakis et al 82]

• Restrict attention to finite-state programs
– Control skeleton + boolean (finite-domain) variables
– Found in hardware design, communication protocols, process control

• Temporal logic specification of e.g., synchronization pattern
– There are algorithms to check that Program satisfies: SPEC
- e.g. Alternating Bit Protocol skeleton, around 140 states, 1984

• BDD-based symbolic technique [Bryant 86]

– SMV 1990 Clarke, McMillan et al, state-space 1020

– Now powerful tools used in processor design

• On-the-fly enumerative technique [Holzman 89]

– SPIN, COSPAN, CAESAR , KRONOS, UPPAAL etc

• SAT-based techniques [Clarke et al, McMillan, ...]

14

History: Model checking for real time systems, started in
the 80s/90s

– Extension of model checking to consider time
quantities

– Timed automata, timed process algebras
[Alur&Dill 1990]

– Models, specfications, and algorithms can be
extended

– KRONOS, Hytech, 1993-1995, IF 2000’s
– TAB 1993, UPPAAL 1995, TIMES 2002

15

Merits of this simpler approach

• Checking simple properties (e.g. deadlock freeness) is already extremely useful!

• The goal is no longer seen as proving that a system is completely, absolutely
and undoutedly correct (bug-free)

• The objective is to have tools that can help a developer find errors and gain
confidence in her/his design. That is achievable

• Now widely used in hardware design, protocol design, and hopefully soon,
embedded systems!

16

Why testing not good enough

• Testing/simulation: coverage problems, difficult to deal with
non-determinism and concurrent computation

• Formal verification/Model-Checking (= exhaustive
testing of software and hardware design) provides 100%
coverage

17

The Waterfall Model

Analysis

Design

Implementation

Testing

Problem
Area

Ru
nn

ing

Sy
ste

m

Traditional software development

18

Introducing, Detecting and Correcting errors

♦ 30-50% of development time/money for testing
♦ Errors detected: the late the more expensive

4

19

Motivation: Purpose of Model Verification

Requirements

High level design

Detailed design

coding

testing

deployment

Build model of the design.
Analyze it thoroughly

Testing
concentrates more
on low-level issues
And conformance
to model

20

Testing: Needs code. Incomplete
Static Program Analysis: Needs code. Can systematically find certain

classes of errors.
Code Reviews: Also needs code. Can be time-consuming
Design Reviews: Does not need code. Not automated
Prototyping and Simulation: Needs good tool support. Incomplete
Model Checking:
• Can be done early in the design cycle.
• Automated (provided tools available)
• Systematic, can be made rather complete
• A model must be constructed (at a suitable level of abstraction)

Some Verification and Validation
Techniques

21

Checking correctness of
• Communication protocols
• Distributed Algorithms
• Controllers
• Hardware circuits
• Parallel and distributed software
• Embedded and real-time systems and software
e.g.,
Absence of race conditions, proper synchronization, ….

Problems that can be addresed by Model
Checking

Model checking is the appropriate technique
when there are many many different
scenarios of interaction between components
in a system

22

Overview of Model Checking

Model: M

Property: ϕ

Yes!
Model

Checker
No!

Error trace

Promela

Promela/
Temporal Logic

SPIN

23

Reachable?Reachable?
(bug?)(bug?)

An ’abstract’ version of a field bus protocol

24

Constructing a Model
• Not so easy, this course will make you experts
Checking that the actual system/software conforms to the model
• Hard problem: there are several techniques:

• Conformance testing
• Static program analysis
• Automated code generation

Remaining Problems

5

25

Model-Checking may complement testing to
find (design) Bugs as early as possible

