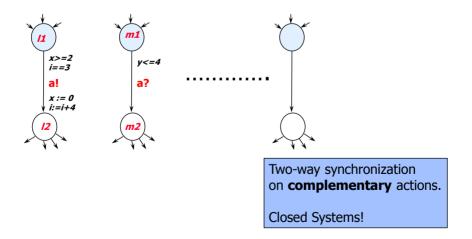

### **UPPAAL** tutorial

- What's inside UPPAAL
- The UPPAAL input languages (i.e. TA and TCTL in UPPAAL)


**Timed Automata in UPPAAL** 



### **Timed Automata in UPPAAL**



### **Networks of Timed Automata**



### **UPPAAL** modeling language

- Networks of Timed Automata with Invariants
  - + urgent action channels,
  - + broadcast channels,
  - + urgent and committed locations,
  - + data-variables (with bounded domains),
  - + arrays of data-variables,
  - + constants,
  - + guards and assignments over data-variables and arrays...,
  - + templates with local clocks, data-variables, and constants
  - + C subset

5

### **Declarations in UPPAAL**

- The syntax used for declarations in UPPAAL is similar to the syntax used in the C programming language.
- · Clocks:
  - Syntax:

```
clock x1, ..., xn ;
```

– Example:

clock x, y;Declares two clocks: x and y.

## **Declarations in UPPAAL (cont.)**

- Data variables
  - Syntax:

```
int n1, ...;
int[l,u] n1, ...;
int n1[m], ...;
```

Integer with "default" domain. Integer with domain from "I" to "u". Integer array w. elements n1[0] to n1[m-1].

```
- Example;
- int a, b;
- int[0,1] a, b[5];
```

7

## **Declarations in UPPAAL (cont.)**

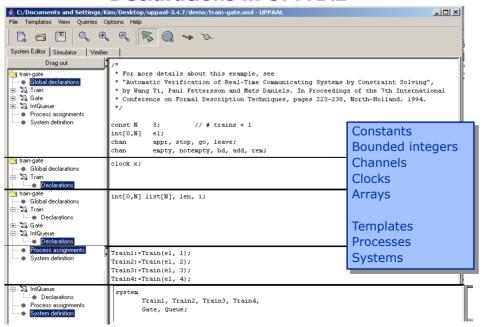
- · Actions (or channels):
  - Syntax:

```
chan a, ...;
urgent chan b, ...;
```

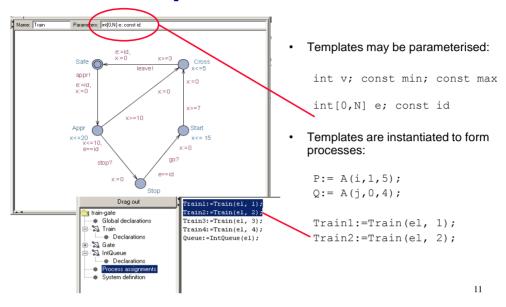
Ordinary channels.
Urgent actions (described later)

- Example:
- chan a, b[2];
- urgent chan c;

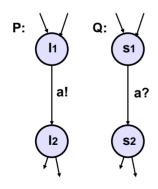
### **Declarations UPPAAL (const.)**


- Constants
  - Syntax:

```
const int c1 = n1;
```

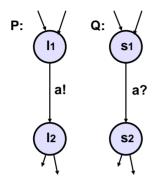

- Example:
- const int[0,1] YES = 1;
- const bool NO = false;

9


#### **Declarations in UPPAAL**



## **Templates in UPPAAL**




# **Urgent Channels: Example 1**



- Suppose the two edges in automata P and Q should be taken as soon as possible.
- I.e. as soon as both automata are ready (simultaneously in locations l<sub>1</sub> and s<sub>1</sub>).
- How to model with invariants if either one may reach I<sub>1</sub> or s<sub>1</sub> first?

### **Urgent Channels: Example 1**

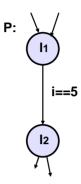


- Suppose the two edges in automata P and Q should be taken as soon as possible
- I.e. as soon as both automata are ready (simultaneously in locations I<sub>1</sub> and s<sub>1</sub>).
- How to model with invariants if either one may reach l<sub>1</sub> or s<sub>1</sub> first?
- Solution: declare action "a" as urgent.

13

## **Urgent Channels**

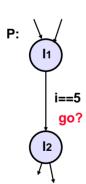
urgent chan hurry;


#### **Informal Semantics:**

• There will be <u>no delay</u> if transition with urgent action can be taken.

#### **Restrictions:**

- No clock guard allowed on transitions with urgent actions.
- Invariants and data-variable guards are allowed.


## **Urgent Channel: Example 2**



- · Assume i is a data variable.
- We want P to take the transition from I1 to I2 as soon as i==5.

15

## **Urgent Channel: Example 2**



- · Assume i is a data variable.
- We want P to take the transition from I1 to I2 as soon as i==5.
- Solution: P can be forced to take transition if we add another automaton:

go go

where "go" is an urgent channel, and we add "go?" to transition I1→I2 in automaton P.

### **Broadcast Synchronisation**

broadcast chan a, b, c[2];

- · If a is a broadcast channel:
  - a! = Emmision of broadcast
  - a? = Reception of broadcast
- A set of edges in different processes can synchronize if one is emitting and the others are receiving on the same b.c. channel.
- · A process can always emit.
- · Receivers must synchronize if they can.
- · No blocking.

17

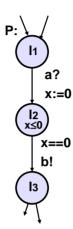
### **Urgent Location**

Click "Urgent" in State Editor.

#### Informal Semantics:

• No delay in urgent location.

**Note:** the use of urgent locations <u>reduces</u> the number of clocks in a model, and thus the complexity of the analysis.


### **Urgent Location: Example**

 Assume that we model a simple media M:

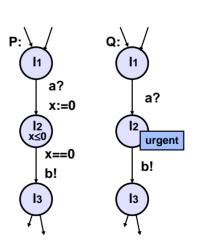


that receives packages on channel a and immediately sends them on channel b.

• P models the media using clock x.



19


### **Urgent Location: Example**

 Assume that we model a simple media M:



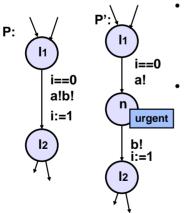
that receives packages on channel a and immediately sends them on channel b.

- P models the media using clock x.
- Q models the media using urgent location.
- · P and Q have the same behavior.

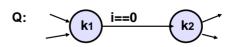


### **Committed Location**

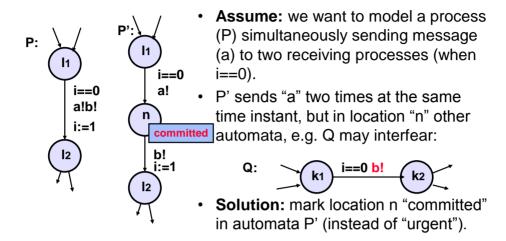
#### Click "Committed" i State Editor.


#### **Informal Semantics:**

- · No delay in committed location.
- Next transition must involve automata in committed location.


**Note:** the use of committed locations <u>reduces</u> the number of interleaving in state space exploration (and also the number of clocks in a model), <u>and</u> thus allows for more space and time efficient analysis.

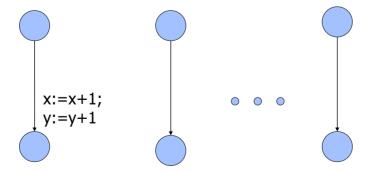
21


## **Committed Location: Example 1**



- **Assume:** we want to model a process (P) simultaneously sending message a and b to two receiving processes (when i==0).
- P' sends "a" two times at the same time instant, but in location "n" other automata, e.g. Q may interfear



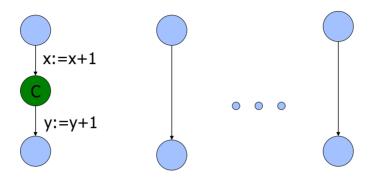

### **Committed Location: Example 1**



23

#### **Committed Locations**

(example: atomic sequence in a network)

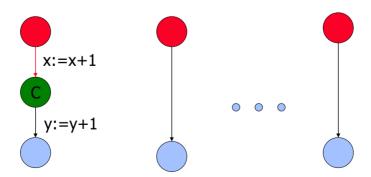



If the sequence becomes too long, you can split it ... 24

### **Committed Locations**

(example: atomic sequence in a network)

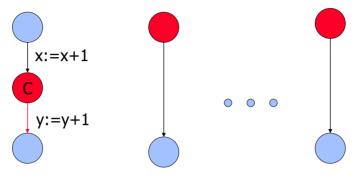
Semantics: the time spent on C-location should be zero!




25

### **Committed Locations**

(example: atomic sequence in a network)

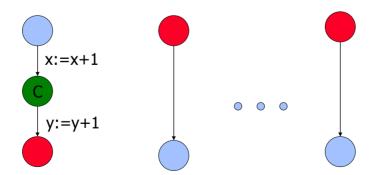

Semantics: the time spent on C-location should be zero!



### **Committed Locations**

(example: atomic sequence in a network)

Semantics: the time spent on C-location should be zero!



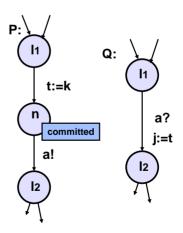

Now, only the committed (red) transition can be taken!

27

### **Committed Locations**

(example: atomic sequence in a network)




### **Committed Locations**

- A trick of modeling (e.g. to model multi-way synchronization using handshaking)
- More importantly, it is a simple and efficient mechanism for state-space reduction!
  - In fact, it is a simple form of 'partial order reduction'
- It is used to avoid intermediate states, interleavings:
   Committed states are not stored in the passed list
   Interleavings of any state with a committed location will not be explored

29

## **Committed Location: Example 2**

- Assume: we want to pass the value of integer "k" from automaton P to variable "j" in Q.
- The value of k can is passed using a global integer variable "t".
- Location "n" is committed to ensure that no other automat can assign "t" before the assignment "j:=t".



### **More Expressions**

- · New operators (not clocks):
  - Logical:
    - && (logical and), || (logical or), ! (logical negation),
  - Bitwise:
    - ^ (xor), & (bitwise and), | (bitwise or),
  - Bit shift:
    - << (left), >> (right)
  - Numerical:
    - % (modulo), <? (min), >? (max)
  - Compound Assignments:
    - +=, -=, \*=, /=, ^=, <<=, >>=
  - Prefix or Postfix:
    - ++ (increment), -- (decrement)

31

### **More on Types**

- · Multi dimensional arrays
  - e.g. int b[2][3];
- · Array initialiser:

```
e.g. int b[2][3] := { \{1,2,3\}, \{4,5,6\} \};
```

- · Arrays of channels, clocks, constants.
  - e.g.
  - chan a[3];
  - clock c[3];
  - const k[3] { 1, 2, 3 };
- · Broadcast channels.
  - e.g. broadcast chan a;

#### **Extensions**

#### Select statement

- Models non-deterministic choise
- x : int[0,42]

#### **Types**

- · Record types
- Type declarations
- Meta variables: not stored with state meta int x;

#### Forall / Exists Expressions

- forall (x:int[0,42])
   expr
   true if expr is true for all values in
   [0,42] of x
- exists (x:int[0,4]) expr true if expr is true for some values in [0,42] of x

#### Example:

```
forall
(x:int[0,4])array[x];
```

33

### **Advanced Features**

· Priorities on channels

```
chan a,b,c,d[2],e[2];
chan priority a,d[0] < default < b,e</pre>
```

· Priorities on processes

```
system A < B,C < D;
```

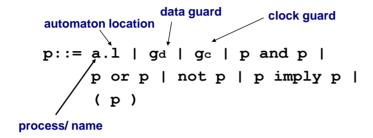
Functions

C-like functions with return values

### **UPPAAL** specification language

35

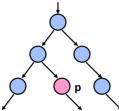
## **TCTL Quantifiers in UPPAAL**


- E exists a path ("E" in UPPAAL).
- A for all paths ( "A" in UPPAAL).
- G all states in a path ("[]" in UPPAAL).
- F some state in a path ( "<>" in UPPAAL).

You may write the following queries in UPPAAL:

```
    A[]p, A<>p, E<>p, E[]p and p --> q
    AG p
    EG p
    p and q are "local properties"
```

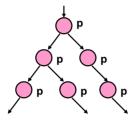
# "Local Properties"


A[]p, A<>p, E<>p, E[]p, p-->p where p is a local property



37

# E<>p - "p Reachable"

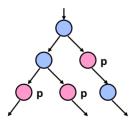

 E<> p – it is possible to reach a state in which p is satisfied.



• p is true in (at least) one reachable state.

# A[]p - "Invariantly p"

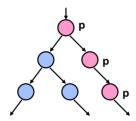
• A[] p - p holds invariantly.




• p is true in all reachable states.

39

# A<>p - "Inevitable p"

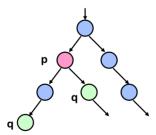

 A<> p – p will inevitable become true, the automaton is guaranteed to eventually reach a state in which p is true.



• p is true in some state of all paths.

# E[] p - "Potentially Always p"

• E[] p - p is potentially always true.




• There exists a path in which p is true in all states.

41

# p --> q- "p lead to q"

p --> q - if p becomes true, q will inevitably become true.
 same as A[]( p imply A<> q )



 In all paths, if p becomes true, q will inevitably become true.