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What's inside UPPAAL

OUTLINE

= Data Structures
= DBM'’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints

= Algorithms UPPSALA @
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= Liveness checking
= Verification Options




All Operations on Zones
(needed for verification)

= Transformation

= Conjunction /1 \
o sz s3 :
= Post condition (delay) \

= Reset
= Consistency Checking 7 /f\

= Inclusion
= Emptiness

Zones = Conjuctive constraints

= A zone Zis a conjunctive formula:
9; &, &... &g,
where g; may be x; ~ b; or xi-x;~bj;
= Use a zero-clock x, (constant 0), we have
{Xi-X; ~ by | ~is < or<, ij<n}
= This can be represented as a MATRIX, DBM
(Difference Bound Matrices)



Datastructures for Zones in UPPAAL

= Difference Bounded Matrices
[Bellman58, Dill89]

= Minimal Constraint Form
[RTSS97]

= Clock Difference Diagrams

[CAV99] ¥ [l T3]
P [2.3]
o €2
1 1,4]
[1,3] [2.4]
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Canonical Datastructures for Zones
Difference Bounded Matrices Bellman 1958, Dill 1989

Inclusion
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Canonical Dastructures for Zones
i ) Bellman 1958, Dill 1989
Difference Bounded Matrices

Inclusion
X X
x<=1 1/' \2‘ Shortest 1/' \2‘
21 Y'X<=§ Graph 0 y Path 0 3 y
Zy<= Closure
7<=9 9\A Z‘/Z }\ Z‘/z
2CS? Z1cZ2!
= X
22 X_<X<2=3 2/' 3 Shortest 2/' 3
y _ G h 3 Path 3
y<=3 o ———"y Cosure Oy >V
- <=3
;<y=7 7\‘ z‘/3 }\‘ z‘/3
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Canonical Datastructures for Zones
Difference Bounded Matrices  Be'™man 1958, Dill 1989

Emptiness

Negative Cycle
iff
empty solution set
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Canonical Datastructures for Zones
Difference Bounded Matrices

' Conjunction y
Zng ‘ ﬁ
= - X 1<=x, 1<=y

-2<=x-y<=3
3<=x

J) )

y
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Canonical Dastructures for Zones
Difference Bounded Matrices

Delay
| | &
V4 z7
X
1<=x<=4
=y <= 1<=x, 1<=y
:Il<_ y=3 -2<=x-y<=3 I
7y L)
1 Shortest Remove
Path buppedr 0 3
a ounds
\\\\\\~_ osure /, on clocks \\\\\\‘_

-1 1

o
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Canonical Datastructures for Zones
Difference Bounded Matrices

y ' Reset Y
7 {y}z L
1<=x, 1<=y
-2<=x-y<=3 y=0, 1<=x I
X

X
Remove all
} 3 bounds -1
0 involving y 0 0
H and sety to 0
N S

COMPLEXITY

= Computing the shortest path closure, the

15

cannonical form of a zone: O(n3) [Dijkstra’s alg.]

= Run-time complexity, mostly in O(n)

(when we keep all zones in cannonical form)
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Datastructures for Zones in UPPAAL

= Difference Bounded Matrices
[Bellman58, Dill89]

= Minimal Constraint Form
[RTSS97]

= Clock Difference Diagrams
[CAV99]

x1-x2<=-4 Shortest
x2-x1<=10 Path
x3-x1l<=2 Closure
X2-x3<=2 o(n3)
x0-x1<=3

x3-x0<=5

]

(DIBM)

Shortest
Path
Reduction
0o(n3)

Space worst O(n2)
practice O(n)

(Minimal graph, a.ka.
compact data structure)
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Graph Reduction Algorithm

1. Equivalence classes based
on 0-cycles.

19

Graph Reduction Algorithm

1. Equivalence classes based
on 0-cycles.

2. Graph based on
representatives.
Safe to remove redundant edges

20
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Graph Reduction Algorithm

1. Equivalence classes based
on 0-cycles.

2. Graph based on
representatives.
Safe to remove redundant edges

3. Shortest Path Reduction
One cycle pr. class
+
Removal of redundant edges
between classes

21

Datastructures for Zones in UPPAAL

Difference Bounded Matrices

[Bellman58, Dill89]

Minimal Constraint Form
[RTSS97]

Clock Difference Diagrams
[CAV99]
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Other Symbolic Datastructures

CDD-representations |

NDD’s Maler et. al.
CDD's upPAAL/CAV99
DDD'’s Mgller, Lichtenberg
Polyhedra HyTech

Inside the UPPAAL tool

= Data Structures
= DBM'’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints
|:>. Algorithms
= Reachability analysis
= Liveness checking

= Verification Options

23

UPPSALA (8
UNIVERSITET AALEORG UNIVERSITY
o

(Copyrn 1905-2000 by Uppsala Univarsty and Aabarg Unweey. All s resomvos
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Timed CTL in UPPAAL

EFp|AGp | EGp | AFp | p-->q

P:u=Al|g.| gqlnotp|porp|pandp | pimply p

/AN

Process Clock predicate

Location constraint over data variables

(a location in

automaton A) p leads to q

denotes
AG (p imply AF q)

25

Timed CTL in UPPAAL

| EGp | AFp | p-->¢

P:i:=Al|g.|gq | notp| porp|pandp | piimplyp

Process Clock predicate

Location constraint over data variables

(a location in

automaton A) p leads to q
denotes

SAFETY PROPERTIES /¢ (PImplv AFa)

26
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SAFETY Properties

Fu=EFP | AGP

[\

Reachability

Invariant = — EF = P
Thus, AG P is also checked by
reachability analysis!

We have a search problem

(ng,Zy)

2

SZ S3

T1 T2

/ /N

®

Symbolic state
Symbolic transitions

Reachable?

EF ®

p44L

27
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Forward Reachability

Waiting

Final

Passed j

Init -> Final ?

| INITIAL Passed := & :
! Waiting := {(n0,20)} :

REPEAT
- pick (n,Z) in Waiting
-ifforsomeZ 22
(n,Z") in Passed then STOP

- else /explore/ add
{(mU):(n2)=>(m\)}
to Waiting;
Add (n,Z) to Passed

UNTIL Waiting = @
or
Final is in Waiting
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Forward Reachability

Waiting

Final

Init -> Final ?

INITIAL Passed := @;
Waiting := {(n0,20)}

_REPEAT _ ______________

1 - pick (n,Z)in Waiting

: -ifforsomeZ' 27

L (n,Z") in Passed then STOP

T Celse(exploreyadd "~ """ """ ~"

{(mU):(n2) =>(m,\U)}
to Waiting;
Add (n,Z2) to Passed

UNTIL Waiting =0
or
Final is in Waiting

30
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Forward Reachability

Init -> Final ?

INITIAL Passed := @;

Waiting Q @ /Q .Final Waiting := {(n0,Z0)}
O

O] REPEAT
- pick (n,Z) in Waiting
-ifforsomeZ 22
| -else /explore/ add
: {(MU): (n,2) => (m,U) }
! to Waiting;

Add (n,Z) to Passed

UNTIL Waiting =@
Passed or
Final is in Waiting

31

Forward Reachability

Init -> Final ?

. INITIAL Passed := @;
waiting | O &) O Final Waiting := {(n0,20)}

REPEAT
- pick (n,Z) in Waiting
-if forsome Z' 27
(n,Z") in Passed then STOP
- else /explore/ add

UNTIL Waiting =0
or
Final is in Waiting

32
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Forward Reachability

Init -> Final ?

INITIAL Passed := @;
waiting | O @) O Final Waiting := {(n0,20)}

O REPEAT
- pick (n,Z) in Waiting
-ifforsomeZ 22
(n,Z") in Passed then STOP

- else /explore/ add
{(mU):(n2)=>(m\)}
to Waiting;
Add (n,Z) to Passed

| UNTIL Waiting = @
Passed : or
1

Final is in Waiting

Further question

Can we find the path with shortest delay, leading to P ?
(i.e. a state satisfying P)

OBSERVATION:

Many scheduling problems can be phrased naturally as
reachability problems for timed automata.

34

17



Verification vs. Optimization

= Verification Algorithms:

= Checks a logical property of the
entire state-space of a model.

= Efficient Blind search.

= Optimization Algorithms:
= Finds (near) optimal solutions.
= Uses techniques to avoid non-
optimal parts of the state-space
(e.g. Branch and Bound).
= Goal: solve opt. problems with
verification.

35

OPTIMAL REACHABILITY

The maximal and minimal delay problem

36
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Find the trace leading to P with min delay

There may
be a lot of

pathes leading
toP

Which one

with the shortest
delay?

37

Find the trace leading to P with min delay

Idea: delay as "Cost” to reach

a state, thus cost increases
with time at rate 1

38
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An Simple Algorithm for minimal-cost reachability

= State-Space Exploration + Use of global variable Cost and global clock &
= Update Cost whenever goal state with min( C) < Cost is found:

\ N
\ \
\ \
N N \
N RN X
vl \
v
\
~ay ) v
A T
| ‘
T

DO 0y

v
'
1

= Terminates when entire state-space is explored.
Problem: The search may never terminate!

39

Example (min delay to reach G)

’ (n,x=0, =10, 8-x=10) H (n, x>0, 5=>10, 3-x=10) ‘

<+

(n,x=0,x=0, 6=20,6-x=20) "{ (n, x>0, 6>20, 5-x=20) Y

(n,x=0, 5=30,0-x=30) "{ (n, x>0, 6>30, 3-x=30) ‘

The minimal delay = 0 but the search may never terminate!
Problem: How to symbolically represent the zone C.

40
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Priced-Zone

¢ Cost = minimal total time

e C can be represented as the zone Z?, where:
— Z° original (ordinary) DBM plus...
— & clock keeping track of the cost/time.

o Delay, Reset, Conjunction etc. on Z are
the standard DBM-operations

¢ Delay-Cost is incremented by Delay-operation on Z3.

41

Priced-Zone

e Cost = min total time

e C can be represented as the zone Z8, where:
- 78 isthe original zone Z extended with the C
global clock 6 keeping track of the cost/time. 2

— Delay, Reset, Conjunction etc. on C are the
standard DBM-operations

¢ But inclusion-checking will be different X

Then: C,&E C,EC;

But: ¢tC,cC,;

42
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Solution: ()"™-widening operation

= ()7 removes upper bound on the 5—clock:

C.C C,CC, y

tecfec]

= In the Algorithm:
= Delay(C") = ( Delay(C") )"
= Reset(x,C") = ( Reset(x,C") )’
= GTAg=(CTAg)

« It is suffices to apply ()* to the initial state (l,,C,)-

43

Example (widening for Min)

o

Z, ¢ Z,

44
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Example (widening for Min)

0 : : :
BEr<E N Z+= Widen(2)

Z,£Z,

Example (widening for Min)
o b : :
Zn Z+= Widen(Z)
VAR AP !
Z, C7,
X

23



An Algorithm (Min)

Cost:=w, Pass := {}, Wait := {(1,,Cy)}
while Wait # {} do
select (1,C) from Wait
if (1,C) F P and Min(C)<Cost then Cost:= Min(C)
if (1,C) E (1,C’) for some (1,C’) in Pass then skip
otherwise add (1,C) to Pass
and forall (m,C’) such that (1,C).—~_, (m,C"):

Return Cost

Output: Cost = the min cost of a found trace satisfying P.

47

Further reading: Priced Timed Automatalarsen et al]

X<3 e X<3

@

= Timed Automata + Costs on transitions and locations.

= Uniformly Priced = Same cost in all locations (edges may have
different costs).

1
y>3

{x:=0}

= Cost of performing transition: Transition cost.
= Cost of performing delay d: ( d x location cost ).

48
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Priced Timed Automata

4
x<3 o x<3
1

®

{x:=0}

Trace: 25)
25
a,X= =0) — b,X: =0 8—»
(a,x=y=0) 4 (b.x=y )25 5

(b,x:y:2.5)o—> (a,x=0,y=2.5)
Cost of Execution Trace:

Sumof costs: 4+5+0=9
Problem: Finding the minimum cost of reaching!

49

Inside the UPPAAL tool

= Data Structures
= DBM'’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints

u A|gOI’Ith ms UPPSALA

UNIVERSITET AALEORG UNIVERSITY

= Reachability analysis Eere e

= Liveness checking —
= Verification Options

50
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Timed CTL in UPPAAL

EFp | AGp)I(EGp | AFp I p-->q)

Pu=Allgcl gyl

/\

Process Clock
Location constraint

LIVENESS PROPERTIES P'cadstoq

denotes
AG (p imply AF q)

tpl porp | pandp | pimply p

predicate

over data variables
(a location in
automaton A)

SAFETY PROPERTIES

51

LIVENESS Properties e
F::=EGp | AFp|p-->q

Possibly always P
is equivalent to (: AF : P)

Eventually P
is equivalent to (: EG : P)

P leads to Q
is equivalent to

AG ( P imply AF Q)
52
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Question

AF P ”P will be true for sure in future”

?7? Does this automaton satisfy AF P

X< 5

53

Note that

AF P ”P will be true for sure in future”

NO I thereisa path:
X< 5 (m, x=0) >(m,x=1)>(m,2) ... (m,x=k) ...
Idling forever in location m

54
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Note that

AF P ”P will be true for sure in future”

X< 5 This automaton satisfies AF P

55

Algorithm for checking AF P Eventually P

Bouajjani, Tripakis, Yovine'97
On-the-fly symbolic model checking of TCTL

56
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Question: Time bound synthesis

AF P 7P will be true eventually ”
But no time bound is given.

Assume AF P is satisfied by an automaton A.
Can we calculate the Max time bound?

OBS: we know how to calculate the Min |

57

Assume AF P is satisfied

Find the trace leading to P with the max delay

S Almost the same
algorithm as for
synthesizing Min

We need
to explore
p p the Green part

Pp Pp PP, pPppp

58
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An Algorithm (Max)

Cost:=0, Pass := {}, Wait := {(1,,Cy)}
while Wait # {} do
select (1,C) from Wait
if (1,¢) k P and Max(C)>Cost then Cost:= Max(C)
else if forall (1,C’) in Pass: C g; C’ then
add (1,C) to Pass
forall (m,C’) such that (1,C).—~_,(m,C"):

Return Cost

Output: Cost = the max cost of a found trace satisfying P.
BUT: L is defined on zones where the lower bound of “cost” is removed

59

Zone-Widening operation for Max

d

C £ G
y 4

60
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Zone-Widening operation for Max

o)
C 5@ G,
Ctc C+,

c, Eg |

Inside the UPPAAL tool

= Data Structures
= DBM'’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints

= Algorithms

(Copyrn 1005-2000 by Unpsala Uniarsty and Aaburg Univeesy. A1l

61

- Reachabmty analys|s UNIVERSITET AALBEORG UNIVERSITY

s resonvos

= Liveness checking T

= Termination

mmm) Verification Options

62
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Verification Options

File Templates View Queries | Options |

System Editor rSimuIatur Ver| [J Diagnostic Trace
¥ Breadth-First

¥ | ocal Reduction
P | #globalReduction

PAE<>r | ¥ikingl.safe ) w1 pefive.Clock Reduction
P2[E<> | Viking2.safe ) ME.E-USE SHREER:
P3[E<>({ Viking3.safe ) B e T
PAE<: ([ Vikingd.safe o o Ur_lder-npproximate
PSE<>{ Viking4.safe aoo - T

Pﬁ|E<>( Vikingl.safe and VikingZ.szafe and Viking3.:

Diagnostic Trace

e Breadth-First
e Depth-First

Overview

¢ Local Reduction
¢ Active-Clock Reduction
¢ Global Reduction

e Re-Use State-Space

Query

e Over-Approximation
Under-Approximation

63

Inactive (passive) Clock Reduction

X is only active in location S1

Definition
x is inactive at S if on all path from
S, x is always reset before being

S
/ tested.
x:=0 g

x<5 \ x>3

64
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Global Reduction
(When to store symbolic state)

50

N However,

. Passed list useful for
efficiency

No Cycles: Passed list not needed for termination
65

Global Reduction  irrssen
(When to store symbolic state)

Cycles:
Only symbolic states
involving loop-entry points
need to be saved on Passed list

66
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[RTSS97,CAV03]

To Store Or Not To Stoe?

117 states,,

81 states,iypoint

9 states

Time OH
less than 10%

(need to
re-explore
some states)

Reuse of State Space

Waiting prop2 A[] propl
All prop2 )
A[] prop3
A[] prop4 sea@h .
in existing
A[l prop>s Passed
list before
continuing
. search
A[] propn
Which order
to search?

68
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Reuse of State Space

Waiting

\

A[] propl
A[] prop2
A[] prop3
A[] prop4
A[] props

A[] propn*/

Reuse of State Space

Waiting

\

A[] propl
A[] prop2
A[] prop3
A[] prop4
A[] props

A[] propn—/

SWAPECRO)
SECONUAATIEITION

Search

in existing
Passed
list before
continuing
search

Which order
to search?

69

Search

in existing
Passed
list before
continuing
search

Which order
to search?

70
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Reuse of State Space

Waiting OPWPZ A[] propl
A[] prop2 )
A[] prop3 Stz
in existing
All  prop4 Passed
All prop> >. list before
REVERSE CREATION continuing
ORDER search
. Which order
A
[l PEOPR_J 5 search?
Passed
. SWeIPEUNO]
——— generation order O el mleslony o

Under-approximation
Bitstate Hashing (Holzman,SPIN)

/Waiting O@0O .FB
Sles

72
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Under-approximation
Bitstate Hashing

/ .\ 1 Passed=
waiting | O oy O) Final / 0 Bitarray
O 1
0 UPPAAL
8 Mbits
0
1
73
Bit-state Hashing
INITIAL Passed := @;
Waiting := {(n0,Z0)}
REPEAT |_— Passed(F(n,2)) = 1 |
{(mV):(n,2) =>(m,U) }
to Waiting:
Add (n,Z) to Passed Passed(F(n,2)) :=1
UNTIL Waiting = @
or
Final is in Waiting

74
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Under Approximation
(good for finding Bugs quickly, debugging)

= Possitive answer is safe (you can trust)
= You can trust your tool if it tells:
a state is reachable (it means Reachable!)
= Negative answer is Inconclusive
= You should not trust your tool if it tells:
a state is non-reachable

» Some of the branch may be terminated by
conflict (the same hashing value of two states)

75

Over-approximation
Convex Hull

76
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Over-Approximation
(good for safety property-checking)

= Possitive answer is Inconclusive
= a state is reachable means Nothing
(you should not trust your tool when it says so)

= Some of the transitions may be enabled by
Enlarged zones

= Negative answer is safe

= a State is not reachable means Non-reachable
(you can trust your tool when it says so)

77
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