UPPAAL tutorial

e What's inside UPPAAL
* The UPPAAL input languages

UPPAAL tool

= Developed jointly by Uppsala & Aalborg University

UPPAAL Tool

Simulation =

Architecture of UPPAAL

[
y
<:> xml q
xta

(Server)

Linux, Windows, Solaris, MacOS

What's inside UPPAAL

OUTLINE

= Data Structures
= DBM'’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints

= Algorithms UPPSALA @
- . UNIVEVRrSlTET AALBORG UNIVERSITY
= Re ach a bl I |ty ana |YSIS oy oty s ey st et A s

UPPAAL 247 Aug 2004,

= Liveness checking
= Verification Options

All Operations on Zones
(needed for verification)

= Transformation

= Conjunction /1 \
o sz s3 :
= Post condition (delay) \

= Reset
= Consistency Checking 7 /f\

= Inclusion
= Emptiness

Zones = Conjuctive constraints

= A zone Zis a conjunctive formula:
9; &, &... &g,
where g; may be x; ~ b; or xi-x;~bj;
= Use a zero-clock x, (constant 0), we have
{Xi-X; ~ by | ~is < or<, ij<n}
= This can be represented as a MATRIX, DBM
(Difference Bound Matrices)

Datastructures for Zones in UPPAAL

= Difference Bounded Matrices
[Bellman58, Dill89]

= Minimal Constraint Form
[RTSS97]

= Clock Difference Diagrams

[CAV99] ¥ [l T3]
P [2.3]
o €2
1 1,4]
[1,3] [2.4]

123455X

True

o

Canonical Datastructures for Zones
Difference Bounded Matrices Bellman 1958, Dill 1989

Inclusion

10

Canonical Dastructures for Zones
i) Bellman 1958, Dill 1989
Difference Bounded Matrices

Inclusion
X X
x<=1 1/' \2‘ Shortest 1/' \2‘
21 Y'X<=§ Graph 0 y Path 0 3 y
Zy<= Closure
7<=9 9\A Z‘/Z }\ Z‘/z
2CS? Z1cZ2!
= X
22 X_<X<2=3 2/' 3 Shortest 2/' 3
y _ G h 3 Path 3
y<=3 o ———"y Cosure Oy >V
- <=3
;<y=7 7\‘ z‘/3 }\‘ z‘/3

11

Canonical Datastructures for Zones
Difference Bounded Matrices Be'™man 1958, Dill 1989

Emptiness

Negative Cycle
iff
empty solution set

12

Canonical Datastructures for Zones
Difference Bounded Matrices

' Conjunction y
Zng ‘ ﬁ
= - X 1<=x, 1<=y

-2<=x-y<=3
3<=x

J))

y

13

Canonical Dastructures for Zones
Difference Bounded Matrices

Delay
| | &
V4 z7
X
1<=x<=4
=y <= 1<=x, 1<=y
:Il<_ y=3 -2<=x-y<=3 I
7y L)
1 Shortest Remove
Path buppedr 0 3
a ounds
\\\\\\~_ osure /, on clocks \\\\\\‘_

-1 1

o

14

Canonical Datastructures for Zones
Difference Bounded Matrices

y ' Reset Y
7 {y}z L
1<=x, 1<=y
-2<=x-y<=3 y=0, 1<=x I
X

X
Remove all
} 3 bounds -1
0 involving y 0 0
H and sety to 0
N S

COMPLEXITY

= Computing the shortest path closure, the

15

cannonical form of a zone: O(n3) [Dijkstra’s alg.]

= Run-time complexity, mostly in O(n)

(when we keep all zones in cannonical form)

16

Datastructures for Zones in UPPAAL

= Difference Bounded Matrices
[Bellman58, Dill89]

= Minimal Constraint Form
[RTSS97]

= Clock Difference Diagrams
[CAV99]

x1-x2<=-4 Shortest
x2-x1<=10 Path
x3-x1l<=2 Closure
X2-x3<=2 o(n3)
x0-x1<=3

x3-x0<=5

]

(DIBM)

Shortest
Path
Reduction
0o(n3)

Space worst O(n2)
practice O(n)

(Minimal graph, a.ka.
compact data structure)
18

Graph Reduction Algorithm

1. Equivalence classes based
on 0-cycles.

19

Graph Reduction Algorithm

1. Equivalence classes based
on 0-cycles.

2. Graph based on
representatives.
Safe to remove redundant edges

20

10

Graph Reduction Algorithm

1. Equivalence classes based
on 0-cycles.

2. Graph based on
representatives.
Safe to remove redundant edges

3. Shortest Path Reduction
One cycle pr. class
+
Removal of redundant edges
between classes

21

Datastructures for Zones in UPPAAL

Difference Bounded Matrices

[Bellman58, Dill89]

Minimal Constraint Form
[RTSS97]

Clock Difference Diagrams
[CAV99]

11

Other Symbolic Datastructures

CDD-representations |

NDD’s Maler et. al.
CDD's upPAAL/CAV99
DDD'’s Mgller, Lichtenberg
Polyhedra HyTech

Inside the UPPAAL tool

= Data Structures
= DBM'’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints
|:>. Algorithms
= Reachability analysis
= Liveness checking

= Verification Options

23

UPPSALA (8
UNIVERSITET AALEORG UNIVERSITY
o

(Copyrn 1905-2000 by Uppsala Univarsty and Aabarg Unweey. All s resomvos

UPPAAL 247 Aug 2004,

24

12

Timed CTL in UPPAAL

EFp|AGp | EGp | AFp | p-->q

P:u=Al|g.| gqlnotp|porp|pandp | pimply p

/AN

Process Clock predicate

Location constraint over data variables

(a location in

automaton A) p leads to q

denotes
AG (p imply AF q)

25

Timed CTL in UPPAAL

| EGp | AFp | p-->¢

P:i:=Al|g.|gq | notp| porp|pandp | piimplyp

Process Clock predicate

Location constraint over data variables

(a location in

automaton A) p leads to q
denotes

SAFETY PROPERTIES /¢ (PImplv AFa)

26

13

SAFETY Properties

Fu=EFP | AGP

[\

Reachability

Invariant = — EF = P
Thus, AG P is also checked by
reachability analysis!

We have a search problem

(ng,Zy)

2

SZ S3

T1 T2

/ /N

®

Symbolic state
Symbolic transitions

Reachable?

EF ®

p44L

27

28

14

Forward Reachability

Waiting

Final

Passed j

Init -> Final ?

| INITIAL Passed := & :
! Waiting := {(n0,20)} :

REPEAT
- pick (n,Z) in Waiting
-ifforsomeZ 22
(n,Z") in Passed then STOP

- else /explore/ add
{(mU):(n2)=>(m\)}
to Waiting;
Add (n,Z) to Passed

UNTIL Waiting = @
or
Final is in Waiting

29

Forward Reachability

Waiting

Final

Init -> Final ?

INITIAL Passed := @;
Waiting := {(n0,20)}

_REPEAT _ ______________

1 - pick (n,Z)in Waiting

: -ifforsomeZ' 27

L (n,Z") in Passed then STOP

T Celse(exploreyadd "~ """ """ ~"

{(mU):(n2) =>(m,\U)}
to Waiting;
Add (n,Z2) to Passed

UNTIL Waiting =0
or
Final is in Waiting

30

15

Forward Reachability

Init -> Final ?

INITIAL Passed := @;

Waiting Q @ /Q .Final Waiting := {(n0,Z0)}
O

O] REPEAT
- pick (n,Z) in Waiting
-ifforsomeZ 22
| -else /explore/ add
: {(MU): (n,2) => (m,U) }
! to Waiting;

Add (n,Z) to Passed

UNTIL Waiting =@
Passed or
Final is in Waiting

31

Forward Reachability

Init -> Final ?

. INITIAL Passed := @;
waiting | O &) O Final Waiting := {(n0,20)}

REPEAT
- pick (n,Z) in Waiting
-if forsome Z' 27
(n,Z") in Passed then STOP
- else /explore/ add

UNTIL Waiting =0
or
Final is in Waiting

32

16

Forward Reachability

Init -> Final ?

INITIAL Passed := @;
waiting | O @) O Final Waiting := {(n0,20)}

O REPEAT
- pick (n,Z) in Waiting
-ifforsomeZ 22
(n,Z") in Passed then STOP

- else /explore/ add
{(mU):(n2)=>(m\)}
to Waiting;
Add (n,Z) to Passed

| UNTIL Waiting = @
Passed : or
1

Final is in Waiting

Further question

Can we find the path with shortest delay, leading to P ?
(i.e. a state satisfying P)

OBSERVATION:

Many scheduling problems can be phrased naturally as
reachability problems for timed automata.

34

17

Verification vs. Optimization

= Verification Algorithms:

= Checks a logical property of the
entire state-space of a model.

= Efficient Blind search.

= Optimization Algorithms:
= Finds (near) optimal solutions.
= Uses techniques to avoid non-
optimal parts of the state-space
(e.g. Branch and Bound).
= Goal: solve opt. problems with
verification.

35

OPTIMAL REACHABILITY

The maximal and minimal delay problem

36

18

Find the trace leading to P with min delay

There may
be a lot of

pathes leading
toP

Which one

with the shortest
delay?

37

Find the trace leading to P with min delay

Idea: delay as "Cost” to reach

a state, thus cost increases
with time at rate 1

38

19

An Simple Algorithm for minimal-cost reachability

= State-Space Exploration + Use of global variable Cost and global clock &
= Update Cost whenever goal state with min(C) < Cost is found:

\ N
\ \
\ \
N N \
N RN X
vl \
v
\
~ay) v
A T
| ‘
T

DO 0y

v
'
1

= Terminates when entire state-space is explored.
Problem: The search may never terminate!

39

Example (min delay to reach G)

’ (n,x=0, =10, 8-x=10) H (n, x>0, 5=>10, 3-x=10) ‘

<+

(n,x=0,x=0, 6=20,6-x=20) "{ (n, x>0, 6>20, 5-x=20) Y

(n,x=0, 5=30,0-x=30) "{ (n, x>0, 6>30, 3-x=30) ‘

The minimal delay = 0 but the search may never terminate!
Problem: How to symbolically represent the zone C.

40

20

Priced-Zone

¢ Cost = minimal total time

e C can be represented as the zone Z?, where:
— Z° original (ordinary) DBM plus...
— & clock keeping track of the cost/time.

o Delay, Reset, Conjunction etc. on Z are
the standard DBM-operations

¢ Delay-Cost is incremented by Delay-operation on Z3.

41

Priced-Zone

e Cost = min total time

e C can be represented as the zone Z8, where:
- 78 isthe original zone Z extended with the C
global clock 6 keeping track of the cost/time. 2

— Delay, Reset, Conjunction etc. on C are the
standard DBM-operations

¢ But inclusion-checking will be different X

Then: C,&E C,EC;

But: ¢tC,cC,;

42

21

Solution: ()"™-widening operation

= ()7 removes upper bound on the 5—clock:

C.C C,CC, y

tecfec]

= In the Algorithm:
= Delay(C") = (Delay(C"))"
= Reset(x,C") = (Reset(x,C"))’
= GTAg=(CTAg)

« It is suffices to apply ()* to the initial state (l,,C,)-

43

Example (widening for Min)

o

Z, ¢ Z,

44

22

Example (widening for Min)

0 : : :
BEr<E N Z+= Widen(2)

Z,£Z,

Example (widening for Min)
o b : :
Zn Z+= Widen(Z)
VAR AP !
Z, C7,
X

23

An Algorithm (Min)

Cost:=w, Pass := {}, Wait := {(1,,Cy)}
while Wait # {} do
select (1,C) from Wait
if (1,C) F P and Min(C)<Cost then Cost:= Min(C)
if (1,C) E (1,C’) for some (1,C’) in Pass then skip
otherwise add (1,C) to Pass
and forall (m,C’) such that (1,C).—~_, (m,C"):

Return Cost

Output: Cost = the min cost of a found trace satisfying P.

47

Further reading: Priced Timed Automatalarsen et al]

X<3 e X<3

@

= Timed Automata + Costs on transitions and locations.

= Uniformly Priced = Same cost in all locations (edges may have
different costs).

1
y>3

{x:=0}

= Cost of performing transition: Transition cost.
= Cost of performing delay d: (d x location cost).

48

24

Priced Timed Automata

4
x<3 o x<3
1

®

{x:=0}

Trace: 25)
25
a,X= =0) — b,X: =0 8—»
(a,x=y=0) 4 (b.x=y)25 5

(b,x:y:2.5)o—> (a,x=0,y=2.5)
Cost of Execution Trace:

Sumof costs: 4+5+0=9
Problem: Finding the minimum cost of reaching!

49

Inside the UPPAAL tool

= Data Structures
= DBM'’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints

u A|gOI’Ith ms UPPSALA

UNIVERSITET AALEORG UNIVERSITY

= Reachability analysis Eere e

= Liveness checking —
= Verification Options

50

25

Timed CTL in UPPAAL

EFp | AGp)I(EGp | AFp I p-->q)

Pu=Allgcl gyl

/\

Process Clock
Location constraint

LIVENESS PROPERTIES P'cadstoq

denotes
AG (p imply AF q)

tpl porp | pandp | pimply p

predicate

over data variables
(a location in
automaton A)

SAFETY PROPERTIES

51

LIVENESS Properties e
F::=EGp | AFp|p-->q

Possibly always P
is equivalent to (: AF : P)

Eventually P
is equivalent to (: EG : P)

P leads to Q
is equivalent to

AG (P imply AF Q)
52

26

Question

AF P ”P will be true for sure in future”

?7? Does this automaton satisfy AF P

X< 5

53

Note that

AF P ”P will be true for sure in future”

NO I thereisa path:
X< 5 (m, x=0) >(m,x=1)>(m,2) ... (m,x=k) ...
Idling forever in location m

54

27

Note that

AF P ”P will be true for sure in future”

X< 5 This automaton satisfies AF P

55

Algorithm for checking AF P Eventually P

Bouajjani, Tripakis, Yovine'97
On-the-fly symbolic model checking of TCTL

56

28

Question: Time bound synthesis

AF P 7P will be true eventually ”
But no time bound is given.

Assume AF P is satisfied by an automaton A.
Can we calculate the Max time bound?

OBS: we know how to calculate the Min |

57

Assume AF P is satisfied

Find the trace leading to P with the max delay

S Almost the same
algorithm as for
synthesizing Min

We need
to explore
p p the Green part

Pp Pp PP, pPppp

58

29

An Algorithm (Max)

Cost:=0, Pass := {}, Wait := {(1,,Cy)}
while Wait # {} do
select (1,C) from Wait
if (1,¢) k P and Max(C)>Cost then Cost:= Max(C)
else if forall (1,C’) in Pass: C g; C’ then
add (1,C) to Pass
forall (m,C’) such that (1,C).—~_,(m,C"):

Return Cost

Output: Cost = the max cost of a found trace satisfying P.
BUT: L is defined on zones where the lower bound of “cost” is removed

59

Zone-Widening operation for Max

d

C £ G
y 4

60

30

Zone-Widening operation for Max

o)
C 5@ G,
Ctc C+,

c, Eg |

Inside the UPPAAL tool

= Data Structures
= DBM'’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints

= Algorithms

(Copyrn 1005-2000 by Unpsala Uniarsty and Aaburg Univeesy. A1l

61

- Reachabmty analys|s UNIVERSITET AALBEORG UNIVERSITY

s resonvos

= Liveness checking T

= Termination

mmm) Verification Options

62

31

Verification Options

File Templates View Queries | Options |

System Editor rSimuIatur Ver| [J Diagnostic Trace
¥ Breadth-First

¥ | ocal Reduction
P | #globalReduction

PAE<>r | ¥ikingl.safe) w1 pefive.Clock Reduction
P2[E<> | Viking2.safe) ME.E-USE SHREER:
P3[E<>({ Viking3.safe) B e T
PAE<: ([Vikingd.safe o o Ur_lder-npproximate
PSE<>{ Viking4.safe aoo - T

Pﬁ|E<>(Vikingl.safe and VikingZ.szafe and Viking3.:

Diagnostic Trace

e Breadth-First
e Depth-First

Overview

¢ Local Reduction
¢ Active-Clock Reduction
¢ Global Reduction

e Re-Use State-Space

Query

e Over-Approximation
Under-Approximation

63

Inactive (passive) Clock Reduction

X is only active in location S1

Definition
x is inactive at S if on all path from
S, x is always reset before being

S
/ tested.
x:=0 g

x<5 \ x>3

64

32

Global Reduction
(When to store symbolic state)

50

N However,

. Passed list useful for
efficiency

No Cycles: Passed list not needed for termination
65

Global Reduction irrssen
(When to store symbolic state)

Cycles:
Only symbolic states
involving loop-entry points
need to be saved on Passed list

66

33

[RTSS97,CAV03]

To Store Or Not To Stoe?

117 states,,

81 states,iypoint

9 states

Time OH
less than 10%

(need to
re-explore
some states)

Reuse of State Space

Waiting prop2 A[] propl
All prop2)
A[] prop3
A[] prop4 sea@h .
in existing
A[l prop>s Passed
list before
continuing
. search
A[] propn
Which order
to search?

68

34

Reuse of State Space

Waiting

\

A[] propl
A[] prop2
A[] prop3
A[] prop4
A[] props

A[] propn*/

Reuse of State Space

Waiting

\

A[] propl
A[] prop2
A[] prop3
A[] prop4
A[] props

A[] propn—/

SWAPECRO)
SECONUAATIEITION

Search

in existing
Passed
list before
continuing
search

Which order
to search?

69

Search

in existing
Passed
list before
continuing
search

Which order
to search?

70

35

Reuse of State Space

Waiting OPWPZ A[] propl
A[] prop2)
A[] prop3 Stz
in existing
All prop4 Passed
All prop> >. list before
REVERSE CREATION continuing
ORDER search
. Which order
A
[l PEOPR_J 5 search?
Passed
. SWeIPEUNO]
——— generation order O el mleslony o

Under-approximation
Bitstate Hashing (Holzman,SPIN)

/Waiting O@0O .FB
Sles

72

36

Under-approximation
Bitstate Hashing

/ .\ 1 Passed=
waiting | O oy O) Final / 0 Bitarray
O 1
0 UPPAAL
8 Mbits
0
1
73
Bit-state Hashing
INITIAL Passed := @;
Waiting := {(n0,Z0)}
REPEAT |_— Passed(F(n,2)) = 1 |
{(mV):(n,2) =>(m,U) }
to Waiting:
Add (n,Z) to Passed Passed(F(n,2)) :=1
UNTIL Waiting = @
or
Final is in Waiting

74

37

Under Approximation
(good for finding Bugs quickly, debugging)

= Possitive answer is safe (you can trust)
= You can trust your tool if it tells:
a state is reachable (it means Reachable!)
= Negative answer is Inconclusive
= You should not trust your tool if it tells:
a state is non-reachable

» Some of the branch may be terminated by
conflict (the same hashing value of two states)

75

Over-approximation
Convex Hull

76

38

Over-Approximation
(good for safety property-checking)

= Possitive answer is Inconclusive
= a state is reachable means Nothing
(you should not trust your tool when it says so)

= Some of the transitions may be enabled by
Enlarged zones

= Negative answer is safe

= a State is not reachable means Non-reachable
(you can trust your tool when it says so)

77

39

