
1

1

Modeling & Analysis of Timed Systems

Wang Yi
Uppsala University

CUGS May 7-8, 2012

2

Main goal of this course

What’s inside the tools: UPPAAL & TIMES
(and also some recent work on multicore timing analysis if time allows)

2

3

UPPAAL A model checker for real-time systems

UPPAAL

System Model
(Design)

Questions
(specification)

Yes
(Debugging Information)

No!
(Debugging Information)

4

UPPAAL: www.uppaal.com

 Developed jointly by

 Uppsala university, Sweden

 Aalorg university, Denmark

 UPPsala + AALborg = UPPAAL
 SWEDEN + DENMARK = SWEDEN

 SWEDEN + DENMARK = DENMARK

3

5

TIMES: www.timestool.com

 A branch of UPPAAL, developed at Uppsala

 TIMES = a Tool for Modeling and Implemenation of

 Embedded Systems

6

TIMES a tool for resource scheduling and code synthesis

UPPAAL-
TIMES

System Model
(Design)

Question
(specification)

Yes
(Debugging Information)

No!
(Debugging Information)

Schedulability Analysis
Executable code
Rapid prototyping

4

7

OUTLINE

 A Brief Introduction

 Motivation ... what are the problems to solve

 CTL, LTL and basic model-checking algorithms

 Timed Systems

 Timed automata, TCTL and verification problems

 UPPAAL tutorial: data stuctures & algorithms

 TIMES: schedulability analysis using timed automata

 Recent Work

 The multicore timing analysis problems

 Some solutions: WCET analysis and multiprocessor scheduling

8

Main references (papers)

 Temporal Logics (CTL,LTL)
 Automatic Verification of Finite State Concurrent Systems Using Temporal Logic

Specifications: A Practical Approach. Edmund M. Clarke, E. Allen Emerson, A. Prasad Sistla,
POPL 1983: 117-126, also as ”Automatic Verification of Finite-State Concurrent Systems Using
Temporal Logic Specifications. ACM Trans. Program. Lang. Syst. 8(2): 244-263 (1986) ”

 An Automata-Theoretic Approach to Automatic Program Verification, Moshe Y. Vardi,
Pierre Wolper: LICS 1986: 332-344. Also as ” Reasoning About Infinite Computations. Inf. Comput.
115(1): 1-37 (1994)”

 Timed Systems (Timed Automata, TCTL)

 A Theory of Timed Automata. Rajeev Alur, David L. Dill. Theor. Comput. Sci. 126(2): 183-235
(1994)”

 Symbolic Model Checking for Real-Time Systems, Thomas A. Henzinger, Xavier Nicollin,
Joseph Sifakis, and Sergio Yovine. Information and Computation 111:193-244, 1994.

 UPPAAL in a Nutshell. Kim Guldstrand Larsen, Paul Pettersson, Wang Yi. STTT 1(1-2): 134-152

(1997)
 Timed Automata – Semantics, Algorithms and Tools, a tutorial on timed automata Johan

Bengtsson and Wang Yi: (a book chapter in Rozenberg et al, 2004, LNCS).
 On-line help of UPPAAL: www.uppaal.com

5

9

Main references (books)

 Edmund M. Clarke, Orna Grumberg and Doron A. Peled, Model Checking

 G.J. Holzmann, Prentice Hall 1991, Design and Validation of Computer Protocols (newer book: The SPIN

MODEL CHECKER Primer and Reference Manual , 2003)

 Joost-Pieter Katoen and Christel Baier, Concepts, Algorithms, and Tools for Model Checking (MIT
press)

10

Lecture 1
Motivation and some historical remarks

6

11

Dream: Program verifier

Programs

Specification

Yes!

Automatic

Verifier
No!

 List of bugs

12

The dream started 40 years ago in 1960’s
aiming at ”bug-free software”

start

y1;y2:=x1,x2

print(y1) stop

y2:=y2-y1 y1:=y1-y2

y1>y2

y1==y2
Y

N

N Y

What does this program do?
[Floyd 1967, Hoare 1969]

7

13

It computes the Greatest Common Divisor
(gcd) of x1 and x2 [Floyd 67]

14

Specification (partial correctness)
Hoare logic: {P} program {Q} [Floyd 1967, Hoare 1969]

 Assume, initially (pre-condition)

• x1>0, x2>0

 After each iteration of the loop (invariant)

• y1>0, y2>0, gcd(x1,x2) = gcd(y1,y2)

 When done (post-condition)

• y1=gcd(x1,x2)

8

15

What does this program do?

start

y1,y2:=x1,x2

print(y1) stop

y2:=y2-y1 y1:=y1-y2

y1>y2

y1==y2
Y

N

N Y

x1>0, x2>0

y1>0, y2>0, gcd(y1,y2)=gcd(x1,x2)

y1=gcd(x1,x2)

Can you check this ?

16

Yes, you may prove it manually
by induction on the number of iterations.
Question: can you automate the proof ?

Software verification (now, a hot topic)

9

17

One more example (Total correctness)

Function foo(n)

begin

if n==1 then 1

 else if even(n) then foo(n/2)

 else foo(3*n+1)

end

Does this program terminate for any n? (WCET?)

18

Reality: 10 years later (1980’s)

 The majority of programs are never proven correct! what
went wrong?
 Difficult to find and prove invariants: partial correctness

 Difficult/impossible to prove termination: total correctness

 Difficult to write complete specifications: what I really want?

 What to do?

 Start another research program! In 20 years, the problems will be solved,
hopefully

10

19

History: Model-checking invented in 70’s/80s
[Pnueli 77, Clarke et al 83, POPL83, Sifakis et al 82]

 Restrict attention to finite-state programs

 Control skeleton + boolean (finite-domain) variables

 Found in hardware design, communication protocols, process control

 Temporal logic specification of e.g., synchronization pattern
 There are algorithms to check that MODEL of program satisfies: SPEC

- e.g. Alternating Bit Protocol skeleton, around 140 states, 1984

 BDD-based symbolic technique [Bryant 86]

 SMV 1990 Clarke, McMillan et al, state-space 1020

 Now powerful tools used in processor design

 On-the-fly enumerative technique [Holzman 89]

 SPIN, COSPAN, CAESAR, KRONOS, IF/BIP, UPPAAL etc

 SAT-based techniques [Clarke et al, McMillan, ...]

20

History: Model checking for real time systems, started in the 80s/90s

 Extension of model checking to consider time quantities

• Models, specfications, and algorithms can be extended

 Timed automata, timed process algebras

 [Alur&Dill 1990]

 Tools

• KRONOS, Hytech, 1993-1995, IF 2000’s

• TAB 1993, UPPAAL 1995, TIMES 2002

11

21

Model Checking

Model: M

Property: 

Yes!

Model

Checker

No!

 Error trace

Timed Automaton

Timed

Temporal Logic
UPPAAL

22

Checking correctness of

 Communication protocols

 Distributed Algorithms

 Controllers

 Hardware circuits

 Parallel and distributed software

 Embedded and real-time systems and software

e.g., Absence of race conditions, proper synchronization, ….

Problems that can be addresed by Model Checking

Model checking is the appropriate technique

when there are many different scenarios of

interaction between components in a system

12

23

Why testing not good enough

 Testing/simulation: coverage problems, difficult to deal
with non-determinism and concurrent computation

 Formal verification/Model-Checking (= exhaustive
testing of software and hardware design) provides 100%
coverage

24

Model-Checking may complement testing to
find (design) Bugs as early as possible

13

25

Introducing, Detecting and Correcting errors

 30-50% of development time/money for testing
 Errors detected: the late the more expensive

26

Motivation: Model Verification

Requirements

High level design

Detailed design

coding

testing

deployment

Build model of the design.

Analyze it thoroughly

Testing concentrates

more on low-level

issues

And conformance to

model

14

27

Reachable?

(bug?)
An ’abstract’ version of a fieled bus protocol

28

Model-Checking
in a Nutshell

15

29

EXAMPLE: Petersson’s algorithm

 Process 1

 loop

 flag1:=1; turn:=2

 while (flag2 & turn=2) wait

 CS1

 flag1:=0

 end loop

 Process 2

 loop

 flag2:=1; turn:=1

 while (flag1 & turn=1) wait

 CS2

 flag2:=0

 end loop

turn, flag1, flag2: shared variable

Question: can both run in CS simultaneusly ?

30

A1 B1 CS1
V:=1 V=1

A2 B2 CS2 V:=2 V=2

Init
 V=1

8
´

V
Criticial Section

Example: Fischer’s Protocol

Y<100

X:=0

Y:=0

X>100

Y>100

X<100

16

31

Example: the Vikings Problem
Real time scheduling

UNSAFE SAFE

5 10 20 25

At most 2
crossing at a time
Need torch

Mines

Can they make
it within 60 minutes ?

Torch

What is the fastest time
for getting all vikings on

the
safe side ?

32

UPPAAL A model checker for real-time systems

UPPAAL

System Model
(Design)

Questions
(specification)

Yes
(Debugging Information)

No!
(Debugging Information)

17

33

 MODELING

 How to construct Model ?

34

Program as State Machine!

a

b

x

y
x!

a?

b?

y!

Control states

Input
ports

Output
ports

18

35

A Light Controller

Off Light Bright
press? press?

press?

press?

WANT: if press is issued twice quickly
then the light will get brighter; otherwise the light is
turned off.

36

A Light Controller (with timer)

Off Light Bright
press? press?

press?

press?

Solution: Add real-valued clock x

X:=0 X<=3

X>3

19

37

Modeling Real Time Systems

 Events

 synchronization

 interrupts

 Timing constraints

 specifying event arrivals

 e.g. Periodic and sporadic
a

X>10

X:=0

38

Modeling Real Time Systems

 Events

 synchronization

 interrupts

 Timing constraints

 specifying event arrivals

 e.g. Periodic and sporadic

 Data variables & C-subset

 Guards

 assignments

a

X>10

X:=0

&& v==100

 ; v++

20

39

Construction of Models: Concurrency

Plant
Continuous

Controller Program
Discrete sensors

actuators

Task
Task

Task
Task

a

c b

1 2

4 3

a

c b

1 2

4 3

1 2

4 3

1 2

4 3

a

c b

UPPAAL Model

Model
of
environment
(user-supplied)

Model
of
tasks
(automatic)

40

21

41

 SPECIFICATION

 How to ask questions: Specs ?

42

Specification=Requirement, Lamport 1977

 Safety

 Something (bad) will not happen

 Liveness

 Something (good) must happen

And for systems with limited resources

Realizability

Schedulability, enough resources

22

43

Specification=Requirement [Lamport 1977]

 Safety

 Something (bad) will not happen

 Liveness

 Something (good) must happen

 Realizability (for systems with limited resources)

 Schedulability, enough resources?

44

Specification: Examples

 Safety
 AG (P1.CS1 & P2.CS2) Always Globally

 AG (m< 100)

 EF (5<6) Possibly in Future

• construct the whole state space

• Report deadlocks etc.

 EF (viking1.safe & viking2.safe & viking3.safe & viking4.safe)

 AG (time>60 imply viking4.safe)

 Liveness
 AF (m>100) Eventually

 AG (P1.try imply AF P1.CS1) Leads to

23

45

 VERIFICATION
 Model meets Specs ?

46

(Formal) Verification

 Semantics of a system

 = all states + state transitions

 (all possible executions)

 Verification

 = state space exploration + examination

24

47

Verificatioin = Searching

A

…

...

B

:

: :

...

:
(1) SAFETY:
 -- Is it possible to fire the bombs?
 -- Is it possible to go from A to B within 10 sec?
(2) LIVENESS:
 -- Will B be executed eventually (no time bound given)?

State-Space of a system

48

Approaches to Verification

 Manual: Proof systems, paper and pen
 Find invariants (difficult !)

 Induction: Assume nth-state OK, check (n+1)th OK

 Boring  (more fun with programming)

 Semi-automatic: Theorem proving
 Use theorem provers to prove the induction step

 e.g. PVS, HOL, Coq

 Require too much expertise 

 Automatic: Model-Checking 
 State-Space Exploration and Examination

 e.g. SPIN, SMV, UPPAAL

25

49

Two basic verification algorithms

 Reachability analysis

 Checking safety properties

 Loop detection

 Checking liveness properties

50

Modelling in UPPAAL: example

P1 :: while True do

 T1 : wait(turn=1)

 C1 : CS1; turn:=0

 endwhile

||

P2 :: while True do

 T2 : wait(turn=0)

 C2 : CS2; turn:=1

 endwhile

Mutual Exclusion Program

Is it possible that P1 and P2 run C1 and C2 simultaneously?

26

51

Verification: example

I1 I2
t=0

T1 I2
t=0

T1 T2
t=0

I1 T2
t=0

I1 C2
t=0

T1 C2
t=0

C1 I2
t=1

T1 T2
t=1

C1 T2
t=1

T1 I2
t=1 I1 T2

t=1

I1 I2
t=1

(C1,C2) is not reachable!

52

UPPAAL Demo

27

53

Example: the Vikings Problem
Real time scheduling

UNSAFE SAFE

5 10 20 25

At most 2
crossing at a time
Need torch

Mines

Can they make
it within 60 minutes ?

Torch
What is the fastest time
for getting all vikings to

the safe side ?

54

This sounds too good!
What’s the problem?

28

55

Problem with verification:
‘State Explosion’

a

c b

1

2

4
3

1,a 4,a

3,a
4,a

1,b 2,b

3,b 4,b

1,c 2,c

3,c 4,c

All combinations = exponential in no. of components

M1 M2

M1 x M2

56

EXAMPLE

13 components and each with 1 clock & 10 states

 # of states = 10,000,000,000,000 =10,000 G

Each needs (10 * 10)* 4Bytes = 400 Bytes

Worst case memory usage >> 4,000,000GB

29

57

Dec’96 Sep’98

A Protocol by Philips for Audio Products

-6 months for manual proof in 1993

-24 hours for Hytech in 1994

-50 sec for Uppaal in 1995

-0.2 sec for Uppaal now!

Every 9 month 10 times better performance!

58

The dream goes on

 Model Checking, a useful and applicable technique
as compiler theory

End of introduction

