Modeling & Analysis of Timed Systems

Wang Yi
Uppsala University

CUGS May 7-8, 2012

Main goal of this course

What's inside the tools: UPPAAL & TIMES

(and also some recent work on multicore timing analysis if time allows)

U P PAAL A model checker for real-time systems

System Model
(Design)

\f

Questions
(specification)

UPPAAL: www.uppaal.com

UPPAAL

= Developed jointly by
= Uppsala university, Sweden
= Aalorg university, Denmark

No!
_/ (Debugging Information)
—

Yes
(Debugging Information)

= UPPsala + AALborg = UPPAAL
= SWEDEN + DENMARK = SWEDEN
= SWEDEN + DENMARK = DENMARK

TIMES: www.timestool.com

= A branch of UPPAAL, developed at Uppsala

= TIMES = aTool for Modeling and Implemenation of

Embedded Systems

TI M ES a tool for resource scheduling and code synthesis

System Model No!
(Design)k \—/ (Debugging Information)
UPPAAL-
TIMES |
Question Yes
(specification) (Debugging Information)

Schedulability Analysis
Executable code
Rapid prototyping

6

OUTLINE

= A Brief Introduction
= Motivation ... what are the problems to solve
= CTL, LTL and basic model-checking algorithms

= Timed Systems
» Timed automata, TCTL and verification problems
= UPPAAL tutorial: data stuctures & algorithms
= TIMES: schedulability analysis using timed automata
= Recent Work
= The multicore timing analysis problems
= Some solutions: WCET analysis and multiprocessor scheduling

Main references (papers)

= Temporal Logics (CTL,LTL)
= Automatic Verification of Finite State Concurrent Systems Using Temporal Logic
Specifications: A Practical Approach. Edmund M. Clarke, E. Allen Emerson, A. Prasad Sistla,
POPL 1983: 117-126, also as "Automatic Verification of Finite-State Concurrent Systems Using
Temporal Logic Specifications. ACM Trans. Program. Lang. Syst. 8(2): 244-263 (1986) ”
= An Automata-Theoretic Approach to Automatic Program Verification, Moshe Y. Vardi,
Pierre Wolper: LICS 1986: 332-344. Also as ” Reasoning About Infinite Computations. Inf. Comput.
115(1): 1-37 (1994)"
= Timed Systems (Timed Automata, TCTL)
. agg“e)gry of Timed Automata. Rajeev Alur, David L. Dill. Theor. Comput. Sci. 126(2): 183-235
= Symbolic Model Checking for Real-Time Systems, 7homas A. Henzinger, Xavier Nicollin,
Joseph Sifakis, and Sergio Yovine. Information and Computation 111:193-244, 1994.
= UPPAAL in a Nutshell. Kim Guldstrand Larsen, Paul Pettersson, Wang Yi. STTT 1(1-2): 134-152
(1997)
* Timed Automata — Semantics, Algorithms and Tools, a tutorial on timed automata Johan
Bengtsson and Wang Yi: (a book chapter in Rozenberg et al, 2004, LNCS).
= On-line help of UPPAAL: www.uppaal.com

Main references (books)

Edmund M. Clarke, Orna Grumberg and Doron A. Peled, Model Checking

G.J. Holzmann, Prentice Hall 1991, Design and Validation of Computer Protocols (newer book: The sPIN
MODEL CHECKER Primer and Reference Manual , 2003)

Joost-Pieter Katoen and Christel Baier, Concepts, Algorithms, and Tools for Model Checking (MIT
press)

Lecture 1
Motivation and some historical remarks

10

Dream: Program verifier

N g
Programs _
_~7

> Automatic —

\
_— Verifier T~ No!

Specification List of bugs

11

The dream started 40 years ago in 1960's
aiming at "bug-free software”

What does this program do?
[Floyd 1967, Hoare 1969]

’ y1;y2:=x1,x2 ‘

print(y1) stop

12

It computes the Greatest Common Divisor

(gcd) of x1 and x2 [Floyd 67]

Specification (partial correctness)

Hoare logic: {P} program {Q} [Floyd 1967, Hoare 1969]

= Assume, initially (pre-condition)
x1>0, x2>0

= After each iteration of the loop (invariant)
y1>0, y2>0, gcd(x1,x2) = gcd(y1,y2)

= When done (post-condition)
yl=gcd(x1,x2)

13

14

What does this program do?

|

--------- y1>0, y2>0, gcd(y1,y2)=gcd(x1,x2)
print(y1) stop
A
|
|
1
yl:=yl-y2 y2:=y2-y1
n I yl=gcd(x1,x2)

Can you check this ?

15

Yes, you may prove it manually
by induction on the number of iterations.
Question: can you automate the proof ?

Software verification (now, a hot topic)

16

One more example (7otal correctness)

Function foo(n)

begin
if n==1 then 1
else if even(n) then foo(n/2)
else foo(3*n+1)
end

Does this program terminate for any n? (WCET?)

17

Reality: 10 years later (1980's)

= The majority of programs are never proven correct! what
went wrong?
= Difficult to find and prove invariants: partial correctness
= Difficult/impossible to prove termination: total correctness
= Difficult to write complete specifications: what I really want?
= What to do?

= Start another research program! In 20 years, the problems will be solved,
hopefully

18

History: Model-checking invented in 70’s/80s

[Pnueli 77, Clarke et al 83, POPL83, Sifakis et al 82]

= Restrict attention to finite-state programs

= Control skeleton + boolean (finite-domain) variables

*= Found in hardware design, communication protocols, process control
= Temporal logic specification of ‘e.g., synchronization pattern

= There are algorithms to check that MODEL of program satisfies: SPEC
- e.g. Alternating Bit Protocol skeleton, around 140 states, 1984
= BDD-based symbolic technique [Bryant 86]
= SMV 1990 Clarke, McMillan et al, state-space 1020
= Now powerful tools used in processor design
= On-the-fly enumerative technique [Holzman 89]
= SPIN, COSPAN, CAESAR, KRONOS, IF/BIP, UPPAAL etc
= SAT-based techniques [Clarke et al, McMillan, ...]

19

History: Model checking for real time systems, started in the 80s/90s

= Extension of model checking to consider time quantities
Models, specfications, and algorithms can be extended
» Timed automata, timed process algebras
[Alur&Dill 1990]

= Tools
KRONOS, Hytech, 1993-1995, IF 2000’s
TAB 1993, UPPAAL 1995, TIMES 2002

20

10

Model Checking

Model: M /Tlmed Automaton f
5 — DV

B Yes!
5 — WD~ vodel —7
> Checker — T~

Property: ¢ - No!
N\ / Error trace
UPPAAL

Timed
Temporal Logic

21

Problems that can be addresed by Model Checking

Checking correctness of

= Communication protocols

= Distributed Algorithms

= Controllers

= Hardware circuits

= Parallel and distributed software

= Embedded and real-time systems and software

e.g., Absence of race conditions, proper synchronization,

Model checking is the appropriate technique
when there are many different scenarios of
interaction between components in a system

22

11

Why testing not good enough

» Testing/simulation: coverage problems, difficult to deal
with non-determinism and concurrent computation

* Formal verification/Model-Checking (= exhaustive
testing of software and hardware design) provides 100%
coverage

23

Model-Checking may complement testing to
find (design) Bugs as early as possible

24

12

Introducing, Detecting and Correcting errors

Analysis C‘g;cgptual Programming | Design Test | System Test Cpemtion
Sign
0% ———— 5 kDM
i detected <
ntroduced - .
eLmt:; EI‘I%] errars (in%) - , costof
0% - . .+ cotmetion 720 KD
7 peretmr
! lin DK}
30 1 oo + L5 kDM
r.'
.
20% —— —+ L0 kDM
0% . ASEDM
oy Wl fm====oeocos — I . 0DM

¢ 30-50% of development time/money for testing
¢ Errors detected: the late the more expensive

Motivation: Model Verification

Requirements

Time (non-linear)

25

Build model of the design.

High level design

Detailed design

coding

testing

deployment

Analyze it thoroughly

Testing concentrates
more on low-level
issues

And conformance to
model

26

13

An ‘abstract’ version of a fieled bus protocol

Reachable?
(bug?)

Model-Checking

in a Nutshell

27

28

14

EXAMPLE: Petersson’s algorithm

turn, flagl, flag2: shared variable

= Process 1 « Process 2
= loop -
» flagl:=1; turn:=2 oop e .
= while (flag2 & turn=2) wait * flag2:=1; turn:=1
= CS1 = while (flagl & turn=1) wait
= flagl:=0 = CS2
* end loop = flag2:=0
= end loop

Question: can both run in CS simultaneusly ?
29

Example: Fischer’s Protocol

o -
&~ | __

:a/ IV

+I

Criticial Section

Init x<100v:=1 X:=0 X>100V=1
Y<100v-—2 Y:=0 >100V 5
A2 = B2 = '
Q ° N
°

30

15

Example: the Vikings Problem

Real time scheduling

UNSAFE

At most 2

Need torch

crossing at a time

SAFE

for getting all vikings on
the
safe side ?

31

U P PAAL A model checker for real-time systems

System Model
(Design)

\f

Questions
(specification)

No!

UPPAAL

\—/ (Debugging Information)

TN

Yes
(Debugging Information)

32

16

MODELING

How to construct Model ?

Program as State Machine!

Input
ports

Control states

33

Output
ports

34

17

A Light Controller

press?

press?

WANT: if press is issued twice quickly
then the light will get brighter; otherwise the light is
turned off.

35

A Light Controller (with timer)

press?
press? @ X<=3 press? Bright

X>3

press?

Solution: Add real-valued clock x

36

18

Modeling Real Time Systems

= Events
= synchronization
= interrupts

= Timing constraints

l n = specifying event arrivals
. Timed AUtoma 0 = e.g. Periodic and sporadic

37

Modeling Real Time Systems

= Events
= synchronization
= interrupts
= Timing constraints
= specifying event arrivals

Koo =100 maton = e.g. Periodic and sporadic
a Tlmeglﬁgt‘%l - Data variables & C-subset

[}
X:=0 ; V++ Il’ * Guards
= assignments
38

19

Construction of Models: Concurrency

Model

of

environment
(user-supplied

Plant

Continuous

Controller Program

Discrete

SENSOrs

actuators

Model

of

tasks
(automatic)

~

UPPAAL Model

File Templates View Queries

(SystemEditor | Simulator [Verifier |

Options Processes Variables

39

[_[51x]

Drag out

Enabled Transitions

(GearControltrans17, Clutch trans1)
(GearControl frans18, Engine.transg)

Ay

Simulation Trace

(Gear, Gearh, Initial, Nautral, Closad)
(GearControl rans24, Interface trans11)
(Initiate, chkGearNR, Initial, Neutral, Closed;
(GearControl rans27)

(ReqSyncSpeed, chkGearNR, Initial, Neutral
(GearControl transaz, Engine transg)

(CheckSynespeed, , Findspeed

Trace File:

CCTimer:=0 GCTime:

GCTimer==250
RegZeroTorgue! OponClutch!

Cluichls Open?

‘ChechTorque
O 255

‘CluichOpen2

RegNeu!

CCTimer<25) SCTimers150,
TorqueZero? GCTimer<=200

CCTimers=0 CCTimer-200,
CCTimer=-250

> CCTimer==150
CCTimer=0 g1 et

GCTimer=200,
CCTimer==250,

QhhechCentionz
£ CTimer==150

CCTimer-150,
CCTimer==200

Cluichls Open?

Check$yneSpeed CCTimer1~CheckCluich
GO

c
CluichOpen

CCTimer<150
SpecdSet?

GCTimer=300, GCTimer=300,
CCTimer<=

ClutchlsClosed? o~ GCTimer:=0

CCTE

ToGear-0
RegSei!
CCTimer:=0

ReqSet!

350 CCTimex:=0
CheckGearSei2
CCTimer==350

Close Cluich! Cearfet?

ReqTorqueC:

RegTorque!

Che ckClutchClosed
CCTimer==200
GCTimer-150,

GCTimer<=200 GCTimer-150,

GearNeu?

CloseClutch!

GCTimer:=0

ToGear==0

40

20

SPECIFICATION

How to ask questions: Specs ?

Specification=Requirement, Lamport 1977

= Safety

= Something (bad) will not happen
= Liveness

= Something (good) must happen

41

42

21

Specification=Requirement [Lamport 1977]

= Safety

= Something (bad) will not happen
= Liveness

= Something (good) must happen

= Realizability (for systems with limited resources)
= Schedulability, enough resources?

Specification: Examples

= Safety

= AG —(P1.CS1 & P2.CS2) Always Globally

« AG (m< 100)

= EF (5<6) Possibly in Future

construct the whole state space
Report deadlocks etc.

» EF (vikingl.safe & viking2.safe & viking3.safe & viking4.safe)

» AG (time>60 imply viking4.safe)

= Liveness
= AF (m>100) Eventually
= AG (P1.try imply AF P1.CS1) Leads to

43

44

22

VERIFICATION

Model meets Specs ?

45

(Formal) Verification

= Semantics of a system

= all states + state transitions
(all possible executions)

= Verification
= state space exploration + examination

46

23

Verificatioin = Searching

State-Space of a system

(1) SAFETY:
-- Is it possible to fire the bombs?
-- Is it possible to go from A to B within 10 sec?
(2) LIVENESS:
-- Will B be executed eventually (no time bound given)?

Approaches to Verification

= Manual: Proof systems, paper and pen
» Find invariants (difficult)
= Induction: Assume nth-state OK, check (n+1)th OK
= Boring ® (more fun with programming)
= Semi-automatic: Theorem proving
= Use theorem provers to prove the induction step
= e.g. PVS, HOL, Coq
= Require too much expertise ®
= Automatic: Model-Checking ©
= State-Space Exploration and Examination
= e.g. SPIN, SMV, UPPAAL

47

48

24

Two basic verification algorithms

= Reachability analysis

= Checking safety properties

= Loop detection

= Checking liveness properties

Modelling in UPPAAL: example

P1 :: while True do
Tl : wait(turn=1)
Cl : CSl; turn:=0
endwhile

P2 :: while True do
T2 : wait(turn=0)
C2 : CS2; turn:=1
endwhile

Mutual Exclusion Program

49

process Proc2

process Proc1

turn ;=0

Is it possible that P1 and P2 run C1 and C2 simultaneously?

50

25

Verification: example

(c1,c2) is not reachable!

UPPAAL Demo

51

52

26

Example: the Vikings Problem

Real time scheduling
UNSAFE SAFE
2
%i /%? jp;% "
5 10 20 25 i
At most 2 I:® What is the fastest time
crossing at a time Torch for getting all \{ikin,gs to
Need torch the safe side ?

53

This sounds too good!
What's the problem?

54

27

* Problem with verification: *

‘State Explosion’

All combinations = exponential in no. of components 55

EXAMPLE

13 components and each with 1 clock & 10 states

of states = 10,000,000,000,000 =10,000 G
Each needs (10 * 10)* 4Bytes = 400 Bytes

Worst case memory usage >> 4,000,000GB

28

T T T T T T
Audio with Collision —<—
B&O

e
Dacapo 3 -B--
4 Prommd 2
500)
A Protocol by Philips for Audio Products
Y s e ¥)
100 [I -6 months for manual proof in 1993

' -24 hours for Hytech in 1994
i -50 sec for Uppaal in 1995
-0.2 sec for Uppaal now!

Time (s}

Every 9 month 10 times better performance!

200 2.02 2.04 2.06 2.08 2.10 212 2.14 2.16 2.18
Version
Dec’96

57

The dream goes on

» Model Checking, a useful and applicable technigue
as compiler theory

End of introduction
58

29

