Peer-peer and Application-level Networking

Presented by Richard Gold

Based strongly on material by

Jim Kurose,Brian Levine,Don Towsley, and
the class of 2001 for the Umass Comp Sci
791N course..

Originally presented by Jon Crowcroft

Peer-peer networking

Peer'-peer' HZTWOI"king Focus at the application level

Peer-peer networking

Peer-peer applications

0 Napster, Gnutella, Freenet: file sharing

0 ad hoc networks

0 multicast overlays (e.g., video distribution)

(ﬁf_@

ﬂ -
ua (=HE~ =il ~

Peer-peer networking

0 Q: What are the new technical challenges?
0 Q: What new services/applications enabled?

0 Q: Isit just "networking at the application-level"?
0 “There is nothing new under the Sun” (William Shakespeare)

S
g 5
.
o=
‘/ ,/
e . | =il

Client Server v. Peer to Peer

1 OO OO 0O

RPC/RMI
Synchronous
Assymmeftric

Emphasis on language
integration and binding
models (stub
IDL/XDR compilers
etc)

Kerberos style
security - access
control, crypto

1 OO OO 0O

Messages
Asynchronous
Symmetric

Emphasis on service
location, content
addressing, application
layer routing.
Anonymity, high
availability, integrity.
Harder to get right©

Peer to peer systems actually
old

1 IP routers are peer to peer.

1 Routers discover topology, and maintain it
1 Routers are neither client nor server

(1 Routers continually chatter to each other
1 Routers are fault tolerant, inherently

[Routers are autonomous

Peer to peer systems

1 Have no distinguished role
1 So no single point of bottleneck or failure.

11 However, this means they need distributed
algorithms for

1 Service discovery (name, address, route,
metric, etc)

0 Neighbour status tracking

- Application layer routing (based possibly on
content, interest, etc)

0 Resilience, handing link and node failures
0 Etc etc etc

Ad hoc networks and peerZpeer

1 Wireless ad hoc networks have many
similarities to peer to peer systems

0 No a priori knowledge

1 No given infrastructure

0 Have to construct it from "thin air”!
7 Note for later - wireless©

Overlays and peer 2 peer
systems

1 P2p technology is often used to create
overlays which offer services that could be
offered in the IP level

[Useful deployment strategy

1 Often economically a way around other
barriers to deployment

1 IP Itself was an overlay (on telephone core
infrastructure)

1 Evolutionary pathlll

10

Rest of lecture oriented from

case studies from literature

0 Piracy”"H"H"H"H"H"content sharing ©
1 Napster

0 Gnutella

1 Chord

0 etfc

11

1. NAPSTER

0 The most (in)famous

0 Not the first (c.f. probably Eternity, from
Ross Anderson in Cambridge)

0 But instructive for what it gets right, and
1 Also wrong...

1 Also has a political message...and economic
and legal...etc etfc etc

12

Napster

0 program for sharing files over the Internet

0 a "disruptive” application/technology?

0 history:
0 5/99: Shawn Fanning (freshman, Northeasten U.) founds

l
l
l
l

Napster Online music service
12/99: first lawsuit

3/00: 25% UWisc traffic Napster

2000: est. 60M users

2/01: US Circuit Court of
Appeals: Napster knew users
violating copyright laws

7/01: # simultaneous online users:
Napster 160K, Gnutella: 40K, Mor,

¥ell Known Services Mb/s

120

E | H H I
MEEL Y ol B R e

G
(=)

i &

"

un

.“

s Ei

L

(=t

z a0

20 -

o]

M Hapster® I/0
E FTP-DaTA src 140

B HTTF src I/0
B FTP-DATA dst 150

B HTTP dst 10

@ MCAST 10
W HNTP src I/ B ONNTP dst I/0 O Realserver IA0 @ SMTR sec 140
W sMTR dst I/0 O ICHP W TOTAL IJ0

Napsters 23, 1366665 HTTF 20. 350013 FTP-DATA 18, 356126%
MIAST 0,005092% HHTP 1,936219% Real 0,784512% SMTF 0, 400803%
ICHMP 0.181571% other 34, 257597%

o
I 2|

13

Napster: how does it work

Application-level, client-server protocol over point-
to-point TCP

Four steps:
0 Connect to Napster server
0 Upload your list of files (push) to server.

0 Give server keywords to search the full list with.

0 Select "best” of correct answers. (pings)

14

Napster

1. File list is
uploaded

napster.com

— 8

15

Napster

2. User
napster.com
requests A
search at n

server. Request @
and
@ results

2

user

Napster

3. User pings
hosts that
apparently
have data.

Looks for @

best transfer
rate.

ping

4

napster.com

Z
-

user

2

17

Napster

4- User napster.com
retrieves file]

®>e

user

2

18

Napster: architecture notes

1 centralized server:
0 single logical point of failure

0 can load balance among servers using DNS
rotation

[potential for congestion
0 Napster "in control” (freedom is an illusion)

[no security:
0 passwords in plain text

1 no authentication
1 ho anohymity

19

2 Gnutella

[Napster fixed
1 Open Source
0 Distributed

0 Still very political...

20

Gnutella

0 peer-to-peer networking: applications connect to
peer applications

0 focus: decentralized method of searching for files

0 each application instance serves to:
0 store selected files

0 route queries (file searches) from and to its neighboring
peers

0 respond to queries (serve file) if file stored locally
0 Gnutella history:
0 3/14/00: release by AOL, almost immediately withdrawn

0 too late: 23K users on Gnutella at 8 am this AM

0 many iterations to fix poor initial design (poor design
turned many people off)

21

Gnutella: how it works

Searching by flooding:

0 If you don't have the file you want, query 7 of
your partners.

0 If they don't have it, they contact 7 of their
partners, for a maximum hop count of 10.

0 Requests are flooded, but there is no tree
structure.

0 No looping but packets may be received twice.

0 What we care about:
0 How much traffic does one query generate?
0 how many hosts can it support at once?
0 What is the latency associated with querying?
0 Is there a bottleneck?

22

Flooding in Gnutella: loop prevention

BB
«

Seen already list: "A"

2

www.limewire.com/index.jsp/net_improvements

Gnutella: initial problems and fixes

1 Freeloading: WWW sites offering search/retrieval
from Gnutella network without providing file sharing
or query routing.

0 Block file-serving to browser-based non-file-sharing users

0 Prematurely terminated downloads:

0 long download times over modems

0 modem users run gnutella peer only briefly (Napster
problem also!) or any users becomes overloaded

0 fix: peer can reply "I have it, but I am busy. Try again
later”

0 late 2000: only 10% of downloads succeed

0 2001: more than 25% downloads successful (is this success
or failure?)

24

www.limewire.com/index.jsp/net_improvements

Gnutella: initial problems and fixes (more)

0 2000: avg size of reachable network ony 400-800
hosts. Why so smalll?
0 modem users: not enough bandwidth to provide search
routing capabilities: routing black holes
0 Fix: create peer hierarchy based on capabilities
0 previously: all peers identical, most modem blackholes

0 connection preferencing:
- favors routing to well-connected peers

- favors reply to clients that themselves serve large number of
files: prevent freeloading

0 Limewire gateway functions as Napster-like central server
on behalf of other peers (for searching purposes)

25

Anonymous?

1 Not anymore than it's scalable.

1 The person you are getting the file from
knows who you are. That's hot anonymous.

1 Other protocols exist where the owner of
the files doesn't know the requester.

[Peer-to-peer anonymity exists.

1 See Eternity and Freenet! For the
terminally enthusiastic (or paranoid!)

26

Gnutella Discussion:

1 Architectural lessons learned?

1 Do Gnutella’s goals seem familiar? Does it
work better than say squid or summary
cache? Or multicast with carousel?

1 anonymity and security?
0 Other?

1 Good source for technical info/open
questions:

http://www.limewire.com/index.jsp/tech_papers

27

Lecture 3: Distributed Hash
Tables

1 Can we go from content to location in one
go?

[Can we still retain locality?

1 Can we keep any anonimity

0 Look at Chord

1 Tapestry, CAN, Pastry are similar projects

[Notice how networking people like silly
names®©

28

Outline for Chord |

O Motivation and background
O Consistency caching

0 Chord

O Performance evaluation

0 Conclusion and discussion

29

Motivation |

How to find data in a distributed file sharing system?

Publisher ‘
Key="LetItBe"”
Value=MP3 data
Internet

O Lookup is the key problem

Client ?
Lookup(*"LetItBe")

30

Centralized Solution |

O Central server (Napster)

N

Internet

‘ Client
Lookup(*"LetItBe")
0 Requires O(M) state

O Single point of failure

Publisher
Key="LetItBe"

Value=MP3 data

31

Distributed Solution (1) |

O Flooding (Gnutella, Mor'pheus, etc.)

Publisher
Key="LetItBe"

Value=MP3 data

Internet

Client
Lookup(“LetItBe")

0O Worst case O(N) messages per lookup
32

Distributed Solution (2) |

O Routed messages (Freenet, Tapestry, Chord, CAN, etc.)

Publisher
Key="LetItBe"

Value=MP3 data

Internet

Client
Lookup(“LetItBe")

O Only exact matches
33

Routing Challenges |

0 Define a useful key nearness metric
0 Keep the hop count small
O Keep the routing tables "right size"

O Stay robust despite rapid changes in membership

Authors claim:

O Chord: emphasizes efficiency and
simplicity

34

Chord Overview |

O Provides peer-to-peer hash lookup service:

O Lookup(key) — IP address

0 Chord does not store the data

0 How does Chord locate a node?
O How does Chord maintain routing tables?

0O How does Chord cope with changes in membership?

35

Chord properties |

O Efficient: O(Log N) messages per lookup
O N is the total number of servers
0O Scalable: O(Log N) state per node

O Robust: survives massive changes in membership

O Proofs are in paper / tech report

O Assuming no malicious participants

36

Chord IDs |

O m bit identifier space for both keys and nodes
O Key identifier = SHA-1(key)
Key="LetItBe” —SHA-1 , [D=60

O Node identifier = SHA-1(IP address)
[P="198.10.10.1" —=HA-1 , TD=123

O Both are uniformly distributed
0O How to map key IDs to node IDs?

37

Consistent Hashing [Karger 97]|

IP="198.10.10.1" 0 K5

N123

K20

/ Circular 7-bit \'
K101 ID Space N32
Key="LetItBe"”

O A key is stored at its successor: node with next higher ID

38

Consistent Hashing

O Every node knows of every other node
O requires global information
O Routing tables are large O(N)

O Lookups are fast O(1)
0

Where is “LetltBe”?
Hash(“LetItBe”) = K60

N123

N32

“N90 has K60”

K60

Chord: Basic Lookup |

O Every node knows its successor in the ring

ﬂ\

N123

K60 | N9O

N10

“N90 has K60”

~—

O requires O(N) time

Where is “LetltBe”?

\jash(“LetItBe") = K60

N32

NS5

40

"Finger Tables" |

O Every node knows m other nodes in the ring

O Increase distance exponentially

41

O Lookups take O(Log N) hops

NS

N110

N99

N30

N10

N20

Lookups are Faster |

K19

N32

N60

Lookup(K19)

42

Joining the Ring

O Three step process:
O Initialize all fingers of new node
0O Update fingers of existing nodes

O Transfer keys from successor to new node

O Less aggressive mechanism (lazy finger update):

O Initialize only the finger to successor node
O Periodically verify immediate successor, predecessor

O Periodically refresh finger table entries

43

Joining the Ring - Step 1

O Initialize the new node finger table

O Locate any node pin the ring
O Ask node p to lookup fingers of new node N36

0 Return results to new node

NS

N20

— | N99

N36
1. Lookup(37,38,40,...,100,164)

N40

N8O

N60

Joining the Ring - Step 2

O Updating fingers of existing nodes

O new node calls update function on existing nodes

O existing nodes can recursively update fingers of other

nodes
N5
N20
N99
N36
N40
N
N8O

N60

Joining the Ring - Step 3

O Transfer keys from successor node to hew node

O only keys in the range are transferred

N5
N20
N99
N36 L K30
> Copy keys 21..36
y N40 | k38 from N40 to N36
N8O K38

N60

46

Handing Failures

O Failure of nodes might cause incorrect lookup

N120
N113 / \\Nlo

Lookup(90)

0 N8O doesn't know correct successor, so lookup fails

O Successor fingers are enough for correctness

Handling Failures

0 Use successor list

0 Each node knows 7 immediate successors
0 After failure, will know first live successor

O Correct successors guarantee correct lookups

O Guarantee is with some probability

O Can choose r to make probability of lookup failure
arbitrarily small

48

Evaluation Overview |

0 Quick lookup in large systems
O Low variation in lookup costs

O Robust despite massive failure

O Experiments confirm theoretical results

49

Cost of lookup |

0 Cost is O(Log N) as predicted by theory

OO0 constant is 1/2

Average Messages per Lookup

0 IIIIIII T IIIIIIII T T IIIIIII
10 100 1000

Number of Nodes

50

Current implementation |

O Chord library: 3,000 lines of C++

O Deployed in small Internet testbed

O Includes:
O Correct concurrent join/fail
O Proximity-based routing for low delay (?)
O Load control for heterogeneous nodes (?)

O Resistance to spoofed node IDs (?)

51

Strengths |

O Based on theoretical work (consistent hashing)

O Proven performance in many different aspects
O “with high probability” proofs

O Robust (Is it?)

92

Weakness

O NOT that simple (compared to CAN)
O Member joining is complicated

O aggressive mechanisms requires too many messages and updates

O no analysis of convergence in lazy finger mechanism
O Key management mechanism mixed between layers

O upper layer does insertion and handle node failures

0O Chord transfer keys when node joins (no leave mechanism!)

O Routing table grows with # of members in group

0O Worst case lookup can be slow

53

Discussions |

O Network proximity (consider latency?)

O Protocol security

0 Malicious data insertion

0 Malicious Chord table information

0O Keyword search and indexing

O ...

54

Wrapup discussion questions:

0 Is ad hoc networking a peer-peer application?
1 Yes (30-1)

0 Why peer-peer over client-server?
0 A well-deigned p2p provides better "scaability”

0 Why client-server of peer-peer
0 peer-peer is harder to make reliable

0 availability different from client-server (p2p is more
often at least partially "up”)

0 more trust is required

0 If all music were free in the future (and organized), would
we have peer-peer.

1 Is there another app: ad hoc networking, any copyrighted data,
peer-peer sensor data gathering and retrieval, simulation

0 Evolution #101 - what can we learn about systems?

55

