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Peer-peer networking




Peer'-peer' HZTWOI"king Focus at the application level




Peer-peer networking

Peer-peer applications

0 Napster, Gnutella, Freenet: file sharing

0 ad hoc networks

0 multicast overlays (e.g., video distribution)

(ﬁf_@

ﬂ -
ua (=HE~ =il ~




Peer-peer networking

0 Q: What are the new technical challenges?
0 Q: What new services/applications enabled?

0 Q: Isit just "networking at the application-level"?
0 “There is nothing new under the Sun” (William Shakespeare)
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Client Server v. Peer to Peer

1 OO OO 0O

RPC/RMI
Synchronous
Assymmeftric

Emphasis on language
integration and binding
models (stub
IDL/XDR compilers
etc)

Kerberos style
security - access
control, crypto

1 OO OO 0O

Messages
Asynchronous
Symmetric

Emphasis on service
location, content
addressing, application
layer routing.
Anonymity, high
availability, integrity.
Harder to get right©



Peer to peer systems actually
old

1 IP routers are peer to peer.

1 Routers discover topology, and maintain it
1 Routers are neither client nor server

(1 Routers continually chatter to each other
1 Routers are fault tolerant, inherently

[ Routers are autonomous




Peer to peer systems

1 Have no distinguished role
1 So no single point of bottleneck or failure.

11 However, this means they need distributed
algorithms for

1 Service discovery (name, address, route,
metric, etc)

0 Neighbour status tracking

- Application layer routing (based possibly on
content, interest, etc)

0 Resilience, handing link and node failures
0 Etc etc etc



Ad hoc networks and peerZpeer

1 Wireless ad hoc networks have many
similarities to peer to peer systems

0 No a priori knowledge

1 No given infrastructure

0 Have to construct it from "thin air”!
7 Note for later - wireless©



Overlays and peer 2 peer
systems

1 P2p technology is often used to create
overlays which offer services that could be
offered in the IP level

[ Useful deployment strategy

1 Often economically a way around other
barriers to deployment

1 IP Itself was an overlay (on telephone core
infrastructure)

1 Evolutionary pathlll
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Rest of lecture oriented from

case studies from literature

0 Piracy”"H"H"H"H"H"content sharing ©
1 Napster

0 Gnutella

1 Chord

0 etfc
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1. NAPSTER

0 The most (in)famous

0 Not the first (c.f. probably Eternity, from
Ross Anderson in Cambridge)

0 But instructive for what it gets right, and
1 Also wrong...

1 Also has a political message...and economic
and legal...etc etfc etc

12



Napster

0 program for sharing files over the Internet

0 a "disruptive” application/technology?

0 history:
0 5/99: Shawn Fanning (freshman, Northeasten U.) founds

l
l
l
l

Napster Online music service
12/99: first lawsuit

3/00: 25% UWisc traffic Napster

2000: est. 60M users

2/01: US Circuit Court of
Appeals: Napster knew users
violating copyright laws

7/01: # simultaneous online users:
Napster 160K, Gnutella: 40K, Mor,

¥ell Known Services Mb/s
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M Hapster® I/0
E FTP-DaTA src 140

B HTTF src I/0
B FTP-DATA dst 150

B HTTP dst 10

@ MCAST 10
W HNTP src I/ B ONNTP dst I/0 O Realserver IA0 @ SMTR sec 140
W sMTR dst I/0 O ICHP W TOTAL IJ0

Napsters 23, 1366665 HTTF 20. 350013 FTP-DATA 18, 356126%
MIAST 0,005092%  HHTP 1,936219%  Real 0,784512%  SMTF 0, 400803%
ICHMP 0.181571% other 34, 257597%
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Napster: how does it work

Application-level, client-server protocol over point-
to-point TCP

Four steps:
0 Connect to Napster server
0 Upload your list of files (push) to server.

0 Give server keywords to search the full list with.

0 Select "best” of correct answers. (pings)
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Napster

1. File list is
uploaded

napster.com

— 8
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Napster

2. User
napster.com
requests A
search at n

server. Request @
and
@ results

2

user



Napster

3. User pings
hosts that
apparently
have data.

Looks for @

best transfer
rate.

ping

4

napster.com

Z
-

user

2
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Napster

4- User napster.com
retrieves file ]

®>e

user

2
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Napster: architecture notes

1 centralized server:
0 single logical point of failure

0 can load balance among servers using DNS
rotation

[ potential for congestion
0 Napster "in control” (freedom is an illusion)

[ no security:
0 passwords in plain text

1 no authentication
1 ho anohymity
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2 Gnutella

[ Napster fixed
1 Open Source
0 Distributed

0 Still very political...
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Gnutella

0 peer-to-peer networking: applications connect to
peer applications

0 focus: decentralized method of searching for files

0 each application instance serves to:
0 store selected files

0 route queries (file searches) from and to its neighboring
peers

0 respond to queries (serve file) if file stored locally
0 Gnutella history:
0 3/14/00: release by AOL, almost immediately withdrawn

0 too late: 23K users on Gnutella at 8 am this AM

0 many iterations to fix poor initial design (poor design
turned many people off)
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Gnutella: how it works

Searching by flooding:

0 If you don't have the file you want, query 7 of
your partners.

0 If they don't have it, they contact 7 of their
partners, for a maximum hop count of 10.

0 Requests are flooded, but there is no tree
structure.

0 No looping but packets may be received twice.

0 What we care about:
0 How much traffic does one query generate?
0 how many hosts can it support at once?
0 What is the latency associated with querying?
0 Is there a bottleneck?
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Flooding in Gnutella: loop prevention

BB
«

Seen already list: "A"
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www.limewire.com/index.jsp/net_improvements

Gnutella: initial problems and fixes

1 Freeloading: WWW sites offering search/retrieval
from Gnutella network without providing file sharing
or query routing.

0 Block file-serving to browser-based non-file-sharing users

0 Prematurely terminated downloads:

0 long download times over modems

0 modem users run gnutella peer only briefly (Napster
problem also!) or any users becomes overloaded

0 fix: peer can reply "I have it, but I am busy. Try again
later”

0 late 2000: only 10% of downloads succeed

0 2001: more than 25% downloads successful (is this success
or failure?)
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www.limewire.com/index.jsp/net_improvements

Gnutella: initial problems and fixes (more)

0 2000: avg size of reachable network ony 400-800
hosts. Why so smalll?
0 modem users: not enough bandwidth to provide search
routing capabilities: routing black holes
0 Fix: create peer hierarchy based on capabilities
0 previously: all peers identical, most modem blackholes

0 connection preferencing:
- favors routing to well-connected peers

- favors reply to clients that themselves serve large number of
files: prevent freeloading

0 Limewire gateway functions as Napster-like central server
on behalf of other peers (for searching purposes)
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Anonymous?

1 Not anymore than it's scalable.

1 The person you are getting the file from
knows who you are. That's hot anonymous.

1 Other protocols exist where the owner of
the files doesn't know the requester.

[ Peer-to-peer anonymity exists.

1 See Eternity and Freenet! For the
terminally enthusiastic (or paranoid!)
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Gnutella Discussion:

1 Architectural lessons learned?

1 Do Gnutella’s goals seem familiar? Does it
work better than say squid or summary
cache? Or multicast with carousel?

1 anonymity and security?
0 Other?

1 Good source for technical info/open
questions:

http://www.limewire.com/index.jsp/tech_papers

27



Lecture 3: Distributed Hash
Tables

1 Can we go from content to location in one
go?

[ Can we still retain locality?

1 Can we keep any anonimity

0 Look at Chord

1 Tapestry, CAN, Pastry are similar projects

[ Notice how networking people like silly
names®©
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Outline for Chord |

O Motivation and background
O Consistency caching

0 Chord

O Performance evaluation

0 Conclusion and discussion
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Motivation |

How to find data in a distributed file sharing system?

Publisher ‘
Key="LetItBe"”
Value=MP3 data
Internet

O Lookup is the key problem

Client ?
Lookup(*"LetItBe")
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Centralized Solution |

O Central server (Napster)

N

Internet

‘ Client
Lookup(*"LetItBe")
0 Requires O(M) state

O Single point of failure

Publisher
Key="LetItBe"

Value=MP3 data
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Distributed Solution (1) |

O Flooding (Gnutella, Mor'pheus, etc.)

Publisher
Key="LetItBe"

Value=MP3 data

Internet

Client
Lookup(“LetItBe")

0O Worst case O(N) messages per lookup
32



Distributed Solution (2) |

O Routed messages (Freenet, Tapestry, Chord, CAN, etc.)

Publisher
Key="LetItBe"

Value=MP3 data

Internet

Client
Lookup(“LetItBe")

O Only exact matches
33



Routing Challenges |

0 Define a useful key nearness metric
0 Keep the hop count small
O Keep the routing tables "right size"

O Stay robust despite rapid changes in membership

Authors claim:

O Chord: emphasizes efficiency and
simplicity
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Chord Overview |

O Provides peer-to-peer hash lookup service:

O Lookup(key) — IP address

0 Chord does not store the data

0 How does Chord locate a node?
O How does Chord maintain routing tables?

0O How does Chord cope with changes in membership?
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Chord properties |

O Efficient: O(Log N) messages per lookup
O N is the total number of servers
0O Scalable: O(Log N) state per node

O Robust: survives massive changes in membership

O Proofs are in paper / tech report

O Assuming no malicious participants
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Chord IDs |

O m bit identifier space for both keys and nodes
O Key identifier = SHA-1(key)
Key="LetItBe” —SHA-1 , [D=60

O Node identifier = SHA-1(IP address)
[P="198.10.10.1" —=HA-1 , TD=123

O Both are uniformly distributed
0O How to map key IDs to node IDs?
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Consistent Hashing [Karger 97]|

IP="198.10.10.1" 0 K5

N123

K20

/ Circular 7-bit \'
K101 ID Space N32
Key="LetItBe"”

O A key is stored at its successor: node with next higher ID

38



Consistent Hashing

O Every node knows of every other node
O requires global information
O Routing tables are large O(N)

O Lookups are fast O(1)
0

Where is “LetltBe”?
Hash(“LetItBe”) = K60

N123

N32

“N90 has K60”

K60




Chord: Basic Lookup |

O Every node knows its successor in the ring

ﬂ\

N123

K60 | N9O

N10

“N90 has K60”

~—

O requires O(N) time

Where is “LetltBe”?

\jash(“LetItBe") = K60

N32

NS5
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"Finger Tables" |

O Every node knows m other nodes in the ring

O Increase distance exponentially

41



O Lookups take O(Log N) hops

NS

N110

N99

N30

N10

N20

Lookups are Faster |

K19

N32

N60

Lookup(K19)
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Joining the Ring

O Three step process:
O Initialize all fingers of new node
0O Update fingers of existing nodes

O Transfer keys from successor to new node

O Less aggressive mechanism (lazy finger update):

O Initialize only the finger to successor node
O Periodically verify immediate successor, predecessor

O Periodically refresh finger table entries
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Joining the Ring - Step 1

O Initialize the new node finger table

O Locate any node pin the ring
O Ask node p to lookup fingers of new node N36

0 Return results to new node

NS

N20

— | N99

N36
1. Lookup(37,38,40,...,100,164)

N40

N8O

N60




Joining the Ring - Step 2

O Updating fingers of existing nodes

O new node calls update function on existing nodes

O existing nodes can recursively update fingers of other

nodes
N5
N20
N99
N36
N40
N
N8O

N60




Joining the Ring - Step 3

O Transfer keys from successor node to hew node

O only keys in the range are transferred

N5
N20
N99
N36 L K30
> Copy keys 21..36
y N40 | k38 from N40 to N36
N8O K38

N60
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Handing Failures

O Failure of nodes might cause incorrect lookup

N120
N113 / \\Nlo

Lookup(90)

0 N8O doesn't know correct successor, so lookup fails

O Successor fingers are enough for correctness



Handling Failures

0 Use successor list

0 Each node knows 7 immediate successors
0 After failure, will know first live successor

O Correct successors guarantee correct lookups

O Guarantee is with some probability

O Can choose r to make probability of lookup failure
arbitrarily small
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Evaluation Overview |

0 Quick lookup in large systems
O Low variation in lookup costs

O Robust despite massive failure

O Experiments confirm theoretical results
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Cost of lookup |

0 Cost is O(Log N) as predicted by theory

OO0 constant is 1/2

Average Messages per Lookup

0 IIIIIII T IIIIIIII T T IIIIIII
10 100 1000

Number of Nodes
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Current implementation |

O Chord library: 3,000 lines of C++

O Deployed in small Internet testbed

O Includes:
O Correct concurrent join/fail
O Proximity-based routing for low delay (?)
O Load control for heterogeneous nodes (?)

O Resistance to spoofed node IDs (?)
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Strengths |

O Based on theoretical work (consistent hashing)

O Proven performance in many different aspects
O “with high probability” proofs

O Robust (Is it?)
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Weakness

O NOT that simple (compared to CAN)
O Member joining is complicated

O aggressive mechanisms requires too many messages and updates

O no analysis of convergence in lazy finger mechanism
O Key management mechanism mixed between layers

O upper layer does insertion and handle node failures

0O Chord transfer keys when node joins (no leave mechanism!)

O Routing table grows with # of members in group

0O Worst case lookup can be slow
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Discussions |

O Network proximity (consider latency?)

O Protocol security

0 Malicious data insertion

0 Malicious Chord table information

0O Keyword search and indexing

O ...
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Wrapup discussion questions:

0 Is ad hoc networking a peer-peer application?
1 Yes (30-1)

0 Why peer-peer over client-server?
0 A well-deigned p2p provides better "scaability”

0 Why client-server of peer-peer
0 peer-peer is harder to make reliable

0 availability different from client-server (p2p is more
often at least partially "up”)

0 more trust is required

0 If all music were free in the future (and organized), would
we have peer-peer.

1 Is there another app: ad hoc networking, any copyrighted data,
peer-peer sensor data gathering and retrieval, simulation

0 Evolution #101 - what can we learn about systems?
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