

A Data Base Extension of Prolog and its Implementation

Tore Risch

18 August 1982

UPMAIL
Uppsala Programming Methodology and Artificial Intelligence Laboratory

Department of Computer Science, University of Uppsala
750 02 Uppsala, Sweden

ABSTRACT

A method is presented to extend the programming language Prolog with a
capability to access a relational data base system. Since the data type
‘relation' is basic in Prolog, and since Prolog is based on interpretation of a
subset of predicate calculus, such an interface becomes simpler in Prolog than
in most other languages, and the same language, extended Prolog, may be used
both for programming and as a very powerful query language.

From the Prolog programmers’ point of view, the approach has the advantages
that conventional data bases can be concurrently accessed from Prolog programs,
and that the sizes of certain types of Prolog relations are not limited by the
primary memory size.

A portable pilot implementation has been done, using a Prolog interpreter coded
in Lisp, a portable Lisp interpreter, and a portable relational data base
system. The implementation and its primitives will be overviewed. The approach
presented takes advantage of optimization methods of the underlying relational
data base system.

CHAPTER 1

INTRODUCTION

Relational data base systems have become very popular during the last decade.
Overviews of relational data base systems can be found in, e.g., <Kim>.
Relational data bases allow the programmer to see his/her data as a set of
tables, or relations. For manipulating these relations, there is normally a query
(and update) language available. The query language can either be used
interactively for data base manipulations from a terminal, or imbedded in some
programming language. The query language is often non-procedural, i.e. the
programmer declares to the system what he/she wants to do with the data base, and
the query language handler decides on its own how the task is accomplished. For
example, access path optimizations are of-ten done by the query language handler.
By using a relational query language when developing data base application
programs, one may separate the physical representation of the data from the way
data is seen from the application program, which simplifies the programming and
makes programs more independent of data base updates.

Since a query language can be used only for specifying data base manipulations,
it needs to be connected to a general purpose language if it is to be used for
development of application programs.

Therefore the query language is often imbedded into a general purpose programming
language, e.g. PL/I, C, or COBOL, by specially marking query language statements,
and using a pre-processor, which translates query language statements into calls
to data base access routines. This method is, e.g., used in System R <Astrahan>
and Ingres <Stonebraker>.

The advantage with this method is that the application programs can easily be
integrated with other software in the general purpose language. However, a
problem is that the programming environment of the query language is different
from that of the general purpose language. For example, the data type 'relation'
is not available in most general purpose languages, the error handling may be
difficult to integrate, as well as data type handling. One will have a two-level
language with features not easily integrated, and where the general purpose
language has quite a different philosophy than the general purpose language. For
example, the general purpose language is procedural (or imperative) while the
query language is non-procedural.

Of course, it one makes a completely new language, these difficulties

INTRODUCTION Page 1-2

may be avoided.

This paper will show that Prolog is a very good host language for a relational
query language, because its philosophy is very similar to that of query
languages. The data type relation and its handling is very basic in Prolog.
Therefore an extension of Prolog can be directly used as a relational query
language, thus giving a one level language for data base applications, i.e.
extended Prolog can be used both for data base manipulations and for
application programming.

Furthermore, Prolog as a query language is in some caes more powerful than
conventional query languages. There are some practical problems which are not
easily programmable using conventional query languages.

Another advantage is that Prolog adds deductive capabilities to the query
language, i.e. one may represent and use implicit facts like, e.g., 'A person
is a grandfather if he has a son which in his turn has a son'. This deductive
capability may be regared as a generalization of views in relational database
systems.

An important reason for the work presented here is to allow for the Prolog
programmer to access relational data bases. In this way Prolog programs can
easily access data stored in conventional data bases, thereby sharing data with
other systems. The data base system will allow Prolog programs to update these
data bases concurrently with other programs.

Finally, by using a relational data base system for storing Prolog relations
one may relax limitations on the size of a Prolog program because of
limitations on the primary memory.

There are also some limitations on the method presented here:

First, Lisp is used for the implementation of the Prolog system and its
extension, while the relational data base system is coded in FORTRAN. This
implementation method is slow compared to a system entirely implemented in
assembler, Fortran, or some other efficient language. However, Lisp is very
useful for making experiments with Prolog implementations because of its
flexibility. Efficiency is not critical for showing the ideas. Furthermore the
marriage of Lisp and Prolog is very useful (see <Robinson82>, <Komorowski>, and
<Carlsson>).

Secondly, Prolog relations are more general than normalized data base
relations. (The word tables will hereafter be used for external data base
relations). Thus, only certain types of Prolog relations may be stored as
tables, the other have to be stored in the Prolog memory. As we will see, this
is not a serious limitation, since it can be assumed that the relations
representable as tables are much larger than other Prolog relations.

CHAPTER 2

PROLOG AS A DATA BASE LANGUAGE

In order to make the paper self contained, this sections starts with a short
description of the programming language Prolog. The reader familiar with Prolog
can skip the beginning of this section. The section ends with some examples of
data base queries formulated in Prolog compared to the same queries formulated
in a relational calculus query language, QUEL <Stonebraker>.

The implementation on which this paper is based uses a Prolog interpreter
written in Lisp, YAQ <Carlsson>. YAQ has Lisp's S-notation for Prolog
expressions, but for making this paper more easily readable I will use a more
conventional Prolog syntax.

2.1 CONCEPTS OF PROLOG

A logic program can be defined as a set of Horn clauses, which are expressions

 B <= Al,...,Ak. (1)

where B and Ai are atoms. An atom is a predicate followed by a list of
arguments. Each argument is a term, i.e. either a constant, a variable, or a
functional expression. All the variables appearing in a clause are assumed to
be universally quantifyed. I distinguish constants from variables by
capitalizing variables and using lower case letters for constants.

The declarative interpretation

A set of Horn clauses is interpreted as the conjunction of its right hand side
atoms. Variables are local to each clause. The Horn clause above is interpreted
as "for all values of its variables, B holds if Al and ... and Ak”. For
example, the clause

grandmother(X,Y) <= mother(Z,Y), parent(X,Z). (2)

can be read "for every X,Y, and Z it holds that Y is a grandmother of X if Y is
the mother of Z and Z is the parent of X”.

PROLOG AS A DATA BASE LANGUAGE Page 2-2

A Horn clause with an empty right-hand side is interpreted as an unconditional
assertion of fact, e.g.:

mother(KAIN,EVE) <=. (3)

which thus should be read as "(It is always true that) the mother of
KAIN is EVE”.

The computational interpretation

A Horn clause of the above form is called a procedure and is interpreted as a
procedure declaration, where B is the procedure name and formal parameters, and
A1,...,Ak is the set of procedure calls constituting the procedure body.
Assertions can be regarded as a special case of a procedure declaration, in
which the body is empty.

A Horn clause of the form

 <= A1,_,Ak. (4)

is called a query and is interpreted as a request to find a constructive proof
of "There exist X1,...,Xk such that Al and ... and Ak hold”, where X1,...,Xk
are the variables in the query.

A Prolog interpreter constructs such a proof through resolution <Robinson65>, a
kind of a pattern matching method. During this process, the variables in the
query are instantiated, i.e. substituted for calculated expressions. The
substitution of variables for terms thus obtained is called an answer to the
query. Alternative proofs may result in alternative answers or the same query.

manager2(X,Y) <= manager(X,Y), manager(Z,Y).
manager(olle,kalle)<=.
manager(eve,elsa)<=.
manager(kalle,ludwig:)<=.
manager(elsa,ludwig)<=.

Fig. 1: Prolog examples

For example, given the Prolog program of figure 1 and the query

<=manager2(X,ludwig). (5)

a Prolog interpreter would find the two answers X=olle and X=eve.

A set of procedure declarations whose left hand sides have the same predicate
predicate symbol, P, is called a predicate definition for P.

PROLOG AS A DATA BASE LANGUAGE Page 2-3

2.2 PROLOG AS A DATA BASE LANGUAGE

Throughout this section I will use as an illustration the relational data
base table of figure 2, which describes a number of employees, their managers
and their salaries. Top level managers have empty MANAGER columns.

EMPLOYEE ! NAME ! MANAGER ! SALARY

! JONES ! JAMES ! 28000
! JAMES ! ! 54000
! ADAM ! JONES ! 30000
! CARL ! JONES ! 25000
! EVE ! CARL ! 26000
! ELIZA ! CARL ! 27000

Fig. 2: A sample relational database table

A Prolog program can be regarded as a data base consisting of two parts, the
extensional data base (EDB), and the intentional data base (IDB).

The extensional data base is represented by Horn clauses without right hand
sides with only constants in their left hand sides. An example of an EDB is
the clauses in figure 3 which represent the data base of figure 2. (Empty
fields are represented with 'nil').

employee(jones,james,28000)<=.
employee(james,nil,54000)<=.
employee(adam,jones,30000)<=.
employee(carl,Jones,25000)<=.
employee(eve,carl,260001)<=.
employee(eliza,carl,27000)<=.

Fig. 3: A relational data base represented in Prolog.

We can make the observation that Horn clauses directly correspond to a
relational table. The difference is that Prolog allows structured objects
among the atoms, and that the assertions are of different lengths. For
example, the clauses

r(f(hans),[a,b,c])<=.
r(eve) (6)

is a legal EDB in Prolog, but it cannot be directly represented in a
normalized relational data base table. ([a,b,c] denotes a list of three
elements a, b, and c).

The IDB is a data base containing facts which are inferable by using the EDB
and a number of predicate definitions. The MANAGER and MANAGER2 relations of
figure 4 are examples of Prolog predicates in the IDB using the EDB of figure
3. (The underline (_) denotes an anonymous, unique

PROLOG AS A DATA BASE LANGUAGE Page 2-4

variable name). One may say that Prolog predicates with variables specifies
rules how to construct one relation from other relations, which are either in
the EDB or IDB. We can here observe that IDB-relations correspond to views in
relational data bases, with the difference that a predicate definition can
represent more powerful rules than relational data base views, e.g. with
recursion.

manager(OF,IS)<=employee(OF,IS,_).
manager2(OF,IS)<=manager(OF,X),manager(X,IS).

Fig. 4: An example of an IDB

Another observation is that Prolog queries, i.e. Prolog statements without left
hand sides, correspond to relational query language statements. For example,
figure 5 shows some relational calculus queries in QUEL on the table of figure 2,
and their corresponding Prolog queries over the data base of figure 3.

Find all employees of CARL:
QUEL: RANGE OF E IS employee;

RETRIEVE E.NAME WHERE E.manager = CARL;

Prolog: <=employee(RESULT,carl,_).

Find the second level manager of ELIZA:
QUEL: RANGE OF Ej IS employee;

RETRIEVE F.manager WHERE F.NAME = E.manager AND
 E.NAME = CARL;

Prolog: <=employee(carl,X,_),employee(X,RESULT,_).
 or

 <=employee(carl,X,_),employee(Y,RESULT,_),eq(X,Y).

Fig. 5: Some relational calculus queries and their corresponding Prolog
queries.

Figure 5 illustrates how any relational data base query can be expressed as a
Prolog query. Notice that Prolog queries refer to columns by positions, while
relational data base queries use column names. In commercial data bases this may
be a disadvantage, since the tables there normally have a large number of
columns.

The second example of figure 5 illustrates an equi join in Prolog. It can either
be done by using common variables in procedure calls, or by using the Prolog
predicate for equality. The latter method corresponds more closely to the
relational data base query, while the former method is more convenient. We also
notice that Prolog queries are often more compact than relational data base
queries.

There is a well known problem with relational data base queries known as

PROLOG AS A DATA BASE LANGUAGE Page 2-5

the 'bill of material problem', see <Chamberlin>. In our example it is
analogous the problem of finding all lower level employees of some manager.
In Prolog this query is expressed as in figure 6, while it cannot be
expressed in most relational query languages. Therefore, to solve this
problem, one has to use the high level language in which the relational query
sublanguage is imbedded. For example, <Chamberlin> shows how to solve the
problem in SQL, illustrating that the code becomes rather complicated.

manager(OF,IS)<=employee(OF,IS,_).
descendants(OF,IS)<=manager(OF,IS).
descendants(OF,IS)<=manager(OF,X),descendants(X,IS).
<=deseendants(carl,RESULT).

Fig 6: Retrieving all lower level employees of CARL.

 In order to solve the query in Prolog one uses recursive relations, which

would correspond to recursive views in a relational data base language, a
normally missing feature. Notice that the recursive relation (view)
descendants also can be used for retrieving all higher level managers of,
say, 'eliza' with the query

<=deseendants(RESULT,eliza). (7)

In summary one may conclude that Prolog may be used as a powerful and compact
query language, even though it may be inconvenient when there are many formal
parameters (=columns) in the relations.

2.3 EVALUATION ORDERS IN PROLOG AND QUERY LANGUAGES

The relational data base query languages are normally non-procedural, which
in practice means that a query language optimizer decides how the relations
involved in a query shall be accessed. Prolog, on the other hand, has a
defined evaluation order, by using unification and backtracking. Prolog will
scan the first relation in a join, and for each tuple retrieved it will scan
the second relation in the join for matching tuples. For efficiency Prolog
often has built-in indexes on the first argument of large relations. A
similar method is often used when joining relational tables as well.
<Blasgen> calls it "Indexes on join columns" and <Arnborg> calls it
back-track-programming (!). One difference is that relational data base query
languages normally optimize the order of the nested loops. Both Prolog and
relational data bases use indexes to quickly access a relation when a column
(variable) value is known, even though Prolog normally only have indexes on
the first variable (column). We should also notice that relational data base
optimizers use other access methods as well, e.g. by sorting intermediate
results <Blasgen,Arnborg>.

PROLOG AS A DATA BASE LANGUAGE Page 2-6

The disadvantage of not optimizing queries is more serious in relational data
bases than in Prolog programs, since commercial data bases may be very large, and
since real life applications require very fast access times. Prolog relations, on
the other hand, are normally of limited size and are stored in the primary
memory, which makes the access time less critical. Some Prolog dialects (e.g.
<Clark>) allow relations to be externally stored.

The way in which views are handled is quite different in Prolog than in
relational data bases. In relational data bases views are handled by modifying
queries, which is equivalent to expand the view definitions. The expanded queries
are then optimized as usual.

Prolog, on the other hand, uses unification and backtracking to 'invoke' the
views, with no optimization.

Relational query languages do not allow recursive views, since expansion of
recursive views would result in unlimited code. On the other hand, the Prolog
method may result in very inefficient code, e.g. in the query
descendants(carl,X), since the relations will be accessed in every recursive
call.

In summary one may conclude that relational data base languages optimizes the
table accesses while Prolog does not, and that there are special problems with
optimizing accesses to recursive views. We also notice that the optimization
problem is less critical in Prolog programs than in relational data bases.

Later I will show how the optimization problem is handled in my implementation.

CHAPTER 3

INTERFACING A RELATIONAL DATA BASE SYSTEM WITH PROLOG

This section starts with a historical review of the projects leading to this work
(see 3.1). Section 3.2 is an overview of the primitives added to YAQ for the
handling of tables. Section 3.3 gives some motivations for the implementation,
and section 3.4 describes some implementation details.

3.1 HISTORY

The implementation on which this paper is based relates to several other research
projects at the department of computer science in Uppsala and Uppsala university
data center.

The author's dissertation work, Lidam, <Risch78,Risch80a> was based on the
construction of a DBMS independent data dictionary system, having a program
generator which was able to generate general purpose language code from
specifications of data base retrievals in a non-procedural relational query
language.

In parallel with the development of Lidam, Uppsala university data center was
developing a relational data base system, Mimer <Mimer>. Mimer is largely machine
independent, since it is written in Fortran with a few machine dependent routines
in assembler.

Another system developed at the department of computer science at Uppsala
University is a Lisp interpreter, Lispf3 <Nordstrom>, written in standard Fortran
with only two small machine dependent routines.

Since both Mimer and Lispf3 are written in standard Fortran, it was a rather
simple task to connect the two, making an interface between Lisp and the
relational data base system Mimer. This Interface and parts of Lidam was used for
making a combined query language handler and program generator for Mimer
<Risch80b>.

A Prolog interpreter, YAQ <Carlsson> has been implemented to run under Lispf3.
YAQ uses a lispish S-notation for Prolog expressions.

YAQ, Lispf3, Mimer, and parts of Midam was used to construct an interface between
Prolog (i.e. YAQ) and a relational data base system

INTERFACING A RELATIONAL DATA BASE SYSTEM WITH PROLOG Page 3-2

(i.e. Mimer). The system is thus largely machine independent as a large Fortran
program, but still Lisp is used for the implementation of Prolog and parts of
the relational data base interface.

The remainder of this report will describe some design principles and
experiences made during the implementation.

3.2 PROLOG PRIMITIVES FOR THE RELATIONAL DATA BASE INTERFACE

Three types of primitives have been added to Prolog, namely

First, some data dictionary primitives, which are needed for creating and
removing data base tables.

Second, a few primitives are used for declaring Prolog predicates as tables.

Third, Prolog needs some extensions for accessing the data base.

The data dictionary primitives include Prolog predicates for creating,
formatting, and removing relational data base tables, predicates for retrieving
the names of tables and columns, predicates for adding and deleting secondary
indexes, etc.

The main primitive for declaring external Prolog predicates is

external(P,DB,TABLE) (8)

where P is the name of the Prolog predicate, and TABLE is the name of the table
in the data base DB. The system requires the data base to exist when external
is called, so that it can look up the data dictionary at declaration time for
correct connection of the Prolog predicate to the external table.

Once P has been declared external all assertions of P will be done to the
external table, and all accesses to P will be taken from the table. For
example, if one asserts

f(adam,olle)<=.
f(kalle,olle)<=. (9)

two tuples will be inserted to the data base. If one later gives the Prolog
query

<=f(X,olle). (10)

The Prolog system will access the external data base, yielding the answers

INTERFACING A RELATIONAL DATA BASE SYSTEM WITH PROLOG Page 3-3

X=adam and
X=kalle (11)

If one wants to get all records in the external table, one may write

<=f(X,Y). (12)

and the system will write

X=adam, Y=olle and
X=kalle, Y=olle (13)

Real life data base tables often have a large number of columns, e.g. one often
store one line for each person, and each line contains several properties of
the person. Therefore it is practical to use a feature of YAQ to allow a
variable number of arguments, when listing an entire relation For example

<=f L. (14)

will print the answers

L=[adam,olle] and
L=[kalle,olle]

This section has shown how a simple connection of Prolog predicates to external
tables may be implemented by basically the external declaration. In the next
section I will show some disadvantages with the solution and outline a better
implementation, as done in my implementation.

3.3 IMPROVING THE INTERFACE

The simple interface can be used for querying external tables by calling an
external predicate and filtering the result with Prolog predicates. For
example, suppose that we have the external table employee in figure 2, and have
done the external declaration

external(e,db1,employee) (15)

The query

Give me all persons who earn more than 20000.
can be expressed in Prolog as

<=e(X,...,S), gt(S,20000). (16)

However, this query will be very inefficiently executed by Prolog. What

INTERFACING A RELATIONAL DATA BASE SYSTEM WITH PROLOG Page 3-4

will happen is that the predicate e(X,_,S) will force a scan of the entire
employee relation. For each new value of S the system will apply the
gt(S,20000) test, and, if the test succeeds, the value of X will be printed.
For every 'gt' call the system will backtrack for the new tuple from employee.
The 'gt' predicate is furthermore called using unification. A much more
efficient method would be to let the data base handling system do the filtering
of the 'gt' predicate, and only return the tuples satisfying the 'gt'
predicate. Relational data base handling systems normally have primitives for
filtering basic predicates, as ‘gt', which are more efficient than Prolog's
unification.

Furthermore, a relational data base system may use (secondary) indexes for
efficient data base access of certain filters. For example, Mimer uses B-trees
for efficient handling of equality and interval queries.

So one improvement could be to allow for the data base system to do some access
optimization and filtering, instead of letting Prolog do this with unification.
The approach I have used in my implementation is to introduce higher level
primitives to Prolog than the external declaration. These primitives take
filter predicates on external tables as arguments. This means that Prolog
programs accessing external data bases will differ slightly from equivalent
programs accessing in-core Prolog data bases. However, programs for automatic
transformations may be constructed.

The basic primitive for accessing external tables is named SELECT, and it is
inspired by the SELECT statement in SQL <Astrahan>. In terms of SELECT, the
above query would be written as:

<=select(e(name),gt(salary,32000),X). (18)

The general format of the select predicate is

 select(EXT(COLS),FILTER,Vl,...,Vk) (19)

where EXT is the name of an externally declared predicate definition, COLS is a
list of column names to be retrieved (projected). This list must have the same
length as the number of variables, V1,_,Vk, to be bound at each call to select
(k=l in the example above). FILTER is a selection rule on the table. It may
contain only predicates supported by the data base system, as well as AND and
OR. ‘select’ will retrieve values of the columns in COLS, and, for each tuple
retrieved, the corresponding variable, Vi, will be bound. So, if one wants to
retrieve the persons who earn more than 32000 and there fathers, one may write
as in figure 6.

<=select(e(name,father)gt(salary,29000),X,Y).
and the system will print
X=james, Y=nil
X=adam, Y=Jones

Fig. 6: An example of how to use the predicate 'select'.

INTERFACING A RELATIONAL DATA BASE SYSTEM WITH PROLOG Page 3-5

A limitation for the moment is that a select query may only range over one
external table. However, this limitation will be removed in later versions
of the system.

The system can use optimization primitives of Mimer to optimize select with
respect to data base accesses and access path selection. ‘select’
expressions may be compiled into efficient specialized access code, by using
techniques for relational database query compilation.

Note that a program transformator can be used to transform automatically the
program (17) into (18)

3.4 OTHER PRIMITIVES

If a table is declared external, retract will remove tuples from it in
exactly the same way as if the relation would be in-core, i.e. records are
deleted from the external table. For example

<=retract(e(olle,X,_)). (20)

will delete all records in employee where the column name has the value
‘olle'. At the same time X is bound to the father of 'olle'. This could be
viewed as 'the last read'.

The declaration external is actually a special case of the declaration of
external views, with the format of figure 7.

extview(NAME,EXT(COLS),FILTER,V1,...,Vk) for example
<=extview(rich,e(name),gt(salary,30000),X).

Fig. 7: The format of the built-in predicate 'extview'

extview will declare 'rich' to be an external relation containing the column
'name' of employee for lines where the column 'salary'>30000. 'rich' is an
example of an external view. In difference to views in relational query
languages, as SQL, I only allow external views to refer to exactly one
external table each, and thus they define an external relation as a subset
(horizontal and vertical) of the external table. The reason for this
limitation is that is it shown that relational views may be updated without
complications only if they refer to exactly one table, as in my case. In
other words, since I have this limitation, 'assert' and 'retract' may be
used freely on external views. If a tuple is inserted to an external view
with only some of the columns of a table, the other columns of the table
will have null values.

INTERFACING A RELATIONAL DATA BASE SYSTEM WITH PROLOG Page 3-6

3.5 INDEX SELECTION FOR CONSTANTS

‘select’ solves some optimization problems for many programs. There is also
another situation when index optimization is very important, namely when a
constant occurs in a relation call, for example

<=e(olle,X,_). (21)

With only the primitives above available, also this query would scan the entire
employee table and unify each tuple retrieved to see if the first element is
'olle'. The query may be alternatively expressed as

<=select(e(father),eq(name,olle),X). (22)

in which case the access optimization may be used efficiently. It is always
possible to use select instead of the more simple method. To simplify this type
of queries my implementation uses dynamic compilation of calls to external
relations involving constants. So the query above is dynamically transformed
into the select call and then executed. Such dynamic transformations will occur
at any time the system internally generates calls to external relations with
constants.

3.6 IMPLEMENTATION OVERVIEW

I only give a brief overview of the implementation. YAQ was extended with the
previously described external data base primitives. The backtracking algorithm
of YAQ was modified so that it cheeks whether a relation is external which is
specially marked in its definition. If so, the backtracking mechanism will open
the external table when the relation is entered. The system maintains a file
cursor which is moved forward each time YAQ backtracks on an external relation.
When end of file is reached the external table is closed. Several file cursors
can be opened for the same external table. To allow for tail recursion
optimization <Warren80>, the system actually looks ahead one line in the table.
The lines are delivered to YAQ in the same internal format as is suitable for
unification in YAQ. Thus the remainder of YAQ cannot notice any difference
between accessing external or in-core relations.

CHAPTER 4

SUMMARY

I have shown some methods to extend Prolog with primitives for manipulation of
external relational data bases.

For making external and normalized relational data bases useful, it is assumed
that the extensional data base, EDB, ('records') is much larger than the
intentional data base, IDB, (‘views'), so that conventional Prolog methods can be
used for accessing the IDB, while a relational data base system handler can be
used for accessing the EDB.

The approach assumes that the underlying relational data base handler can
optimize data base queries, by choosing proper access paths.

I have made a pilot implementation showing that the approach works. The pilot
implementation is made in Lisp and Fortran, it is machine independent, and it
uses a commercial relational data base system, Mimer.

One important conclusion is that it is better to extend Prolog with some rather
high level primitives for querying external data bases, than directly using
Prolog for querying. Transformation programs may be constructed to transform
standard Prolog programs into programs with calls to these high level constructs.

The basic primitive in the system is a feature to declare predicate definitions
to be external, and a view definition capability. The Prolog predicates 'assert'
and 'retract' are made transparent to predicates declared external.

CHAPTER 5

REFERENCES

<Astrahan> M.M.Astrahan et. al.: "System R: A Relational Approach to Database

Systems", ACM Transactions on Database Systems, June 1976.

<Arnborg> S.Arnborg, P.Svensson: "Fast Multivariable Query Evaluation", FOA

Report C20189-D8, Swedish National Defence Institute, Stockholm, 1977.

<Blasgen> M.W.Blasgen, K.P.Eswaran: "Storage and Access in Relational Databases",

IBM Systems Journal, Vol. 16, No 4, 1977.

<Carlsson> M.Carlsson: "(Re)implementing Prolog in Lisp or YAQ ~ Yet Another

QLOG", UPMAIL Technical Report NO 5, UPMAIL, Uppsala Univ. Comp. Science
Dept., Box 2059, S-750 02 Uppsala, Sweden, 1981.

<Chamberlin> D.D.Chamberlin: "A Summary of user Experiences with the SQL Data

Sublanguage" Proc. Int. Conf. on Data Bases, Univ. of Aberdeen, Scotland,
July 1980.

<Chang> “DEDUCE 2: Further Investigations of Deduction in Relational Data Bases",

in: H.Gallaire, J.Minker (eds.): "Logic and Data Bases", ISBN 0-306-40060~X
Plenum Press, New York and London, 1978.

<Dahl> V.Dahl: "On Database Systems Development Through Logic", ACM Transactions

on Database Systems, Vol. 7, No. 1, March 1982.

<Clark> K.L.Clark, F.G.McCabe, S.Gregory: "IC-Prolog Language Features", in

K.L.Clark & S.-A. Tarnlund: "Logic Programming”, Academic Press, ISBN
0-12-175520-7, 1982.

<Kim> Won Kim: "Relational Database Systems", Computing Surveys, Vol. 11, No. 3,

Sept. 1979.

<Komorowski> H.J.Komorowski: "QLOG - The Software for Logic Programming", in:

S.-A.Tarnlund (ed.): Proc. Logic Programming Workshop, Budapest, July 14-16,
1980.

<Minker> J.Minker: "An Experimental Relational Data Base System Based on Logic",

in: H.Gallaire, J.Minker (eds.): "Logic and Data Bases”, ISBN O-306-40060-X
Plenum Press, New York and London, 1978.

REFERENCES Page 5-2

<Mimer> Mimer Reference Manual, Uppsala University Data Center, Box 2103, S-750

02 Uppsala, Sweden.

<Nordstrom> M.Nordstrom: "Lisp F3 User's Guide", Technical Report DLU 79/1,

Uppsala Univ. Comp. Science Dept., UPMAIL, Box 2059, 750 02 Uppsala,
Sweden, 1979.

<Risch78> T.Risch: "Compilation of Multiple File Queries in a Meta-database

System", PhD Thesis, Dept. of Mathematics, Linkoping univ., 581 83
Linkoping, Sweden, 1978

<Risch80a> T.Risch: "A Flexible and external Data Dictionary System for Program

Generation", Proc. Int. Conf. on Data Bases, Univ. of Aberdeen, Scotland,
July 1980.

<Risch80b> T.Risch: 'Troduction Program Generation in a Flexible Data

Dictionary System", Proc. Conf. on Very Large Data Bases, Montreal, 1980.

<Robinson65> J.A.Robinson: "A Machine-oriented Logic Based on the Resolution

Principle", Journal of the ACM 12, 1965.

<Robinson82> J.A.Robinson, E.E.Sibert: "LOGLISP: Motivation, Design and

Implementation", in K.L.Clark & S.-A. Tarnlund: "Logic Programming",
Academic Press, ISBN 0-12-175520-7, 1982.

<Stonebraker> M.Stonebraker, E.Wong, P.Kreps, G.Held: "The Design and

Implementation of INGRES", ACM Transactions on Database Systems, Sept.
1976.

<Warren80> D.H.D.Warren: "An Improved Prolog Implementation which Optimises

Tail Recursion" in: S-A. Tarnlund (ed.): Proc. from Logic Programming
Workshop, Budapest, July 14-16, 1980.

<Warren8l> D.H.D.Warren: "Efficient Processing of Interactive Relational Data

Base Queries Expressed in Logic", Proc. Conf. on Very Large Databases,
Cannes, France, 1981.

