Validating QBF Invalidity in HOL4

Tjark Weber

TU München 2 July, 2010

Quantified Boolean Formulae

QBF = propositional logic + quantifiers over Boolean variables

Example (QBF)

$$\exists x \, \forall y \, \exists z. \, x \wedge (y \vee z) \wedge (y \vee \neg z)$$

- Applications in formal verification, adversarial planning, etc.
- QBF is the canonical PSPACE-complete problem.

Motivation

HOL4 is a popular interactive theorem prover. Interactive theorem proving benefits from automation.

QBF solvers are complex software tools. We need a way to validate their results.

Motivation

HOL4 is a popular interactive theorem prover. Interactive theorem proving benefits from automation.

Integrate a QBF solver with HOL4. Check its results, LCF-style.

QBF solvers are complex software tools. We need a way to validate their results.

System Overview

Related Work

Integration of automated provers with ITPs

• SAT, SMT, FOL, HOL, ...

Certificates for QBF solvers

Squolem: simple certificate format, based on Q-resolution

Propositional Logic

- Boolean variables: x, y, z, ...
- A literal is a possibly negated variable.
- A clause is a disjunction of literals.
- A propositional formula is in CNF iff it is a conjunction of clauses.

Example (CNF)

$$x \wedge (y \vee z) \wedge (y \vee \neg z)$$

Quantified Boolean Formulae

Definition (Quantified Boolean Formula)

A Quantified Boolean Formula (QBF) is of the form

$$Q_1x_1 \ldots Q_nx_n. \phi,$$

where $n \ge 0$, each x_i is a Boolean variable, each Q_i is either \forall or \exists , and ϕ is a propositional formula in CNF.

Example (QBF)

$$\exists x \, \forall y \, \exists z. \, x \wedge (y \vee z) \wedge (y \vee \neg z)$$

Quantified Boolean Formulae: Semantics

QBF semantics:

$$\bullet \ \llbracket \forall x. \ \phi \rrbracket = \llbracket \phi[x \mapsto \top] \land \phi[x \mapsto \bot] \rrbracket$$

$$\bullet \ \llbracket \exists x. \ \phi \rrbracket = \llbracket \phi[x \mapsto \top] \lor \phi[x \mapsto \bot] \rrbracket$$

Infeasible for QBF of interest!

Squolem establishes invalidity of QBF using an inference rule known as Q-resolution.

Q-Resolution

Propositional resolution:

$$\frac{\phi \lor x \qquad \psi \lor \neg x}{\phi \lor \psi}$$

Forall-reduction:

$$\frac{\forall x. \ \phi \lor (\neg)x}{\phi} \ \ x \notin \phi$$

Definition (Q-resolution)

Let ϕ and ψ be two clauses of a QBF that can be resolved. Their resolvent's forall-reduct is called the Q-resolvent of ϕ and ψ .

Theorem (BKF95)

Q-resolution is sound and refutation-complete for QBF in prenex form.

$$\exists x \, \forall y \, \exists z. \, x \wedge (y \vee z) \wedge (y \vee \neg z)$$

Theorem (BKF95)

Q-resolution is sound and refutation-complete for QBF in prenex form.

$$\frac{\exists x \, \forall y \, \exists z. \, x \wedge (y \vee z) \wedge (y \vee \neg z)}{\exists x \, \forall y \, \exists z. \, y}$$

Theorem (BKF95)

Q-resolution is sound and refutation-complete for QBF in prenex form.

$$\frac{\exists x \, \forall y \, \exists z. \, x \wedge (y \vee z) \wedge (y \vee \neg z)}{\exists x \, \forall y. \, y}$$

Theorem (BKF95)

Q-resolution is sound and refutation-complete for QBF in prenex form.

$$\frac{\exists x \, \forall y \, \exists z. \, x \wedge (y \vee z) \wedge (y \vee \neg z)}{\exists x \, \forall y. \, y}$$

Theorem (BKF95)

Q-resolution is sound and refutation-complete for QBF in prenex form.

$$\frac{\exists x \, \forall y \, \exists z. \, x \wedge (y \vee z) \wedge (y \vee \neg z)}{\exists x \, \forall y. \, y}$$

LCF-style Theorem Proving

Theorems are implemented as an abstract data type.

There is a fixed number of constructor functions—one for each axiom schema/inference rule of HOL.

More complicated proof procedures must be implemented by composing these functions.

LCF-style Theorem Proving

Theorems are implemented as an abstract data type.

There is a fixed number of constructor functions—one for each axiom schema/inference rule of HOL.

More complicated proof procedures must be implemented by composing these functions.

The trusted code base consists only of the theorem ADT.

Selected HOL4 Inference Rules

Preliminaries

$$\{\phi\}$$
 \vdash ϕ

Preliminaries

$$Q_1 \times_1 \dots Q_n \times_n. \phi$$

$$\{\phi\} \qquad \vdash \quad \phi$$

$$\downarrow$$

Clear separation of propositional and quantifier reasoning!

Eliminate conjunctions:

$$\{\phi\} \vdash \phi$$

$$\{\phi\} \vdash C_i$$

3 Dictionary:
$$i \mapsto (\{\phi, \neg l_1^i, \dots, \neg l_{m_i}^i\} \vdash \bot, Q_1x_1 \dots Q_nx_n)$$

• Eliminate conjunctions:

$$\{\phi\} \vdash C_1 \land \cdots \land C_k$$

$$\{\phi\} \vdash C_i$$

3 Dictionary:
$$i \mapsto (\{\phi, \neg l_1^i, \dots, \neg l_{m_i}^i\} \vdash \bot, Q_1 x_1 \dots Q_n x_n)$$

• Eliminate conjunctions:

$$\{\phi\} \vdash C_1 \land \cdots \land C_k$$

$$\{\phi\} \vdash C_1, \ldots, \{\phi\} \vdash C_k$$

$$\{\phi\} \vdash C_i$$

3 Dictionary:
$$i \mapsto (\{\phi, \neg l_1^i, \dots, \neg l_{m_i}^i\} \vdash \bot, Q_1x_1 \dots Q_nx_n)$$

• Eliminate conjunctions:

$$\{\phi\} \vdash C_1 \land \cdots \land C_k$$

$$\{\phi\} \vdash C_1, \ldots, \{\phi\} \vdash C_k$$

$$\{\phi\} \vdash I_1^i \lor \cdots \lor I_{m_i}^i$$

3 Dictionary:
$$i \mapsto (\{\phi, \neg l_1^i, \dots, \neg l_{m_i}^i\} \vdash \bot, Q_1x_1 \dots Q_nx_n)$$

• Eliminate conjunctions:

$$\{\phi\} \vdash C_1 \land \cdots \land C_k$$

$$\{\phi\} \vdash C_1, \ldots, \{\phi\} \vdash C_k$$

② Eliminate disjunctions:

$$\{\phi\} \vdash l_1^i \lor \cdots \lor l_{m_i}^i$$

$$\{\phi, \neg l_1^i, \dots, \neg l_{m_i}^i\} \vdash \bot$$

3 Dictionary: $i \mapsto (\{\phi, \neg l_1^i, \dots, \neg l_{m_i}^i\} \vdash \bot, Q_1x_1 \dots Q_nx_n)$

General Proof Structure

Squolem's certificates of invalidity encode a directed acyclic graph. We perform a depth-first post-order traversal of this graph.

General Proof Structure

Squolem's certificates of invalidity encode a directed acyclic graph. We perform a depth-first post-order traversal of this graph.

General Proof Structure

Squolem's certificates of invalidity encode a directed acyclic graph. We perform a depth-first post-order traversal of this graph.

Q-Resolution: Propositional Resolution

Q-resolution is propositional resolution followed by forall-reduction.

Propositional resolution for clauses in sequent form [AW09]:

$$\frac{\Gamma \cup \{\neg v\} \vdash \bot}{\Gamma \vdash \neg v \implies \bot} \text{DISCH} \qquad \frac{\Delta \cup \{v\} \vdash \bot}{\Delta \vdash v \implies \bot} \text{DISCH} \\ \frac{\Delta \vdash v \implies \bot}{\Delta \vdash \neg v} \text{MP}$$

Q-Resolution: Forall-Reduction (1)

Let x_i be the largest variable that occurs in $\{\phi, I_1, \ldots, I_m\} \vdash \bot$. We must perform forall-reduction if x_i is universal. Suppose the missing quantifier prefix is $Q_1x_1 \ldots \forall x_i \ldots Q_jx_j$, with $j \ge i$.

Q-Resolution: Forall-Reduction (1)

Let x_i be the largest variable that occurs in $\{\phi, I_1, \ldots, I_m\} \vdash \bot$. We must perform forall-reduction if x_i is universal. Suppose the missing quantifier prefix is $Q_1x_1 \ldots \forall x_i \ldots Q_ix_j$, with $j \ge i$.

• If $Q_j = \forall$, we derive

$$\frac{\{\phi, l_1, \dots, l_m\} \vdash \bot}{\{l_1, \dots, l_m\} \vdash \phi \implies \bot} \text{ DISCH } \frac{\{\forall x_j, \phi\} \vdash \forall x_j, \phi \text{ ASSUME } \text{ SPEC}_{x_j}}{\{\forall x_j, \phi\} \vdash \phi \text{ MP}}$$

Q-Resolution: Forall-Reduction (1)

Let x_i be the largest variable that occurs in $\{\phi, I_1, \ldots, I_m\} \vdash \bot$. We must perform forall-reduction if x_i is universal. Suppose the missing quantifier prefix is $Q_1x_1 \ldots \forall x_i \ldots Q_ix_j$, with $j \ge i$.

• If $Q_i = \forall$, we derive

$$\frac{ \frac{\{\phi, l_1, \dots, l_m\} \vdash \bot}{\{l_1, \dots, l_m\} \vdash \phi \implies \bot} \text{ Disch } \frac{\overline{\{\forall x_j, \phi\} \vdash \forall x_j, \phi}}{\{\forall x_j, \phi\} \vdash \phi} \frac{\text{Assume}}{\text{Spec}_{x_j}} }{\{\forall x_j, \phi\} \vdash \bot} \text{ MP}$$

• If $Q_i = \exists$, then necessarily j > i, and we derive

$$\frac{ \overline{\{\exists x_j. \phi\} \vdash \exists x_j. \phi} \text{ Assume } \{\phi, I_1, \dots, I_m\} \vdash \bot}{\{\exists x_j. \phi, I_1, \dots, I_m\} \vdash \bot} \text{ Choose}_{x_j}$$

Q-Resolution: Forall-Reduction (2)

Repeating this step for all missing quantifiers up to $Q_i x_i$, we arrive at $\{Q_i x_i \dots Q_i x_i, \phi, I_1, \dots, I_m\} \vdash \bot$.

Now x_i is bound in $Q_ix_i \ldots Q_jx_j$. ϕ , and occurs free only in one of the literals I_1, \ldots, I_m . We instantiate x_i to $\neg \bot$ if it occurs positively, and to \bot if it occurs negatively.

In either case the literal becomes $\neg \bot$ and can be discharged.

We continue to forall-reduce the resulting clause to eliminate further universal variables if possible.

Q-Resolution: Example

Example (QBF)

$$\exists x \, \forall y \, \exists z. \, \phi$$
, where $\phi = x \wedge (y \vee z) \wedge (y \vee \neg z)$

1 Assume ϕ to obtain $\{\phi\} \vdash \phi$.

Q-Resolution: Example

Example (QBF)

$$\exists x \, \forall y \, \exists z. \, \phi$$
, where $\phi = x \wedge (y \vee z) \wedge (y \vee \neg z)$

- **1** Assume ϕ to obtain $\{\phi\} \vdash \phi$.
- Separate clause theorems:

1.
$$\{\phi\} \vdash x$$
 2. $\{\phi\} \vdash y \lor z$ 3. $\{\phi\} \vdash y \lor \neg z$

Q-Resolution: Example

Example (QBF)

$$\exists x \, \forall y \, \exists z. \, \phi$$
, where $\phi = x \wedge (y \vee z) \wedge (y \vee \neg z)$

- **1** Assume ϕ to obtain $\{\phi\} \vdash \phi$.
- Separate clause theorems:

1.
$$\{\phi\} \vdash x$$
 2. $\{\phi\} \vdash y \lor z$ 3. $\{\phi\} \vdash y \lor \neg z$

- Sequent form:
 - 1. $\{\phi, \neg x\} \vdash \bot$ 2. $\{\phi, \neg y, \neg z\} \vdash \bot$ 3. $\{\phi, \neg y, z\} \vdash \bot$

The missing quantifier prefix for each theorem is $\exists x \forall y \exists z$.

1.
$$\{\phi, \neg x\} \vdash \bot$$
 2. $\{\phi, \neg y, \neg z\} \vdash \bot$ 3. $\{\phi, \neg y, z\} \vdash \bot$ $(\exists x \forall y \exists z)$

Q-resolve theorems (2) and (3). Propositional resolution yields $\{\phi, \neg y\} \vdash \bot$. The resolvent's largest variable is y.

1.
$$\{\phi, \neg x\} \vdash \bot$$
 2. $\{\phi, \neg y, \neg z\} \vdash \bot$ 3. $\{\phi, \neg y, z\} \vdash \bot$ $(\exists x \forall y \exists z)$

- **Q**-resolve theorems (2) and (3). Propositional resolution yields $\{\phi, \neg y\} \vdash \bot$. The resolvent's largest variable is y.
- **③** Since y is universal, we perform forall-reduction. We introduce missing quantifiers $\exists z$ and $\forall y$, first deriving $\{\exists z. \phi, \neg y\} \vdash \bot$, and then $\{\forall y \exists z. \phi, \neg y\} \vdash \bot$.

1.
$$\{\phi, \neg x\} \vdash \bot$$
 2. $\{\phi, \neg y, \neg z\} \vdash \bot$ 3. $\{\phi, \neg y, z\} \vdash \bot$ $(\exists x \forall y \exists z)$

- **1** Q-resolve theorems (2) and (3). Propositional resolution yields $\{\phi, \neg y\} \vdash \bot$. The resolvent's largest variable is y.
- **③** Since y is universal, we perform forall-reduction. We introduce missing quantifiers $\exists z$ and $\forall y$, first deriving $\{\exists z. \phi, \neg y\} \vdash \bot$, and then $\{\forall y \exists z. \phi, \neg y\} \vdash \bot$.
- **○** Now we eliminate y by instantiating it to \bot , thereby obtaining $\{ \forall y \exists z. \, \phi, \, \neg \bot \} \vdash \bot$. Discharging $\neg \bot$ yields $\{ \forall y \exists z. \, \phi \} \vdash \bot$.

1.
$$\{\phi, \neg x\} \vdash \bot$$
 2. $\{\phi, \neg y, \neg z\} \vdash \bot$ 3. $\{\phi, \neg y, z\} \vdash \bot$ $(\exists x \forall y \exists z)$

- **1** Q-resolve theorems (2) and (3). Propositional resolution yields $\{\phi, \neg y\} \vdash \bot$. The resolvent's largest variable is y.
- **③** Since y is universal, we perform forall-reduction. We introduce missing quantifiers $\exists z$ and $\forall y$, first deriving $\{\exists z. \phi, \neg y\} \vdash \bot$, and then $\{\forall y \exists z. \phi, \neg y\} \vdash \bot$.
- **○** Now we eliminate y by instantiating it to \bot , thereby obtaining $\{ \forall y \exists z. \, \phi, \, \neg \bot \} \vdash \bot$. Discharging $\neg \bot$ yields $\{ \forall y \exists z. \, \phi \} \vdash \bot$.
- The next missing quantifier is $\exists x$, and x does not occur in the clause (except in ϕ). We finally arrive at $\{\exists x \forall y \exists z. \phi\} \vdash \bot$.

Run-Times

Evaluation on 69 invalid QBF problems from the *2005 fixed instance* and *2006 preliminary QBF-Eval* data sets up to 131 alternating quantifiers, 24,562 variables, 35,189 clauses

Run-Times

Evaluation on 69 invalid QBF problems from the 2005 fixed instance and 2006 preliminary QBF-Eval data sets

up to 131 alternating quantifiers, 24,562 variables, 35,189 clauses

All problems are checked successfully!

- Average run-times: 60.2 s (de Bruijn), 2.1 s (name-carrying),
 0.8 s (optimized name-carrying)
- 24.5 times faster (after opt.) than proof search with Squolem
- 1-2 orders of magnitude slower than stand-alone checking

Variable Binding and Substitution

 $\forall x. \phi$ is syntactic sugar for $\forall (\lambda x. \phi)$ (likewise for $\exists x. \phi$).

de Bruijn:
$$(\lambda x. \phi) x \rightarrow_{\beta} \phi [0 \mapsto x]$$
 name-carrying: $(\lambda x. \phi) x \rightarrow_{\beta} \phi$

HOL's name-carrying kernel is 28.7 times faster for QBF validation than the kernel that uses de Bruijn indices internally.

Variable Binding and Substitution

 $\forall x. \phi$ is syntactic sugar for $\forall (\lambda x. \phi)$ (likewise for $\exists x. \phi$).

de Bruijn:
$$(\lambda x. \phi) x \rightarrow_{\beta} \phi [0 \mapsto x]$$
 name-carrying: $(\lambda x. \phi) x \rightarrow_{\beta} \phi$

HOL's name-carrying kernel is 28.7 times faster for QBF validation than the kernel that uses de Bruijn indices internally.

Capture-avoiding substitution may have to rename bound variables away from the free variables in the body of a λ -abstraction.

We achieved a further speed-up of 2.6 by improving HOL4's implementation of capture-avoiding substitution to collect free variables only when they are actually needed for renaming.

Profiling

de Bruijn

name-carrying

optimized n.-c.

Conclusions

Integration of a QBF solver with HOL4

- LCF-style proof checking for QBF invalidity is feasible.
- → HOL4:
 → http://hol.sourceforge.net/

Future Work

- Applications, case studies
- QBF validity
- Other ITPs/QBF solvers
- Different approaches (e.g., reflection)

Future Work

- Applications, case studies
- QBF validity
- Other ITPs/QBF solvers
- Different approaches (e.g., reflection)

Thank You!

