Validating QBF Invalidity in HOL4

Tjark Weber

UNIVERSITY OF CAMBRIDGE
Computer Laboratory

TU München
2 July, 2010

Quantified Boolean Formulae

QBF $=$ propositional logic + quantifiers over Boolean variables

Example (QBF)

$$
\exists x \forall y \exists z . x \wedge(y \vee z) \wedge(y \vee \neg z)
$$

- Applications in formal verification, adversarial planning, etc.
- QBF is the canonical PSPACE-complete problem.

Motivation

HOL4 is a popular interactive theorem prover. Interactive theorem proving benefits from automation.

QBF solvers are complex software tools. We need a way to validate their results.

Motivation

HOL4 is a popular interactive theorem prover. Interactive theorem proving benefits from automation.

Integrate a QBF solver with HOL4. Check its results, LCF-style.

QBF solvers are complex software tools. We need a way to validate their results.

System Overview

HOL4

Related Work

Integration of automated provers with ITPs

- SAT, SMT, FOL, HOL, ...

Certificates for QBF solvers

- Squolem: simple certificate format, based on Q-resolution

Propositional Logic

- Boolean variables: x, y, z, \ldots
- A literal is a possibly negated variable.
- A clause is a disjunction of literals.
- A propositional formula is in CNF iff it is a conjunction of clauses.

Example (CNF)

$$
x \wedge(y \vee z) \wedge(y \vee \neg z)
$$

Quantified Boolean Formulae

Definition (Quantified Boolean Formula)

A Quantified Boolean Formula (QBF) is of the form

$$
Q_{1} x_{1} \ldots Q_{n} x_{n} \cdot \phi
$$

where $n \geq 0$, each x_{i} is a Boolean variable, each Q_{i} is either \forall or \exists, and ϕ is a propositional formula in CNF.

Example (QBF)

$$
\exists x \forall y \exists z . x \wedge(y \vee z) \wedge(y \vee \neg z)
$$

Quantified Boolean Formulae: Semantics

QBF semantics:

- $\llbracket \forall x, \phi \rrbracket=\llbracket \phi[x \mapsto T] \wedge \phi[x \mapsto \perp] \rrbracket$
- $\llbracket \exists x . \phi \rrbracket=\llbracket \phi[x \mapsto T] \vee \phi[x \mapsto \perp] \rrbracket$

Infeasible for QBF of interest!
Squolem establishes invalidity of QBF using an inference rule known as Q-resolution.

Q-Resolution

Propositional resolution:

$$
\frac{\phi \vee x \quad \psi \vee \neg x}{\phi \vee \psi}
$$

Forall-reduction:

$$
\frac{\forall x \cdot \phi \vee(\neg) x}{\phi} x \notin \phi
$$

Definition (Q-resolution)

Let ϕ and ψ be two clauses of a QBF that can be resolved. Their resolvent's forall-reduct is called the Q-resolvent of ϕ and ψ.

Q-Resolution: Example

Theorem (BKF95)

Q-resolution is sound and refutation-complete for QBF in prenex form.

Example

$$
\exists x \forall y \exists z . x \wedge(y \vee z) \wedge(y \vee \neg z)
$$

Q-Resolution: Example

Theorem (BKF95)

Q-resolution is sound and refutation-complete for QBF in prenex form.

Example

$$
\frac{\exists x \forall y \exists z . x \wedge(y \vee z) \wedge(y \vee \neg z)}{\exists x \forall y \exists z \cdot y}
$$

Q-Resolution: Example

Theorem (BKF95)

Q-resolution is sound and refutation-complete for QBF in prenex form.

Example

$$
\frac{\exists x \forall y \exists z . x \wedge(y \vee z) \wedge(y \vee \neg z)}{\exists x \forall y \cdot y}
$$

Q-Resolution: Example

Theorem (BKF95)

Q-resolution is sound and refutation-complete for QBF in prenex form.

Example

$$
\frac{\exists x \forall y \exists z . x \wedge(y \vee z) \wedge(y \vee \neg z)}{\frac{\exists x \forall y \cdot y}{\exists x \cdot \perp}}
$$

Q-Resolution: Example

Theorem (BKF95)

Q-resolution is sound and refutation-complete for QBF in prenex form.

Example

$$
\frac{\exists x \forall y \exists z . x \wedge(y \vee z) \wedge(y \vee \neg z)}{\frac{\exists x \forall y \cdot y}{\perp}}
$$

LCF-style Theorem Proving

Theorems are implemented as an abstract data type.
There is a fixed number of constructor functions-one for each axiom schema/inference rule of HOL.

More complicated proof procedures must be implemented by composing these functions.

LCF-style Theorem Proving

Theorems are implemented as an abstract data type.
There is a fixed number of constructor functions-one for each axiom schema/inference rule of HOL.

More complicated proof procedures must be implemented by composing these functions.

The trusted code base consists only of the theorem ADT.

Selected HOL4 Inference Rules

$$
\begin{aligned}
& \overline{\{\phi\} \vdash \phi} \text { Assume } \frac{\Gamma \vdash \phi \wedge \psi}{\Gamma \vdash \phi} \text { Cons1 } \frac{\Gamma \vdash \phi \wedge \psi}{\Gamma \vdash \psi} \text { Cons2 } \\
& \frac{\Gamma \vdash \phi \vee \psi \quad \Delta_{1} \cup\{\phi\} \vdash \theta \quad \Delta_{2} \cup\{\psi\} \vdash \theta}{\Gamma \cup \Delta_{1} \cup \Delta_{2} \vdash \theta} \text { DisJCASES } \\
& \frac{\Gamma \vdash \phi \Longrightarrow \perp}{\Gamma \vdash \neg \phi} \text { NotIntro } \quad \frac{\Gamma \vdash \neg \phi}{\Gamma \vdash \phi \Longrightarrow \perp} \text { NotElim } \\
& \frac{\Gamma \vdash \psi}{\Gamma \backslash\{\phi\} \vdash \phi \Longrightarrow \psi} \text { Disch } \frac{\Gamma \vdash \phi \Longrightarrow \psi \quad \Delta \vdash \phi}{\Gamma \cup \Delta \vdash \psi} \mathrm{MP} \\
& \frac{\Gamma \vdash \phi}{\Gamma \theta \vdash \phi \theta} \operatorname{INST}_{\theta} \quad \frac{\Gamma \vdash \forall x . \phi}{\Gamma \vdash \phi[x \mapsto t]} \text { SPEC }_{t} \\
& \frac{\Gamma \vdash \exists x . \phi \quad \Delta \cup\{\phi[x \mapsto v]\} \vdash \psi}{\Gamma \cup \Delta \vdash \psi} \text { Choose }_{v}(v \text { not free in } \Gamma, \Delta \text { or } \psi)
\end{aligned}
$$

Preliminaries

$\{\phi\}$
$\vdash \phi$

Preliminaries

Clear separation of propositional and quantifier reasoning!

Preliminaries: Sequent Clause Form

(1) Eliminate conjunctions:

$$
\{\phi\} \vdash \phi
$$

(2) Eliminate disjunctions:

$$
\{\phi\} \vdash C_{i}
$$

(3) Dictionary: $i \mapsto\left(\left\{\phi, \neg l_{1}^{i}, \ldots, \neg l_{m_{i}}^{i}\right\} \vdash \perp, Q_{1} x_{1} \ldots Q_{n} x_{n}\right)$

Preliminaries: Sequent Clause Form

(1) Eliminate conjunctions:

$$
\{\phi\} \vdash C_{1} \wedge \cdots \wedge C_{k}
$$

(2) Eliminate disjunctions:

$$
\{\phi\} \vdash C_{i}
$$

(3) Dictionary: $i \mapsto\left(\left\{\phi, \neg l_{1}^{i}, \ldots, \neg l_{m_{i}}^{i}\right\} \vdash \perp, Q_{1} x_{1} \ldots Q_{n} x_{n}\right)$

Preliminaries: Sequent Clause Form

(1) Eliminate conjunctions:

$$
\begin{gathered}
\{\phi\} \vdash C_{1} \wedge \cdots \wedge C_{k} \\
\{\phi\} \vdash C_{1}, \ldots, \quad\{\phi\} \vdash C_{k}
\end{gathered}
$$

(2) Eliminate disjunctions:

$$
\{\phi\} \vdash C_{i}
$$

(3) Dictionary: $i \mapsto\left(\left\{\phi, \neg l_{1}^{i}, \ldots, \neg l_{m_{i}}^{i}\right\} \vdash \perp, Q_{1} x_{1} \ldots Q_{n} x_{n}\right)$

Preliminaries: Sequent Clause Form

(1) Eliminate conjunctions:

$$
\begin{gathered}
\{\phi\} \vdash C_{1} \wedge \cdots \wedge C_{k} \\
\{\phi\} \vdash C_{1}, \ldots, \quad\{\phi\} \vdash C_{k}
\end{gathered}
$$

(2) Eliminate disjunctions:

$$
\{\phi\} \vdash I_{1}^{i} \vee \cdots \vee I_{m_{i}}^{i}
$$

(3) Dictionary: $i \mapsto\left(\left\{\phi, \neg l_{1}^{i}, \ldots, \neg l_{m_{i}}^{i}\right\} \vdash \perp, Q_{1} x_{1} \ldots Q_{n} x_{n}\right)$

Preliminaries: Sequent Clause Form

(1) Eliminate conjunctions:

$$
\begin{gathered}
\{\phi\} \vdash C_{1} \wedge \cdots \wedge C_{k} \\
\{\phi\} \vdash C_{1}, \ldots, \quad\{\phi\} \vdash C_{k}
\end{gathered}
$$

(2) Eliminate disjunctions:

$$
\begin{gathered}
\{\phi\} \vdash l_{1}^{i} \vee \cdots \vee I_{m_{i}}^{i} \\
\left\{\phi, \neg l_{1}^{i}, \ldots, \neg l_{m_{i}}^{i}\right\} \vdash \perp
\end{gathered}
$$

(3) Dictionary: $i \mapsto\left(\left\{\phi, \neg l_{1}^{i}, \ldots, \neg l_{m_{i}}^{i}\right\} \vdash \perp, Q_{1} x_{1} \ldots Q_{n} x_{n}\right)$

General Proof Structure

Squolem's certificates of invalidity encode a directed acyclic graph. We perform a depth-first post-order traversal of this graph.

General Proof Structure

Squolem's certificates of invalidity encode a directed acyclic graph. We perform a depth-first post-order traversal of this graph.

General Proof Structure

Squolem's certificates of invalidity encode a directed acyclic graph. We perform a depth-first post-order traversal of this graph.

General Proof Structure

Squolem's certificates of invalidity encode a directed acyclic graph. We perform a depth-first post-order traversal of this graph.

General Proof Structure

Squolem's certificates of invalidity encode a directed acyclic graph. We perform a depth-first post-order traversal of this graph.

General Proof Structure

Squolem's certificates of invalidity encode a directed acyclic graph. We perform a depth-first post-order traversal of this graph.

General Proof Structure

Squolem's certificates of invalidity encode a directed acyclic graph. We perform a depth-first post-order traversal of this graph.

General Proof Structure

Squolem's certificates of invalidity encode a directed acyclic graph. We perform a depth-first post-order traversal of this graph.

General Proof Structure

Squolem's certificates of invalidity encode a directed acyclic graph. We perform a depth-first post-order traversal of this graph.

General Proof Structure

Squolem's certificates of invalidity encode a directed acyclic graph. We perform a depth-first post-order traversal of this graph.

General Proof Structure

Squolem's certificates of invalidity encode a directed acyclic graph. We perform a depth-first post-order traversal of this graph.

General Proof Structure

Squolem's certificates of invalidity encode a directed acyclic graph. We perform a depth-first post-order traversal of this graph.

General Proof Structure

Squolem's certificates of invalidity encode a directed acyclic graph. We perform a depth-first post-order traversal of this graph.

General Proof Structure

Squolem's certificates of invalidity encode a directed acyclic graph. We perform a depth-first post-order traversal of this graph.

Q-Resolution: Propositional Resolution

Q-resolution is propositional resolution followed by forall-reduction.

Propositional resolution for clauses in sequent form [AW09]:

$$
\frac{\stackrel{\Gamma \cup\{\neg v\} \vdash \perp}{\Gamma \vdash \neg v \Longrightarrow \perp} \text { DISCH }}{\frac{\frac{\Delta \cup\{v\} \vdash \perp}{\Delta \vdash v \Longrightarrow \perp} \text { Disch }}{\Delta \vdash \neg v} \text { NotInTRO }}
$$

Q-Resolution: Forall-Reduction (1)

Let x_{i} be the largest variable that occurs in $\left\{\phi, I_{1}, \ldots, I_{m}\right\} \vdash \perp$. We must perform forall-reduction if x_{i} is universal. Suppose the missing quantifier prefix is $Q_{1} x_{1} \ldots \forall x_{i} \ldots Q_{j} x_{j}$, with $j \geq i$.

Q-Resolution: Forall-Reduction (1)

Let x_{i} be the largest variable that occurs in $\left\{\phi, I_{1}, \ldots, I_{m}\right\} \vdash \perp$. We must perform forall-reduction if x_{i} is universal. Suppose the missing quantifier prefix is $Q_{1} x_{1} \ldots \forall x_{i} \ldots Q_{j} x_{j}$, with $j \geq i$.

- If $Q_{j}=\forall$, we derive

$$
\frac{\frac{\left\{\phi, I_{1}, \ldots, I_{m}\right\} \vdash \perp}{\left\{I_{1}, \ldots, I_{m}\right\} \vdash \phi \Longrightarrow \perp} \text { Disch }}{} \frac{\frac{\left\{\forall x_{j} \cdot \phi\right\} \vdash \forall x_{j} \cdot \phi}{\left\{\forall x_{j} \cdot \phi\right\} \vdash \phi} \text { Assume }^{\text {SPEC }_{x_{j}}}}{\text { MP }}
$$

Q-Resolution: Forall-Reduction (1)

Let x_{i} be the largest variable that occurs in $\left\{\phi, I_{1}, \ldots, I_{m}\right\} \vdash \perp$. We must perform forall-reduction if x_{i} is universal. Suppose the missing quantifier prefix is $Q_{1} x_{1} \ldots \forall x_{i} \ldots Q_{j} x_{j}$, with $j \geq i$.

- If $Q_{j}=\forall$, we derive

$$
\frac{\frac{\left\{\phi, I_{1}, \ldots, I_{m}\right\} \vdash \perp}{\left\{I_{1}, \ldots, I_{m}\right\} \vdash \phi \Longrightarrow \perp} \text { Disch }}{} \frac{\frac{\left\{\forall x_{j} \cdot \phi\right\} \vdash \forall x_{j} \cdot \phi}{\left\{\forall x_{j} \cdot \phi\right\} \vdash \phi} \text { Assume }^{\text {SPEC }_{x_{j}}}}{\left\{\forall x_{j} \cdot \phi, I_{1}, \ldots, I_{m}\right\} \vdash \perp} \mathrm{MP}
$$

- If $Q_{j}=\exists$, then necessarily $j>i$, and we derive

$$
\frac{\overline{\left\{\exists x_{j} \cdot \phi\right\} \vdash \exists x_{j} \cdot \phi} \text { Assume } \quad\left\{\phi, I_{1}, \ldots, I_{m}\right\} \vdash \perp}{\left\{\exists x_{j} \cdot \phi, I_{1}, \ldots, I_{m}\right\} \vdash \perp} \text { CHOOSE }_{x_{j}}
$$

Q-Resolution: Forall-Reduction (2)

Repeating this step for all missing quantifiers up to $Q_{i} x_{i}$, we arrive at $\left\{Q_{i} x_{i} \ldots Q_{j} x_{j} . \phi, I_{1}, \ldots, I_{m}\right\} \vdash \perp$.

Now x_{i} is bound in $Q_{i} x_{i} \ldots Q_{j} x_{j} . \phi$, and occurs free only in one of the literals I_{1}, \ldots, I_{m}. We instantiate x_{i} to $\neg \perp$ if it occurs positively, and to \perp if it occurs negatively.

In either case the literal becomes $\neg \perp$ and can be discharged.
We continue to forall-reduce the resulting clause to eliminate further universal variables if possible.

Q-Resolution: Example

Example (QBF)

$$
\exists x \forall y \exists z . \phi, \text { where } \phi=x \wedge(y \vee z) \wedge(y \vee \neg z)
$$

(1) Assume ϕ to obtain $\{\phi\} \vdash \phi$.

Q-Resolution: Example

Example (QBF)

$$
\exists x \forall y \exists z . \phi, \text { where } \phi=x \wedge(y \vee z) \wedge(y \vee \neg z)
$$

(1) Assume ϕ to obtain $\{\phi\} \vdash \phi$.
(2) Separate clause theorems:

1. $\{\phi\} \vdash x \quad$ 2. $\{\phi\} \vdash y \vee z \quad$ 3. $\{\phi\} \vdash y \vee \neg z$

Q-Resolution: Example

Example (QBF)

$$
\exists x \forall y \exists z . \phi, \text { where } \phi=x \wedge(y \vee z) \wedge(y \vee \neg z)
$$

(1) Assume ϕ to obtain $\{\phi\} \vdash \phi$.
(2) Separate clause theorems:

1. $\{\phi\} \vdash x \quad$ 2. $\{\phi\} \vdash y \vee z \quad$ 3. $\{\phi\} \vdash y \vee \neg z$
(3) Sequent form:
2. $\{\phi, \neg x\} \vdash \perp \quad$ 2. $\{\phi, \neg y, \neg z\} \vdash \perp \quad$ 3. $\{\phi, \neg y, z\} \vdash \perp$.

The missing quantifier prefix for each theorem is $\exists x \forall y \exists z$.

Q-Resolution: Example (cont.)

1. $\{\phi, \neg x\} \vdash \perp$ 2. $\{\phi, \neg y, \neg z\} \vdash \perp$ 3. $\{\phi, \neg y, z\} \vdash \perp \quad(\exists x \forall y \exists z)$
(4) Q-resolve theorems (2) and (3). Propositional resolution yields $\{\phi, \neg y\} \vdash \perp$. The resolvent's largest variable is y.

Q-Resolution: Example (cont.)

1. $\{\phi, \neg x\} \vdash \perp$ 2. $\{\phi, \neg y, \neg z\} \vdash \perp$ 3. $\{\phi, \neg y, z\} \vdash \perp \quad(\exists x \forall y \exists z)$
(9) Q-resolve theorems (2) and (3). Propositional resolution yields $\{\phi, \neg y\} \vdash \perp$. The resolvent's largest variable is y.
(5) Since y is universal, we perform forall-reduction. We introduce missing quantifiers $\exists z$ and $\forall y$, first deriving $\{\exists z . \phi, \neg y\} \vdash \perp$, and then $\{\forall y \exists z . \phi, \neg y\} \vdash \perp$.

Q-Resolution: Example (cont.)

1. $\{\phi, \neg x\} \vdash \perp$ 2. $\{\phi, \neg y, \neg z\} \vdash \perp$ 3. $\{\phi, \neg y, z\} \vdash \perp \quad(\exists x \forall y \exists z)$
(4) Q-resolve theorems (2) and (3). Propositional resolution yields $\{\phi, \neg y\} \vdash \perp$. The resolvent's largest variable is y.
(5) Since y is universal, we perform forall-reduction. We introduce missing quantifiers $\exists z$ and $\forall y$, first deriving $\{\exists z . \phi, \neg y\} \vdash \perp$, and then $\{\forall y \exists z . \phi, \neg y\} \vdash \perp$.
(0) Now we eliminate y by instantiating it to \perp, thereby obtaining $\{\forall y \exists z . \phi, \neg \perp\} \vdash \perp$. Discharging $\neg \perp$ yields $\{\forall y \exists z . \phi\} \vdash \perp$.

Q-Resolution: Example (cont.)

1. $\{\phi, \neg x\} \vdash \perp$ 2. $\{\phi, \neg y, \neg z\} \vdash \perp$ 3. $\{\phi, \neg y, z\} \vdash \perp \quad(\exists x \forall y \exists z)$
(4) Q-resolve theorems (2) and (3). Propositional resolution yields $\{\phi, \neg y\} \vdash \perp$. The resolvent's largest variable is y.
(5) Since y is universal, we perform forall-reduction. We introduce missing quantifiers $\exists z$ and $\forall y$, first deriving $\{\exists z . \phi, \neg y\} \vdash \perp$, and then $\{\forall y \exists z . \phi, \neg y\} \vdash \perp$.
(0) Now we eliminate y by instantiating it to \perp, thereby obtaining $\{\forall y \exists z . \phi, \neg \perp\} \vdash \perp$. Discharging $\neg \perp$ yields $\{\forall y \exists z . \phi\} \vdash \perp$.
(1) The next missing quantifier is $\exists x$, and x does not occur in the clause (except in ϕ). We finally arrive at $\{\exists x \forall y \exists z . \phi\} \vdash \perp$.

Run-Times

Evaluation on 69 invalid QBF problems from the 2005 fixed instance and 2006 preliminary QBF-Eval data sets
up to 131 alternating quantifiers, 24,562 variables, 35,189 clauses

Run-Times

Evaluation on 69 invalid QBF problems from the 2005 fixed instance and 2006 preliminary QBF-Eval data sets
up to 131 alternating quantifiers, 24,562 variables, 35,189 clauses

All problems are checked successfully!

- Average run-times: 60.2 s (de Bruijn), 2.1 s (name-carrying), 0.8 s (optimized name-carrying)
- 24.5 times faster (after opt.) than proof search with Squolem
- 1-2 orders of magnitude slower than stand-alone checking

Variable Binding and Substitution

$\forall x . \phi$ is syntactic sugar for $\forall(\lambda x . \phi)$ (likewise for $\exists x . \phi$). de Bruijn: $(\lambda x . \phi) x \rightarrow_{\beta} \phi[0 \mapsto x]$ name-carrying: $(\lambda x . \phi) x \rightarrow_{\beta} \phi$

HOL's name-carrying kernel is 28.7 times faster for QBF validation than the kernel that uses de Bruijn indices internally.

Variable Binding and Substitution

$\forall x . \phi$ is syntactic sugar for $\forall(\lambda x . \phi)$ (likewise for $\exists x . \phi$). de Bruijn: $(\lambda x . \phi) x \rightarrow_{\beta} \phi[0 \mapsto x]$ name-carrying: $(\lambda x . \phi) x \rightarrow_{\beta} \phi$

HOL's name-carrying kernel is 28.7 times faster for QBF validation than the kernel that uses de Bruijn indices internally.

Capture-avoiding substitution may have to rename bound variables away from the free variables in the body of a λ-abstraction.

We achieved a further speed-up of 2.6 by improving HOL4's implementation of capture-avoiding substitution to collect free variables only when they are actually needed for renaming.

Profiling

optimized n.-c.

Conclusions

Integration of a QBF solver with HOL4

(e) LCF-style proof checking for QBF invalidity is feasible.
(2) HOL4: http://hol.sourceforge.net/

Future Work

- Applications, case studies
- QBF validity
- Other ITPs/QBF solvers
- Different approaches (e.g., reflection)

Future Work

- Applications, case studies
- QBF validity
- Other ITPs/QBF solvers
- Different approaches (e.g., reflection)

Thank You:

