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Quantified Boolean Formulae

QBF = propositional logic + quantifiers over Boolean variables

Example (QBF)

∃x ∀y ∃z . x ∧ (y ∨ z) ∧ (y ∨ ¬z)

Applications in formal verification, adversarial planning, etc.

QBF is the canonical PSPACE-complete problem.
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Motivation

HOL4 is a popular interactive theorem prover. Interactive theorem
proving benefits from automation.

Integrate a QBF solver with HOL4. Check its results, LCF-style.

QBF solvers are complex software tools. We need a way to
validate their results.
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System Overview

Proof

HOL4

Translation satisfiable?

Squolem

QDIMACS

Model

Proof
validation

QBF φ

⊢ φ

φ ⊢ ⊥
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Related Work

Integration of automated provers with ITPs

SAT, SMT, FOL, HOL, . . .

Certificates for QBF solvers

Squolem: simple certificate format, based on Q-resolution
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Propositional Logic

Boolean variables: x, y, z, . . .

A literal is a possibly negated variable.

A clause is a disjunction of literals.

A propositional formula is in CNF iff it is a conjunction of
clauses.

Example (CNF)

x ∧ (y ∨ z) ∧ (y ∨ ¬z)
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Quantified Boolean Formulae

Definition (Quantified Boolean Formula)

A Quantified Boolean Formula (QBF) is of the form

Q1x1 . . . Qnxn. φ,

where n ≥ 0, each xi is a Boolean variable, each Qi is either ∀ or
∃, and φ is a propositional formula in CNF.

Example (QBF)

∃x ∀y ∃z . x ∧ (y ∨ z) ∧ (y ∨ ¬z)
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Quantified Boolean Formulae: Semantics

QBF semantics:

[[∀x . φ]] = [[φ[x 7→ >] ∧ φ[x 7→ ⊥]]]

[[∃x . φ]] = [[φ[x 7→ >] ∨ φ[x 7→ ⊥]]]

Infeasible for QBF of interest!

Squolem establishes invalidity of QBF using an inference rule
known as Q-resolution.
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Q-Resolution

Propositional resolution:

φ ∨ x ψ ∨ ¬x

φ ∨ ψ

Forall-reduction:

∀x . φ ∨ (¬)x
x 6∈ φ

φ

Definition (Q-resolution)

Let φ and ψ be two clauses of a QBF that can be resolved. Their
resolvent’s forall-reduct is called the Q-resolvent of φ and ψ.
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Q-Resolution: Example

Theorem (BKF95)

Q-resolution is sound and refutation-complete for QBF in prenex
form.

Example

∃x ∀y ∃z . x ∧ (y ∨ z) ∧ (y ∨ ¬z)
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Theorem (BKF95)

Q-resolution is sound and refutation-complete for QBF in prenex
form.

Example

∃x ∀y ∃z . x ∧ (y ∨ z) ∧ (y ∨ ¬z)
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Q-Resolution: Example

Theorem (BKF95)

Q-resolution is sound and refutation-complete for QBF in prenex
form.

Example

∃x ∀y ∃z . x ∧ (y ∨ z) ∧ (y ∨ ¬z)

∃x ∀y . y

∃x . ⊥
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Q-Resolution: Example

Theorem (BKF95)

Q-resolution is sound and refutation-complete for QBF in prenex
form.

Example

∃x ∀y ∃z . x ∧ (y ∨ z) ∧ (y ∨ ¬z)

∃x ∀y . y

⊥
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LCF-style Theorem Proving

Theorems are implemented as an abstract data type.

There is a fixed number of constructor functions—one
for each axiom schema/inference rule of HOL.

More complicated proof procedures must be
implemented by composing these functions.

The trusted code base consists only of the theorem ADT.
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Selected HOL4 Inference Rules

Assume{φ} ` φ
Γ ` φ ∧ ψ

Conj1
Γ ` φ

Γ ` φ ∧ ψ
Conj2

Γ ` ψ
Γ ` φ ∨ ψ ∆1 ∪ {φ} ` θ ∆2 ∪ {ψ} ` θ

DisjCases
Γ ∪∆1 ∪∆2 ` θ

Γ ` φ =⇒ ⊥
NotIntro

Γ ` ¬φ
Γ ` ¬φ

NotElim
Γ ` φ =⇒ ⊥

Γ ` ψ
Disch

Γ \ {φ} ` φ =⇒ ψ

Γ ` φ =⇒ ψ ∆ ` φ
MP

Γ ∪∆ ` ψ
Γ ` φ

InstθΓ θ ` φ θ
Γ ` ∀x . φ

Spect
Γ ` φ[x 7→ t]

Γ ` ∃x . φ ∆ ∪ {φ[x 7→ v ]} ` ψ
Choosev (v not free in Γ, ∆ or ψ)

Γ ∪∆ ` ψ
Tjark Weber Validating QBF Invalidity in HOL4
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Preliminaries

Q1x1 . . . Qnxn. φ

{φ} ` φ

⊥

Clear separation of propositional and quantifier reasoning!
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Preliminaries: Sequent Clause Form

1 Eliminate conjunctions:

{φ} ` φ

{φ} ` C1, . . . , {φ} ` Ck

2 Eliminate disjunctions:

l imi
{φ} ` Ci l

i
mi

{φ,¬l i1, . . . ,¬l imi
} ` ⊥

3 Dictionary: i 7→ ({φ,¬l i1, . . . ,¬l imi
} ` ⊥, Q1x1 . . .Qnxn)
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General Proof Structure

Squolem’s certificates of invalidity encode a directed acyclic graph.
We perform a depth-first post-order traversal of this graph.
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Q-Resolution: Propositional Resolution

Q-resolution is propositional resolution followed by forall-reduction.

Propositional resolution for clauses in sequent form [AW09]:

Γ ∪ {¬v} ` ⊥
Disch

Γ ` ¬v =⇒ ⊥

∆ ∪ {v} ` ⊥
Disch

∆ ` v =⇒ ⊥
NotIntro

∆ ` ¬v
MP

Γ ∪∆ ` ⊥
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Q-Resolution: Forall-Reduction (1)

Let xi be the largest variable that occurs in {φ, l1, . . . , lm} ` ⊥.
We must perform forall-reduction if xi is universal. Suppose the
missing quantifier prefix is Q1x1 . . . ∀xi . . . Qjxj , with j ≥ i .

If Qj = ∀, we derive

{φ, l1, . . . , lm} ` ⊥
Disch{l1, . . . , lm} ` φ =⇒ ⊥

Assume{∀xj . φ} ` ∀xj . φ Specxj{∀xj . φ} ` φ
MP{∀xj . φ, l1, . . . , lm} ` ⊥

If Qj = ∃, then necessarily j > i , and we derive

Assume{∃xj . φ} ` ∃xj . φ {φ, l1, . . . , lm} ` ⊥
Choosexj{∃xj . φ, l1, . . . , lm} ` ⊥
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Q-Resolution: Forall-Reduction (2)

Repeating this step for all missing quantifiers up to Qixi , we arrive
at {Qixi . . . Qjxj . φ, l1, . . . , lm} ` ⊥.

Now xi is bound in Qixi . . . Qjxj . φ, and occurs free only in one of
the literals l1, . . . , lm. We instantiate xi to ¬⊥ if it occurs
positively, and to ⊥ if it occurs negatively.

In either case the literal becomes ¬⊥ and can be discharged.

We continue to forall-reduce the resulting clause to eliminate
further universal variables if possible.
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Q-Resolution: Example

Example (QBF)

∃x ∀y ∃z . φ, where φ = x ∧ (y ∨ z) ∧ (y ∨ ¬z)

1 Assume φ to obtain {φ} ` φ.

2 Separate clause theorems:
1. {φ} ` x 2. {φ} ` y ∨ z 3. {φ} ` y ∨ ¬z

3 Sequent form:
1. {φ,¬x} ` ⊥ 2. {φ,¬y ,¬z} ` ⊥ 3. {φ,¬y , z} ` ⊥.
The missing quantifier prefix for each theorem is ∃x ∀y ∃z .
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Q-Resolution: Example (cont.)

1. {φ,¬x} ` ⊥ 2. {φ,¬y ,¬z} ` ⊥ 3. {φ,¬y , z} ` ⊥ (∃x ∀y ∃z)

4 Q-resolve theorems (2) and (3). Propositional resolution
yields {φ,¬y} ` ⊥. The resolvent’s largest variable is y .

5 Since y is universal, we perform forall-reduction. We
introduce missing quantifiers ∃z and ∀y , first deriving
{∃z . φ, ¬y} ` ⊥, and then {∀y∃z . φ, ¬y} ` ⊥.

6 Now we eliminate y by instantiating it to ⊥, thereby obtaining
{∀y∃z . φ, ¬⊥} ` ⊥. Discharging ¬⊥ yields {∀y∃z . φ} ` ⊥.

7 The next missing quantifier is ∃x , and x does not occur in the
clause (except in φ). We finally arrive at {∃x∀y∃z . φ} ` ⊥.
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Q-Resolution: Example (cont.)

1. {φ,¬x} ` ⊥ 2. {φ,¬y ,¬z} ` ⊥ 3. {φ,¬y , z} ` ⊥ (∃x ∀y ∃z)

4 Q-resolve theorems (2) and (3). Propositional resolution
yields {φ,¬y} ` ⊥. The resolvent’s largest variable is y .

5 Since y is universal, we perform forall-reduction. We
introduce missing quantifiers ∃z and ∀y , first deriving
{∃z . φ, ¬y} ` ⊥, and then {∀y∃z . φ, ¬y} ` ⊥.

6 Now we eliminate y by instantiating it to ⊥, thereby obtaining
{∀y∃z . φ, ¬⊥} ` ⊥. Discharging ¬⊥ yields {∀y∃z . φ} ` ⊥.

7 The next missing quantifier is ∃x , and x does not occur in the
clause (except in φ). We finally arrive at {∃x∀y∃z . φ} ` ⊥.
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Run-Times

Evaluation on 69 invalid QBF problems from the 2005 fixed
instance and 2006 preliminary QBF-Eval data sets

up to 131 alternating quantifiers, 24,562 variables, 35,189 clauses

All problems are checked successfully!

Average run-times: 60.2 s (de Bruijn), 2.1 s (name-carrying),
0.8 s (optimized name-carrying)

24.5 times faster than proof search with Squolem

1-2 orders of magnitude slower than stand-alone checking
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Variable Binding and Substitution

∀x . φ is syntactic sugar for ∀(λx . φ) (likewise for ∃x . φ).

de Bruijn: (λx . φ) x →β φ[0 7→ x ] name-carrying: (λx . φ) x →β φ

HOL’s name-carrying kernel is 28.7 times faster for QBF validation
than the kernel that uses de Bruijn indices internally.

Capture-avoiding substitution may have to rename bound variables
away from the free variables in the body of a λ-abstraction.

We achieved a further speed-up of 2.6 by improving HOL4’s
implementation of capture-avoiding substitution to collect free
variables only when they are actually needed for renaming.
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Profiling

0 20 40 60 80 100

other

resolve

elim

bind∀

bind∃

de Bruijn

0 20 40 60 80 100

other

resolve

elim

bind∀

bind∃

name-carrying

0 20 40 60 80 100

other

resolve

elim

bind∀

bind∃

optimized n.-c.

Tjark Weber Validating QBF Invalidity in HOL4



Introduction
Background, Theory

Validating Squolem’s Certificates in HOL4
Evaluation

Conclusions

Conclusions
Future Work

Conclusions

Integration of a QBF solver with HOL4

LCF-style proof checking for QBF invalidity is feasible.

HOL4: http://hol.sourceforge.net/
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Applications, case studies

QBF validity

Other ITPs/QBF solvers

Different approaches (e.g., reflection)
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