Validating QBF Invalidity in HOL4

Tjark Weber

ARG Lunch

1 June, 2010

Background, Theory Validating Squolem's Certificates in HOL4 Evaluation Conclusions Quantified Boolean Formulae Motivation System Overview Related Work

Quantified Boolean Formulae

QBF = propositional logic + quantifiers over Boolean variables

Example (QBF)

$$\exists x \,\forall y \,\exists z. \, x \wedge (y \vee z) \wedge (y \vee \neg z)$$

- Applications in formal verification, adversarial planning, etc.
- QBF is the canonical PSPACE-complete problem.

Background, Theory Validating Squolem's Certificates in HOL4 Evaluation Conclusions

Quantified Boolean Formula Motivation System Overview Related Work

Motivation

HOL4 is a popular interactive theorem prover. Interactive theorem proving benefits from automation.

QBF solvers are complex software tools. We need a way to validate their results.

Background, Theory Validating Squolem's Certificates in HOL4 Evaluation Conclusions Quantified Boolean Formula Motivation System Overview Related Work

Motivation

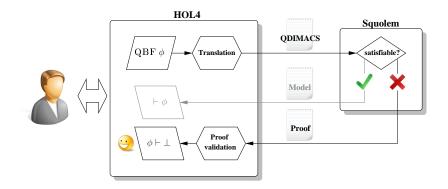
HOL4 is a popular interactive theorem prover. Interactive theorem proving benefits from automation.

Integrate a QBF solver with HOL4. Check its results, LCF-style.

QBF solvers are complex software tools. We need a way to validate their results.

Background, Theory Validating Squolem's Certificates in HOL4 Evaluation Conclusions Quantified Boolean Formulae Motivation System Overview Related Work

System Overview



Background, Theory Validating Squolem's Certificates in HOL4 Evaluation Conclusions Quantified Boolean Formulae Motivation System Overview Related Work

Related Work

Integration of automated provers with ITPs

• SAT, SMT, FOL, HOL, ...

Certificates for QBF solvers

• Squolem: simple certificate format, based on Q-resolution

Propositional Logic Quantified Boolean Formulae Q-Resolution LCF-style Theorem Proving

Propositional Logic

- Boolean variables: x, y, z, ...
- A literal is a possibly negated variable.
- A clause is a disjunction of literals.
- A propositional formula is in CNF iff it is a conjunction of clauses.

Example (CNF)

$$x \wedge (y \vee z) \wedge (y \vee \neg z)$$

Propositional Logic Quantified Boolean Formulae Q-Resolution LCF-style Theorem Proving

Quantified Boolean Formulae

Definition (Quantified Boolean Formula)

A Quantified Boolean Formula (QBF) is of the form

 $Q_1 x_1 \ldots Q_n x_n \phi,$

where $n \ge 0$, each x_i is a Boolean variable, each Q_i is either \forall or \exists , and ϕ is a propositional formula in CNF.

Example (QBF)

$$\exists x \,\forall y \,\exists z. \, x \wedge (y \vee z) \wedge (y \vee \neg z)$$

Propositional Logic Quantified Boolean Formulae Q-Resolution LCF-style Theorem Proving

Quantified Boolean Formulae: Semantics

QBF semantics:

•
$$\llbracket \forall x. \phi \rrbracket = \llbracket \phi[x \mapsto \top] \land \phi[x \mapsto \bot] \rrbracket$$

•
$$\llbracket \exists x. \phi \rrbracket = \llbracket \phi[x \mapsto \top] \lor \phi[x \mapsto \bot] \rrbracket$$

Infeasible for QBF of interest!

Squolem establishes invalidity of QBF using an inference rule known as Q-resolution.

Propositional Logic Quantified Boolean Formulae **Q-Resolution** LCF-style Theorem Proving

Q-Resolution

Propositional resolution:

$$\frac{\phi \lor x \qquad \psi \lor \neg x}{\phi \lor \psi}$$

Forall-reduction:

$$\frac{\forall x. \phi \lor (\neg) x}{\phi} \quad x \notin \phi$$

Definition (Q-resolution)

Let ϕ and ψ be two clauses of a QBF that can be resolved. Their resolvent's forall-reduct is called the Q-resolvent of ϕ and ψ .

Propositional Logic Quantified Boolean Formulae **Q-Resolution** LCF-style Theorem Proving

Q-Resolution: Example

Theorem (BKF95)

Q-resolution is sound and refutation-complete for *QBF* in prenex form.

$$\exists x \,\forall y \,\exists z. \, x \wedge (y \vee z) \wedge (y \vee \neg z)$$

Propositional Logic Quantified Boolean Formulae **Q-Resolution** LCF-style Theorem Proving

Q-Resolution: Example

Theorem (BKF95)

Q-resolution is sound and refutation-complete for *QBF* in prenex form.

$$\frac{\exists x \,\forall y \,\exists z. \, x \wedge (y \lor z) \wedge (y \lor \neg z)}{\exists x \,\forall y \,\exists z. \, y}$$

Propositional Logic Quantified Boolean Formulae **Q-Resolution** LCF-style Theorem Proving

Q-Resolution: Example

Theorem (BKF95)

Q-resolution is sound and refutation-complete for *QBF* in prenex form.

$$\frac{\exists x \,\forall y \,\exists z. \, x \wedge (y \lor z) \wedge (y \lor \neg z)}{\exists x \,\forall y. \, y}$$

Propositional Logic Quantified Boolean Formulae **Q-Resolution** LCF-style Theorem Proving

Q-Resolution: Example

Theorem (BKF95)

Q-resolution is sound and refutation-complete for *QBF* in prenex form.

$$\exists x \,\forall y \,\exists z. \, x \wedge (y \lor z) \wedge (y \lor \neg z) \\ \exists x \,\forall y. \, y \\ \exists x. \, \bot$$

Propositional Logic Quantified Boolean Formulae **Q-Resolution** LCF-style Theorem Proving

Q-Resolution: Example

Theorem (BKF95)

Q-resolution is sound and refutation-complete for *QBF* in prenex form.

$$\exists x \,\forall y \,\exists z. \, x \wedge (y \vee z) \wedge (y \vee \neg z) \\ \exists x \,\forall y. \, y \\ \bot$$

Propositional Logic Quantified Boolean Formulae Q-Resolution LCF-style Theorem Proving

LCF-style Theorem Proving

Theorems are implemented as an abstract data type.

There is a fixed number of constructor functions—one for each axiom schema/inference rule of HOL.

More complicated proof procedures must be implemented by composing these functions.

Propositional Logic Quantified Boolean Formulae Q-Resolution LCF-style Theorem Proving

LCF-style Theorem Proving

Theorems are implemented as an abstract data type.

There is a fixed number of constructor functions—one for each axiom schema/inference rule of HOL.

More complicated proof procedures must be implemented by composing these functions.

The trusted code base consists only of the theorem ADT.

Propositional Logic Quantified Boolean Formulae Q-Resolution LCF-style Theorem Proving

Selected HOL4 Inference Rules

$$\begin{array}{c} \hline \{\phi\} \vdash \phi & \text{Assume} & \frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \phi} & \text{Conj1} & \frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \psi} & \text{Conj2} \\ \\ \hline \frac{\Gamma \vdash \phi \lor \psi & \Delta_1 \cup \{\phi\} \vdash \theta & \Delta_2 \cup \{\psi\} \vdash \theta}{\Gamma \cup \Delta_1 \cup \Delta_2 \vdash \theta} & \text{DisjCases} \\ \hline \frac{\Gamma \vdash \phi \Longrightarrow \bot}{\Gamma \vdash \neg \phi} & \text{NotIntro} & \frac{\Gamma \vdash \neg \phi}{\Gamma \vdash \phi \Longrightarrow \bot} & \text{NotElim} \\ \\ \hline \frac{\Gamma \vdash \psi}{\Gamma \setminus \{\phi\} \vdash \phi \Longrightarrow \psi} & \text{Disch} & \frac{\Gamma \vdash \phi \Longrightarrow \psi & \Delta \vdash \phi}{\Gamma \cup \Delta \vdash \psi} & \text{MP} \\ \hline \frac{\Gamma \vdash \phi}{\Gamma \theta \vdash \phi \theta} & \text{Inst}_{\theta} & \frac{\Gamma \vdash \forall x. \phi}{\Gamma \vdash \phi[x \mapsto t]} & \text{Spec}_{t} \\ \hline \Gamma \vdash \exists x. \phi & \Delta \cup \{\phi[x \mapsto v]\} \vdash \psi \\ \hline \Gamma \cup \Delta \vdash \psi & \text{Choose}_{v} \text{ (v not free in } \Gamma, \Delta \text{ or } \psi) \end{array} \end{array}$$

Preliminaries General Proof Structure Q-Resolution

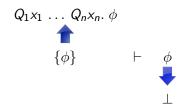
Preliminaries

 $\{\phi\} \qquad \qquad \vdash \quad \phi$

Tjark Weber Validating QBF Invalidity in HOL4

Preliminaries General Proof Structure Q-Resolution

Preliminaries



Clear separation of propositional and quantifier reasoning!

Preliminaries General Proof Structure Q-Resolution

Preliminaries: Sequent Clause Form

Eliminate conjunctions:

 $\{\phi\}\vdash\phi$

eliminate disjunctions:

$$\{\phi\} \vdash C_i$$

3 Dictionary: $i \mapsto (\{\phi, \neg l_1^i, \ldots, \neg l_{m_i}^i\} \vdash \bot, Q_1 x_1 \ldots Q_n x_n)$

Preliminaries General Proof Structure Q-Resolution

Preliminaries: Sequent Clause Form

Eliminate conjunctions:

 $\{\phi\} \vdash C_1 \land \cdots \land C_k$

eliminate disjunctions:

$$\{\phi\} \vdash C_i$$

3 Dictionary: $i \mapsto (\{\phi, \neg l_1^i, \ldots, \neg l_{m_i}^i\} \vdash \bot, Q_1 x_1 \ldots Q_n x_n)$

Preliminaries General Proof Structure Q-Resolution

Preliminaries: Sequent Clause Form

Eliminate conjunctions:

$$\{\phi\} \vdash C_1 \land \cdots \land C_k$$
$$\{\phi\} \vdash C_1, \ \ldots, \ \{\phi\} \vdash C_k$$

eliminate disjunctions:

 $\{\phi\} \vdash C_i$

3 Dictionary:
$$i \mapsto (\{\phi, \neg l_1^i, \ldots, \neg l_{m_i}^i\} \vdash \bot, Q_1 x_1 \ldots Q_n x_n)$$

Preliminaries General Proof Structure Q-Resolution

Preliminaries: Sequent Clause Form

Eliminate conjunctions:

$$\{\phi\} \vdash C_1 \land \cdots \land C_k$$
$$\{\phi\} \vdash C_1, \ \ldots, \ \{\phi\} \vdash C_k$$

eliminate disjunctions:

$$\{\phi\} \vdash l_1^i \lor \cdots \lor l_{m_i}^i$$

Solutionary: $i \mapsto (\{\phi, \neg l_1^i, \ldots, \neg l_{m_i}^i\} \vdash \bot, Q_1 x_1 \ldots Q_n x_n)$

Preliminaries General Proof Structure Q-Resolution

Preliminaries: Sequent Clause Form

Eliminate conjunctions:

$$\{\phi\} \vdash C_1 \land \cdots \land C_k$$
$$\{\phi\} \vdash C_1, \ \ldots, \ \{\phi\} \vdash C_k$$

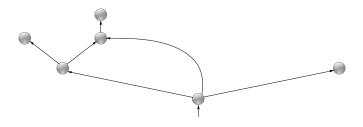
eliminate disjunctions:

$$\{\phi\} \vdash l_1^i \lor \cdots \lor l_{m_i}^i$$
$$\{\phi, \neg l_1^i, \ldots, \neg l_{m_i}^i\} \vdash \bot$$

3 Dictionary: $i \mapsto (\{\phi, \neg l_1^i, \ldots, \neg l_{m_i}^i\} \vdash \bot, Q_1 x_1 \ldots Q_n x_n)$

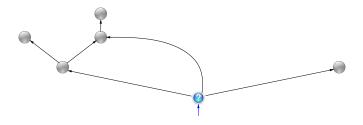
Preliminaries General Proof Structure Q-Resolution

General Proof Structure



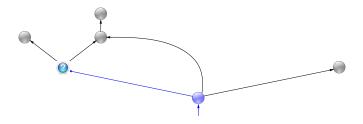
Preliminaries General Proof Structure Q-Resolution

General Proof Structure



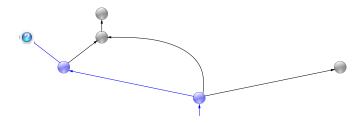
Preliminaries General Proof Structure Q-Resolution

General Proof Structure



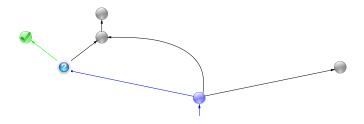
Preliminaries General Proof Structure Q-Resolution

General Proof Structure



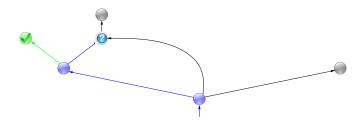
Preliminaries General Proof Structure Q-Resolution

General Proof Structure



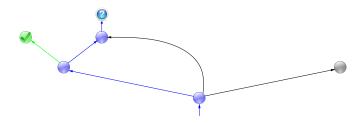
Preliminaries General Proof Structure Q-Resolution

General Proof Structure



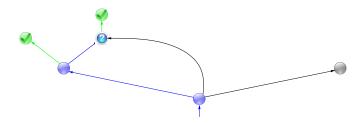
Preliminaries General Proof Structure Q-Resolution

General Proof Structure



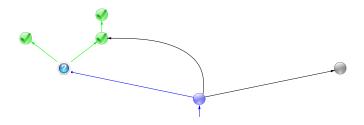
Preliminaries General Proof Structure Q-Resolution

General Proof Structure



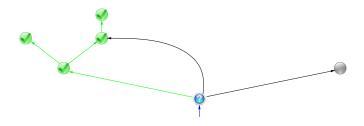
Preliminaries General Proof Structure Q-Resolution

General Proof Structure



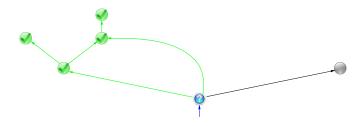
Preliminaries General Proof Structure Q-Resolution

General Proof Structure



Preliminaries General Proof Structure Q-Resolution

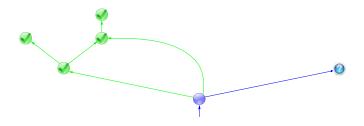
General Proof Structure



Preliminaries General Proof Structure Q-Resolution

General Proof Structure

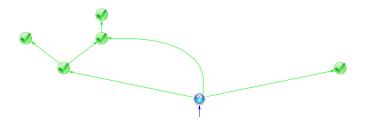
Squolem's certificates of invalidity encode a directed acyclic graph. We perform a depth-first post-order traversal of this graph.



Preliminaries General Proof Structure Q-Resolution

General Proof Structure

Squolem's certificates of invalidity encode a directed acyclic graph. We perform a depth-first post-order traversal of this graph.



Preliminaries General Proof Structure Q-Resolution

General Proof Structure

Squolem's certificates of invalidity encode a directed acyclic graph. We perform a depth-first post-order traversal of this graph.

Preliminaries General Proof Structure **Q-Resolution**

Q-Resolution: Propositional Resolution

Q-resolution is propositional resolution followed by forall-reduction.

Propositional resolution for clauses in sequent form [AW09]:

$$\frac{\begin{array}{c} \Gamma \cup \{\neg v\} \vdash \bot \\ \hline \Gamma \vdash \neg v \implies \bot \end{array} DISCH \\ \hline \begin{array}{c} \Delta \cup \{v\} \vdash \bot \\ \hline \Delta \vdash v \implies \bot \\ \hline \Delta \vdash \neg v \\ \hline \end{array} DISCH \\ \hline \begin{array}{c} \Delta \vdash \neg v \\ \hline \end{array} DISCH \\ \hline \end{array} DISCH \\ \hline \end{array} DISCH \\ \hline \end{array}$$

Preliminaries General Proof Structure Q-Resolution

Q-Resolution: Forall-Reduction (1)

Let x_i be the largest variable that occurs in $\{\phi, l_1, \ldots, l_m\} \vdash \bot$. We must perform forall-reduction if x_i is universal. Suppose the missing quantifier prefix is $Q_1x_1 \ldots \forall x_i \ldots Q_jx_j$, with $j \ge i$.

Preliminaries General Proof Structure Q-Resolution

Q-Resolution: Forall-Reduction (1)

Let x_i be the largest variable that occurs in $\{\phi, I_1, \ldots, I_m\} \vdash \bot$. We must perform forall-reduction if x_i is universal. Suppose the missing quantifier prefix is $Q_1x_1 \ldots \forall x_i \ldots Q_ix_j$, with $j \ge i$.

• If $Q_j = \forall$, we derive

$$\frac{\{\phi, l_1, \dots, l_m\} \vdash \bot}{\{l_1, \dots, l_m\} \vdash \phi \implies \bot} \operatorname{DISCH} \frac{\overline{\{\forall x_j, \phi\} \vdash \forall x_j, \phi\}}}{\{\forall x_j, \phi\} \vdash \phi} \operatorname{Assume}_{\{\forall x_j, \phi\} \vdash \phi} \operatorname{MP}$$

Preliminaries General Proof Structure **Q-Resolution**

Q-Resolution: Forall-Reduction (1)

Let x_i be the largest variable that occurs in $\{\phi, I_1, \ldots, I_m\} \vdash \bot$. We must perform forall-reduction if x_i is universal. Suppose the missing quantifier prefix is $Q_1x_1 \ldots \forall x_i \ldots Q_jx_j$, with $j \ge i$.

• If $Q_j = \forall$, we derive

$$\frac{\{\phi, l_1, \dots, l_m\} \vdash \bot}{\{l_1, \dots, l_m\} \vdash \phi \implies \bot} \operatorname{DISCH} \quad \frac{\overline{\{\forall x_j, \phi\} \vdash \forall x_j, \phi}}{\{\forall x_j, \phi\} \vdash \phi} \operatorname{Spec}_{x_j} \\ \overline{\{\forall x_j, \phi, l_1, \dots, l_m\} \vdash \bot} \operatorname{MP}$$

• If $Q_j = \exists$, then necessarily j > i, and we derive

$$\frac{\overline{\{\exists x_j, \phi\} \vdash \exists x_j, \phi} \text{ Assume } \{\phi, l_1, \dots, l_m\} \vdash \bot}{\{\exists x_j, \phi, l_1, \dots, l_m\} \vdash \bot} \text{ Choose}_{x_j}$$

Preliminaries General Proof Structure **Q-Resolution**

Q-Resolution: Forall-Reduction (2)

Repeating this step for all missing quantifiers up to $Q_i x_i$, we arrive at $\{Q_i x_i \dots Q_j x_j, \phi, l_1, \dots, l_m\} \vdash \bot$.

Now x_i is bound in $Q_i x_i \ldots Q_j x_j . \phi$, and occurs free only in one of the literals l_1, \ldots, l_m . We instantiate x_i to $\neg \bot$ if it occurs positively, and to \bot if it occurs negatively.

In either case the literal becomes $\neg \bot$ and can be discharged.

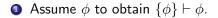
We continue to forall-reduce the resulting clause to eliminate further universal variables if possible.

Preliminaries General Proof Structure Q-Resolution

Q-Resolution: Example

Example (QBF)

$$\exists x \forall y \exists z. \phi$$
, where $\phi = x \land (y \lor z) \land (y \lor \neg z)$



Preliminaries General Proof Structure Q-Resolution

Q-Resolution: Example

Example (QBF)

$$\exists x \forall y \exists z. \phi$$
, where $\phi = x \land (y \lor z) \land (y \lor \neg z)$

- **1** Assume ϕ to obtain $\{\phi\} \vdash \phi$.
- Separate clause theorems: 1. $\{\phi\} \vdash x$ 2. $\{\phi\} \vdash y \lor z$ 3. $\{\phi\} \vdash y \lor \neg z$

Preliminaries General Proof Structure **Q-Resolution**

Q-Resolution: Example

Example (QBF)

$$\exists x \forall y \exists z. \phi$$
, where $\phi = x \land (y \lor z) \land (y \lor \neg z)$

- **1** Assume ϕ to obtain $\{\phi\} \vdash \phi$.
- Separate clause theorems: 1. $\{\phi\} \vdash x$ 2. $\{\phi\} \vdash y \lor z$ 3. $\{\phi\} \vdash y \lor \neg z$
- Sequent form:
 1. {φ, ¬x} ⊢ ⊥ 2. {φ, ¬y, ¬z} ⊢ ⊥ 3. {φ, ¬y, z} ⊢ ⊥.
 The missing quantifier prefix for each theorem is ∃x ∀y ∃z.

Preliminaries General Proof Structure Q-Resolution

- 1. $\{\phi, \neg x\} \vdash \bot$ 2. $\{\phi, \neg y, \neg z\} \vdash \bot$ 3. $\{\phi, \neg y, z\} \vdash \bot$ $(\exists x \forall y \exists z)$
 - Q-resolve theorems (2) and (3). Propositional resolution yields {φ, ¬y} ⊢ ⊥. The resolvent's largest variable is y.

Preliminaries General Proof Structure Q-Resolution

- 1. $\{\phi, \neg x\} \vdash \bot$ 2. $\{\phi, \neg y, \neg z\} \vdash \bot$ 3. $\{\phi, \neg y, z\} \vdash \bot$ $(\exists x \forall y \exists z)$
 - Q-resolve theorems (2) and (3). Propositional resolution yields {φ, ¬y} ⊢ ⊥. The resolvent's largest variable is y.
 - Since y is universal, we perform forall-reduction. We introduce missing quantifiers ∃z and ∀y, first deriving {∃z. φ, ¬y} ⊢ ⊥, and then {∀y∃z. φ, ¬y} ⊢ ⊥.

Preliminaries General Proof Structure Q-Resolution

- 1. $\{\phi, \neg x\} \vdash \bot$ 2. $\{\phi, \neg y, \neg z\} \vdash \bot$ 3. $\{\phi, \neg y, z\} \vdash \bot$ $(\exists x \forall y \exists z)$
 - Q-resolve theorems (2) and (3). Propositional resolution yields {φ, ¬y} ⊢ ⊥. The resolvent's largest variable is y.
 - Since y is universal, we perform forall-reduction. We introduce missing quantifiers ∃z and ∀y, first deriving {∃z. φ, ¬y} ⊢ ⊥, and then {∀y∃z. φ, ¬y} ⊢ ⊥.
 - Now we eliminate y by instantiating it to \bot , thereby obtaining $\{\forall y \exists z. \phi, \neg \bot\} \vdash \bot$. Discharging $\neg \bot$ yields $\{\forall y \exists z. \phi\} \vdash \bot$.

Preliminaries General Proof Structure Q-Resolution

- 1. $\{\phi, \neg x\} \vdash \bot$ 2. $\{\phi, \neg y, \neg z\} \vdash \bot$ 3. $\{\phi, \neg y, z\} \vdash \bot$ $(\exists x \forall y \exists z)$
 - Q-resolve theorems (2) and (3). Propositional resolution yields {φ, ¬y} ⊢ ⊥. The resolvent's largest variable is y.
 - Since y is universal, we perform forall-reduction. We introduce missing quantifiers ∃z and ∀y, first deriving {∃z. φ, ¬y} ⊢ ⊥, and then {∀y∃z. φ, ¬y} ⊢ ⊥.
 - Now we eliminate y by instantiating it to \bot , thereby obtaining $\{\forall y \exists z. \phi, \neg \bot\} \vdash \bot$. Discharging $\neg \bot$ yields $\{\forall y \exists z. \phi\} \vdash \bot$.
 - The next missing quantifier is $\exists x$, and x does not occur in the clause (except in ϕ). We finally arrive at $\{\exists x \forall y \exists z. \phi\} \vdash \bot$.

Run-Times

Run-Times Variable Binding and Substitution Profiling

Evaluation on 69 invalid QBF problems from the 2005 fixed instance and 2006 preliminary QBF-Eval data sets

up to 131 alternating quantifiers, 24,562 variables, 35,189 clauses

All problems are checked successfully!

- Average run-times: 60.2 s (de Bruijn), 2.1 s (name-carrying), 0.8 s (optimized name-carrying)
- 24.5 times faster than proof search with Squolem
- 1-2 orders of magnitude slower than stand-alone checking

Run-Times Variable Binding and Substitution Profiling

Variable Binding and Substitution

 $\forall x. \phi$ is syntactic sugar for $\forall (\lambda x. \phi)$ (likewise for $\exists x. \phi$).

de Bruijn: $(\lambda x. \phi) x \rightarrow_{\beta} \phi[0 \mapsto x]$ name-carrying: $(\lambda x. \phi) x \rightarrow_{\beta} \phi$

HOL's name-carrying kernel is 28.7 times faster for QBF validation than the kernel that uses de Bruijn indices internally.

Run-Times Variable Binding and Substitution Profiling

Variable Binding and Substitution

 $\forall x. \phi$ is syntactic sugar for $\forall (\lambda x. \phi)$ (likewise for $\exists x. \phi$).

de Bruijn: $(\lambda x. \phi) x \rightarrow_{\beta} \phi[0 \mapsto x]$ name-carrying: $(\lambda x. \phi) x \rightarrow_{\beta} \phi$

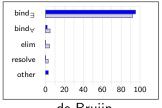
HOL's name-carrying kernel is 28.7 times faster for QBF validation than the kernel that uses de Bruijn indices internally.

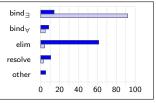
Capture-avoiding substitution may have to rename bound variables away from the free variables in the body of a λ -abstraction.

We achieved a further speed-up of 2.6 by improving HOL4's implementation of capture-avoiding substitution to collect free variables only when they are actually needed for renaming.

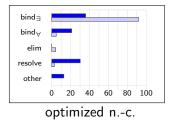
Run-Times Variable Binding and Substitution **Profiling**

Profiling





name-carrying



Conclusions Future Work

Conclusions

Integration of a QBF solver with HOL4

9 LCF-style proof checking for QBF invalidity is feasible.

. HOL4: ● http://hol.sourceforge.net/

Conclusions Future Work

Future Work

- Applications, case studies
- QBF validity
- Other ITPs/QBF solvers
- Different approaches (e.g., reflection)

Conclusions Future Work

Future Work

- Applications, case studies
- QBF validity
- Other ITPs/QBF solvers
- Different approaches (e.g., reflection)

Thank You!

