Using a SAT Solver as a Fast Decision Procedure for Propositional Logic in an LCF-style Theorem Prover

Tjark Weber

webertj@in.tum.de

TPHOLs, August 23, 2005

Integrating a SAT Solver with an LCF-style Theorem Prover - p.1/6

Motivation

- Verification problems can often be reduced to Boolean satisfiability.
- Recent SAT solver advances have made this approach feasible in practice.

Can an LCF-style theorem prover benefit from these advances?

zChaff

- A leading SAT solver (winner of the SAT 2002 and SAT 2004 competitions in several categories)
- Developed by Sharad Malik and Zhaohui Fu, Princeton University
- Returns a satisfying assignment, or ...
- ... a proof of unsatisfiability (since 2003)

System Overview

Evaluation

Problem	Status	auto	blast	fast	zChaff
MSC007-1.008	unsat.	X	X	X	726.5
NUM285-1	sat.	X	X	X	0.2
PUZ013-1	unsat.	0.5	X	5.0	0.1
PUZ014-1	unsat.	1.4	X	6.1	0.1
PUZ015-2.006	unsat.	X	X	X	10.5
PUZ016-2.004	sat.	X	X	X	0.3
PUZ016-2.005	unsat.	X	X	X	1.6
PUZ030-2	unsat.	X	X	X	0.7
PUZ033-1	unsat.	0.2	6.4	0.1	0.1
SYN001-1.005	unsat.	X	X	X	0.4
SYN003-1.006	unsat.	0.9	X	1.6	0.1
SYN004-1.007	unsat.	0.3	822.2	2.8	0.1
SYN010-1.005.005	unsat.	x	X	X	0.4
SYN086-1.003	sat.	x	X	X	0.1
SYN087-1.003	sat.	x	X	X	0.1
SYN090-1.008	unsat.	13.8	X	X	0.5
SYN091-1.003	sat.	X	X	X	0.1
SYN092-1.003	sat.	x	X	X	0.1
SYN093-1.002	unsat.	1290.8	16.2	1126.6	0.1
SYN094-1.005	unsat.	x	X	X	0.8
SYN097-1.002	unsat.	X	19.2	X	0.2
SYN098-1.002	unsat.	X	X	X	0.4
SYN302-1.003	sat.	X	x	X	0.4

Conclusions and Future Work

- A fast decision procedure for propositional logic
- Counterexamples for unprovable formulae

- Huge SAT problems are still out of scope
- Extension to (fragments of) richer logics
- Integration of first-order provers

