
λ →

∀
=Isa

be
lle

β
α

HOL

Towards Mechanized
Program Verification with

Separation Logic
Tjark Weber

webertj@in.tum.de

Technische Universität München

CSL, September 21, 2004

Towards Mechanized Program Verification with Separation Logic – p.1/30

λ →

∀
=Isa

be
lle

β
α

HOL

Motivation
Separation logic: a program logic for pointer programs

(Peter O’Hearn, John Reynolds et al.)

Formal verification needs tool support

⇒ integration of separation logic with Isabelle/HOL

Towards Mechanized Program Verification with Separation Logic – p.2/30

λ →

∀
=Isa

be
lle

β
α

HOL

Motivation
Separation logic: a program logic for pointer programs

(Peter O’Hearn, John Reynolds et al.)

Formal verification needs tool support

⇒ integration of separation logic with Isabelle/HOL

Towards Mechanized Program Verification with Separation Logic – p.2/30

λ →

∀
=Isa

be
lle

β
α

HOL

Overview
The language

Semantics

Hoare logics

The frame rule

In-place list reversal

Towards Mechanized Program Verification with Separation Logic – p.3/30

λ →

∀
=Isa

be
lle

β
α

HOL

Stores, Heaps, States
types

addr = nat
val = nat
store = var ⇒ val
heap = addr ⇀ val
state = (store × heap) option
aexp = store ⇒ val
bexp = store ⇒ bool

Towards Mechanized Program Verification with Separation Logic – p.4/30

λ →

∀
=Isa

be
lle

β
α

HOL

The Language: IMP . . .

skip

var :== aexp

c1; c2

if bexp then c1 else c2

while bexp do c1

Towards Mechanized Program Verification with Separation Logic – p.5/30

λ →

∀
=Isa

be
lle

β
α

HOL

. . . with Pointers
var :== list aexps allocation (records)

var :== alloc aexp allocation (arrays)

var :== @aexp lookup

@aexp1 :== aexp2 mutation

dispose aexp deallocation

Towards Mechanized Program Verification with Separation Logic – p.6/30

λ →

∀
=Isa

be
lle

β
α

HOL

Disjoint Heaps, Union of
Heaps

Disjoint (./):

f./g ≡ dom f ∩ dom g = {}

Union (++):

f++g ≡ λx. case g x of None ⇒ f x | Some y ⇒ Some y

Taking the union of disjoint heaps is commutative:

f./g =⇒ f ++ g = g ++ f

Towards Mechanized Program Verification with Separation Logic – p.7/30

λ →

∀
=Isa

be
lle

β
α

HOL

Disjoint Heaps, Union of
Heaps

Disjoint (./):

f./g ≡ dom f ∩ dom g = {}

Union (++):

f++g ≡ λx. case g x of None ⇒ f x | Some y ⇒ Some y

Taking the union of disjoint heaps is commutative:

f./g =⇒ f ++ g = g ++ f

Towards Mechanized Program Verification with Separation Logic – p.7/30

λ →

∀
=Isa

be
lle

β
α

HOL

Operational Semantics:
Allocation

[[heap-isfree h a (length as); vs = map (λe. e s) as]]

=⇒ 〈x :== list as,Some (s, h)〉

−→c Some (s[x 7→ a], heap-update h a vs)

∀ a. ¬ heap-isfree h a (length as) =⇒

〈x :== list as,Some (s, h)〉 −→c None

Towards Mechanized Program Verification with Separation Logic – p.8/30

λ →

∀
=Isa

be
lle

β
α

HOL

Operational Semantics:
Lookup

a s ∈ dom h =⇒

〈x :== @a,Some (s, h)〉

−→c Some (s[x 7→ heap-lookup h (a s)], h)

a s /∈ dom h =⇒ 〈x :== @a,Some (s, h)〉 −→c None

Towards Mechanized Program Verification with Separation Logic – p.9/30

λ →

∀
=Isa

be
lle

β
α

HOL

Operational Semantics:
Mutation

a s ∈ dom h =⇒

〈@a :== v ,Some (s, h)〉

−→c Some (s, heap-update h (a s) [v s])

a s /∈ dom h =⇒ 〈@a :== v ,Some (s, h)〉 −→c None

Towards Mechanized Program Verification with Separation Logic – p.10/30

λ →

∀
=Isa

be
lle

β
α

HOL

Operational Semantics:
Deallocation

a s ∈ dom h =⇒

〈dispose a,Some (s, h)〉 −→c Some (s, heap-remove h (a s))

a s /∈ dom h =⇒ 〈dispose a,Some (s, h)〉 −→c None

Towards Mechanized Program Verification with Separation Logic – p.11/30

λ →

∀
=Isa

be
lle

β
α

HOL

Denotational Semantics

Lookup:

C (x :== @a) =

{(Some (s, h),

Some (s[x 7→ heap-lookup h (a s)], h)) |

s h. a s ∈ dom h} ∪

{(Some (s, h), None) |s h. a s /∈ dom h} ∪

{(None, None)}

Equivalence of denotational and operational semantics:

((s, t) ∈ C c) = 〈c,s〉 −→c t

Towards Mechanized Program Verification with Separation Logic – p.12/30

λ →

∀
=Isa

be
lle

β
α

HOL

Separation Logic

∧, ∨, ¬, −→, . . .

Separating conjunction:

(P ∧∗ Q) h ≡ ∃ h ′ h ′′. h ′./h ′′∧ h ′++ h ′′= h ∧ P h ′∧ Q h ′′

Separating implication:

(P −∗ Q) h ≡ ∀ h ′. h ′./h ∧ P h ′−→ Q (h ++ h ′)

Towards Mechanized Program Verification with Separation Logic – p.13/30

λ →

∀
=Isa

be
lle

β
α

HOL

Assertions

emp h ≡ dom h = {}

(a 7→v) h ≡ dom h = {a} ∧ heap-lookup h a = v

(a 7→−) h ≡ ∃ v . (a 7→v) h

a↪→v ≡ a 7→v ∧∗ true

Towards Mechanized Program Verification with Separation Logic – p.14/30

λ →

∀
=Isa

be
lle

β
α

HOL

Some Properties of ∧∗

P ∧∗ (Q ∧∗ R) = P ∧∗ Q ∧∗ R

P ∧∗ Q = Q ∧∗ P

emp ∧∗ P = P

P ∧∗ emp = P

. . .

Towards Mechanized Program Verification with Separation Logic – p.15/30

λ →

∀
=Isa

be
lle

β
α

HOL

Hoare Logic: Partial
Correctness

|=p {P} c {Q} ≡

∀ s h s ′ h ′.

(Some (s, h), Some (s ′, h ′)) ∈ C c −→ P s h −→ Q s ′ h ′

Error state may be reachable

Partial correctness

`p {P} c {Q}

Towards Mechanized Program Verification with Separation Logic – p.16/30

λ →

∀
=Isa

be
lle

β
α

HOL

Soundness and
Completeness

Soundness:

`p {P} c {Q} =⇒ |=p {P} c {Q}

Relative completeness:

|=p {P} c {Q} =⇒`p {P} c {Q}

Weakest preconditions:

`p {wp c Q} c {Q}

Towards Mechanized Program Verification with Separation Logic – p.17/30

λ →

∀
=Isa

be
lle

β
α

HOL

Hoare Logic: Tight
Specifications

|=t {P} c {Q} ≡

∀ s h. (P s h −→ (Some (s, h), None) /∈ C c) ∧

(∀ s ′ h ′.

(Some (s, h), Some (s ′, h ′)) ∈ C c −→

P s h −→ Q s ′ h ′)

Error state must not be reachable

Partial correctness

Towards Mechanized Program Verification with Separation Logic – p.18/30

λ →

∀
=Isa

be
lle

β
α

HOL

Hoare Rules
Allocation (records):

`t {λs h. (∃ a. heap-isfree h a (length as)) ∧

(∀ a. (a[7→]map (λe. e s) as −∗ P (s[x 7→ a])) h)}

x :== list as {P}

Allocation (arrays):

`t {λs h. (∃ a. heap-isfree h a (n s)) ∧

(∀ a vs. length vs = n s −→ (a[7→]vs −∗ P (s[x 7→

a])) h)}

x :== alloc n {P}

Towards Mechanized Program Verification with Separation Logic – p.19/30

λ →

∀
=Isa

be
lle

β
α

HOL

Hoare Rules, cntd.

Lookup:

`t {λs h. ∃ v . (a s↪→v) h ∧ P (s[x 7→ v]) h} x :== @a {P}

Mutation:

`t {λs. a s 7→− ∧∗ (a s 7→v s −∗ P s)} @a :== v {P}

Deallocation:

`t {λs. a s 7→− ∧∗ P s} dispose a {P}

Towards Mechanized Program Verification with Separation Logic – p.20/30

λ →

∀
=Isa

be
lle

β
α

HOL

Soundness and
Completeness

`t {P} c {Q} =⇒ |=t {P} c {Q}

|=t {P} c {Q} =⇒`t {P} c {Q}

Proof: same techniques as before

Towards Mechanized Program Verification with Separation Logic – p.21/30

λ →

∀
=Isa

be
lle

β
α

HOL

The Frame Rule

|= {P}c{Q} =⇒ |= {P ∧ R}c{Q ∧ R}

|= {P}c{Q} =⇒ |= {P ∧∗ R}c{Q ∧∗ R}

Safety monotonicity

Frame property

Towards Mechanized Program Verification with Separation Logic – p.22/30

λ →

∀
=Isa

be
lle

β
α

HOL

The Frame Rule

|= {P}c{Q} =⇒ |= {P ∧ R}c{Q ∧ R}

|= {P}c{Q} =⇒ |= {P ∧∗ R}c{Q ∧∗ R}

Safety monotonicity

Frame property

Towards Mechanized Program Verification with Separation Logic – p.22/30

λ →

∀
=Isa

be
lle

β
α

HOL

Lacunary Heaps

lacunary h ≡ ∀ n. ∃ a. heap-isfree h a n

Every finite heap is lacunary:

finite (dom h) =⇒ lacunary h

Lacunarity is preserved:

〈c,Some (s, h)〉 −→c Some (s ′, h ′) =⇒

lacunary h ′= lacunary h

Towards Mechanized Program Verification with Separation Logic – p.23/30

λ →

∀
=Isa

be
lle

β
α

HOL

Hoare Logic

|=l {P} c {Q} ≡

∀ s h. lacunary h −→

(P s h −→ (Some (s, h), None) /∈ C c) ∧

(∀ s ′ h ′. (Some (s, h), Some (s ′, h ′)) ∈ C c −→ P s h

−→ Q s ′ h ′)

`l {P} c {Q}

`l {P} c {Q} =⇒ |=l {P} c {Q}

|=l {P} c {Q} =⇒`l {P} c {Q}

Towards Mechanized Program Verification with Separation Logic – p.24/30

λ →

∀
=Isa

be
lle

β
α

HOL

The Frame Rule
h1./h2 =⇒

(lacunary (h1 ++ h2) −→

(Some (s, h1 ++ h2), None) ∈ C c −→ (Some (s, h1), None)

∈ C c) ∧

((Some (s, h1 ++ h2), Some (s ′, h ′)) ∈ C c −→

(Some (s, h1), None) ∈ C c ∨

(∃ h1 ′. h1 ′./h2 ∧

h1 ′++ h2 = h ′∧ (Some (s, h1), Some (s ′, h1 ′)) ∈ C

c))

[[|=l {P} c {Q}; ModifiedVars c\R]]

=⇒ |=l {λs. P s ∧∗ R s} c {λs. Q s ∧∗ R s}
Towards Mechanized Program Verification with Separation Logic – p.25/30

λ →

∀
=Isa

be
lle

β
α

HOL

Example: In-Place List
Reversal

reverse :: var ⇒ var ⇒ var ⇒ com
reverse i j k ≡

(j :== (λs. null));
while (λs. s i 6= null) do
(

(((k :== @(λs. Suc (s i)));
(@(λs. Suc (s i)) :== (λs. s j)));
(j :== (λs. s i)));
(i :== (λs. s k))

)

Towards Mechanized Program Verification with Separation Logic – p.26/30

λ →

∀
=Isa

be
lle

β
α

HOL

In-Place List Reversal:
Correctness

Correctness theorem:

|=t {λs h. heap-list vs (s i) h ∧ distinct [i, j, k]}

reverse i j k {λs. heap-list (rev vs) (s j)}

Loop invariant:

λs h. (∃ xs ys.

(heap-list xs (s i) ∧∗ heap-list ys (s j)) h ∧

rev vs = rev xs @ ys) ∧

distinct [i, j, k]

Towards Mechanized Program Verification with Separation Logic – p.27/30

λ →

∀
=Isa

be
lle

β
α

HOL

In-Place List Reversal:
The Proof

(heap-list ys j ∧∗ heap-list (x # xs) i) h =⇒

(heap-list xs (heap-lookup h (Suc i)) ∧∗ heap-list (x # ys) i)

(heap-update h (Suc i) [j])

j: ys

xs

ysi: x

j

i:

xs

x

xs

Towards Mechanized Program Verification with Separation Logic – p.28/30

λ →

∀
=Isa

be
lle

β
α

HOL

Conclusions
A ready-to-use formalization of separation logic

Meta-theoretic investigations

Concise specifications, but less automatic proofs

Towards Mechanized Program Verification with Separation Logic – p.29/30

λ →

∀
=Isa

be
lle

β
α

HOL

Discussion

?∗

Towards Mechanized Program Verification with Separation Logic – p.30/30

	Motivation
	Overview
	Stores, Heaps, States
	Large The Language: IMP~ldots
	ldots with Pointers
	{Large Disjoint Heaps, Union of Heaps}
	Large Operational Semantics: Allocation
	Large Operational Semantics: Lookup
	Large Operational Semantics: Mutation
	Large Operational Semantics: Deallocation
	Large Denotational Semantics
	Separation Logic
	Assertions
	Large Some Properties of isa {{isasymand }{isacharasterisk }}
	Large Hoare Logic: Partial Correctness
	Large Soundness and Completeness
	Large Hoare Logic: Tight Specifications
	Hoare Rules
	Hoare Rules, cntd.
	Large Soundness and Completeness
	The Frame Rule
	Lacunary Heaps
	Hoare Logic
	The Frame Rule
	Large Example: In-Place List Reversal
	Large In-Place List Reversal: Correctness
	Large In-Place List Reversal: The Proof
	Conclusions
	Discussion

