Towards Mechanized
Program Verification with

Separation Logic

Tjark Weber

webertj @n. tum de
Technische Universitat Miinchen

CSL, September 21, 2004

Motivation

m Separation logic: a program logic for pointer programs

(Peter O'Hearn, John Reynolds et al.)

®m Formal verification needs tool support

Towards Mechanized Program Verification with Separation Logic — p.2/30

Motivation

m Separation logic: a program logic for pointer programs

(Peter O'Hearn, John Reynolds et al.)

®m Formal verification needs tool support

—> Integration of separation logic with Isabelle/HOL

Towards Mechanized Program Verification with Separation Logic — p.2/30

Overview

® The language
B Semantics

®m Hoare logics

® The frame rule

m In-place list reversal

WeAtog

o
15
Towards Mechanized Program Verification with Separation Logic — p.3/30

Stores, Heaps, States

types
addr = nat
val = nat

store = var = val

heap = addr — val

state = (store x heap) option
aexp = store = val

bexp = store = bool

Towards Mechanized Program Verification with Separation Logic — p.4/30

The Language: IMP ...

m skip
W var == aexp
mcl;c2

| if bexp then cl else c2

m while bexp do cl

... with Pointers

m var .—= list aexps allocation (records)

m var .—= alloc aexp allocation (arrays)
mvar ;== @aexp lookup
m Qaexpl :== aexp2 mutation

m dispose aexp deallocation

Towards Mechanized Program Verification with Separation Logic — p.6/30

\9

(Y
‘oe\éi ii
»

Disjoint Heaps, Union of
Heaps

m Disjoint (b<):

f><ig = dom f Ndomg = {}

m Union (++):

f+-+g = Ax. case g x of None = f x | Somey = Somey

Towards Mechanized Program Verification with Separation Logic — p.7/30

Disjoint Heaps, Union of
Heaps

m Disjoint (b<):

f><ig = dom f Ndomg = {}

m Union (++):

f+-+g = Ax. case g x of None = f x | Somey = Somey

m Taking the union of disjoint heaps is commutative:

fodig =—=f ++g=9g ++f

Towards Mechanized Program Verification with Separation Logic — p.7/30

Operational Semantics:
Allocation

B [heap-isfree h a (length as); vs = map (JAe. e s) as]
— (x :==list as,Some (s, h))

—. Some (s|x — a|, heap-update h a vs)

B Y a. — heap-isfree h a (length as) =—>

(x :== list as,Some (s, h)) — . None

Towards Mechanized Program Verification with Separation Logic — p.8/30

\9

(Y
‘oe\éi ii
»

Operational Semantics:
Lookup

Mascdomh—
(x ;=== @a,Some (s, h))

—. Some (s|x — heap-lookup h (a's)], h)

Mas ¢ domh=— (x :== @Qa,Some (s, h)) — . None

Towards Mechanized Program Verification with Separation Logic — p.9/30

\9

(Y
‘oe\éi ii
»

Operational Semantics:
Mutation

Mascdomh—
(@a :==v,Some (s, h))

—. Some (s, heap-update h (as) |[vs])

Mas ¢ domh=— (@Qa:==v,Some (s, h)) —. None

Towards Mechanized Program Verification with Separation Logic — p.10/30

Operational Semantics:
Deallocation

Mas&cdomh—

(dispose a,Some (s, h)) — . Some (s, heap-remove h (as))

M as ¢ dom h = (dispose a,Some (s, h)) — . None

Towards Mechanized Program Verification with Separation Logic — p.11/30

Denotational Semantics

m Lookup:

C (x :==@Qa) =
{(Some (s, h),

Some (s|x — heap-lookup h (as)|, h)) |
sh.as €domh} U
{(Some (s, h), None) [sh.as ¢ domh} U
{(None, None)}

m Equivalence of denotational and operational semantics:

((s,t) eCc)=/{(c,s) —,t

Towards Mechanized Program Verification with Separation Logic — p.12/30

Separation Logic

mA YV, —, ...

B Separating conjunction:

(PA*Q)h=3h'h”. hxh” Ah’++h"=hAPh'AQh"

B Separating implication:

(P—%Q)h=VYh’ hixh APh'— Q (h++h’)

Towards Mechanized Program Verification with Separation Logic — p.13/30

Assertions

memp h=domh={}
m (a—v) h=domh = {a} A heap-lookupha=v

m(a——)h=3dv. (a—v)h

Hma—Vv = ar—Vv /\x true

Some Properties of Ax

BP Ax (QA*R) =P A*Q AxR
BP AxQ=Q A%xP
memp AxP =P

mP Axemp =P

Hoare Logic: Partial
Correctness

W=, {P;ciQ} =
Vshs’'h'
(Some (s, h), Some (s, h’))eCc —Psh—Qs’'h’

m Error state may be reachable

m Partial correctness

m,{P}c{Q}

Towards Mechanized Program Verification with Separation Logic — p.16/30

Soundness and
Completeness

B Soundness:

mp Py c{Q) = Fp (P} c{Q}

m Relative completeness:

=p 1P} c1Q} = {P} c{Q}

m Weakest preconditions:
—p {wpcQ} c {Q}

Towards Mechanized Program Verification with Separation Logic — p.17/30

Hoare Logic: Tight
Specifications

W= {PrciQ) =
Vsh. (Psh — (Some (s, h), None) ¢ Cc) A
(Vs’h”.
(Some (s, h), Some (s’,h’)) eCc —
Psh— Qs’h’)

® Error state must not be reachable

m Partial correctness

Towards Mechanized Program Verification with Separation Logic — p.18/30

Hoare Rules

m Allocation (records):

¢ {\s h. (Ja. heap-isfree h a (length as)) A
(Va. (a[—]map (Ae.es)as —x P (s[x+—a])) h)}
x ;== listas {P}

m Allocation (arrays):

=, {As h. (Ja. heap-isfree ha (ns)) A

(Vavs.lengthvs =ns — (a|—|vs —x P (s|x —

al)) h);

x :==allocn {P}

Towards Mechanized Program Verification with Separation Logic — p.19/30

Hoare Rules, cntd.

m Lookup:

Fy {Ash.dv. (as—v)h AP (s[x —v]|)h} x :==@Qa{P}

m Mutation:

=, {As.as—— Ax (as—vs —xPs)} Qa:==v {P}

m Deallocation:

- {\s. as—— Ax P s} dispose a {P}

Towards Mechanized Program Verification with Separation Logic — p.20/30

Soundness and
Completeness

m {P}ciQ}t = =t 1Py c{Q}
W= Py ciQ} = Fi 1Py c{Q}

m Proof. same techniques as before

The Frame Rule

= {P}c{Q} = E{P AR}c{Q AR}

m={P}c{Q} = FE{P AxR}c{Q Ax R}
m Safety monotonicity

®m Frame property

Lacunary Heaps

M lacunary h = V n. da. heap-isfree h an

m Every finite heap Is lacunary:

finite (dom h) = lacunary h

m Lacunarity Is preserved:

(c,Some (s, h)) —. Some (s’, h') =

lacunary h’ = lacunary h

Towards Mechanized Program Verification with Separation Logic — p.23/30

Hoare Logic

ol {Phe{o) =
Vs h. lacunary h —
(Psh — (Some (s, h), None) ¢ Cc) A
(Vs’h’. (Some (s, h), Some (s, h’)) €Cc — P sh
— Qs’h’)

m {P}c{Q}
B {P}c{Qr = Fi{P}c{Q}
B = {PHe{Q =i {P}c{Q}

Towards Mechanized Program Verification with Separation Logic — p.24/30

The Frame Rule

B h1pdh2 —

(lacunary (h1 ++ h2) —

(Some (s, h1 +-+ h2), None) € Cc — (Some (s, h1), None)
€Cc) A
((some (s, h1 ++ h2), Some (s’,h)) eCc —

(Some (s, h1), None) € Cc V

(3h1’”. h1ah2 A

h1’++ h2 =h’A (Some (s, hl), Some (s’,h1’)) € C

c))

B =, {P} c {Q}; ModifiedVars cfR]
— = {As.PsAxRs}c{As.Qs A*R

Towards Mechanized Program Verification with Separation Logic — p.25/30

Example: In-Place List
Reversal

reverse :: var =- var =- var = com
reverse | | k =

(j :== (As. null));

while (AS. S 1 # null) do

((((k :==@(As. Suc (si)));
(@Q(AS. Suc (s 1)) :== (As. S])));
(== (As.s1)));

(i:== (As. s k))

Towards Mechanized Program Verification with Separation Logic — p.26/30

In-Place List Reversal:
Correctness

m Correctness theorem:

=, {As h. heap-listvs (si) h A distinct i, j, k]| }
reverse i j k {\s. heap-list (revvs) (sj)}

® Loop invariant:

As h. (Ixsys.
(heap-list xs (s i) A heap-listys (sj)) h A
revvs = rev xs @ ys) A
distinct [i, j, k|

Towards Mechanized Program Verification with Separation Logic — p.27/30

In-Place List Reversal:
The Proof

B (heap-listys j Ax heap-list (x # xs) i) h =
(heap-list xs (heap-lookup h (Suci)) Ax heap-list (x # ys) i)
(heap-update h (Suci) [j])

EEaNITE

M

Towards Mechanized Program Verification with Separation Logic — p.28/30

Conclusions

m A ready-to-use formalization of separation logic

m Meta-theoretic investigations

m Concise specifications, but less automatic proofs

Towards Mechanized Program Verification with Separation Logic — p.29/30

¢ H

Discussion

Towards Mechanized Program Verification with Separation Logic — p.30/30

	Motivation
	Overview
	Stores, Heaps, States
	Large The Language: IMP~ldots
	ldots with Pointers
	{Large Disjoint Heaps, Union of Heaps}
	Large Operational Semantics: Allocation
	Large Operational Semantics: Lookup
	Large Operational Semantics: Mutation
	Large Operational Semantics: Deallocation
	Large Denotational Semantics
	Separation Logic
	Assertions
	Large Some Properties of isa {{isasymand }{isacharasterisk }}
	Large Hoare Logic: Partial Correctness
	Large Soundness and Completeness
	Large Hoare Logic: Tight Specifications
	Hoare Rules
	Hoare Rules, cntd.
	Large Soundness and Completeness
	The Frame Rule
	Lacunary Heaps
	Hoare Logic
	The Frame Rule
	Large Example: In-Place List Reversal
	Large In-Place List Reversal: Correctness
	Large In-Place List Reversal: The Proof
	Conclusions
	Discussion

