Towards Mechanized Program Verification with Separation Logic

Tjark Weber

webertj@in.tum.de

Technische Universität München

CSL, September 21, 2004

Motivation

- Separation logic: a program logic for pointer programs (Peter O'Hearn, John Reynolds et al.)
- Formal verification needs tool support

Motivation

- Separation logic: a program logic for pointer programs (Peter O'Hearn, John Reynolds et al.)
- Formal verification needs tool support

⇒ integration of separation logic with Isabelle/HOL

Overview

- The language
- Semantics
- Hoare logics
- The frame rule
- In-place list reversal

Stores, Heaps, States

```
types
addr = nat
val = nat
store = var \Rightarrow val
heap = addr \rightarrow val
state = (store \times heap) option
aexp = store \Rightarrow val
bexp = store \Rightarrow bool
```


The Language: IMP ...

- skip
- var :== aexp
- **■** *c*1; *c*2
- if bexp then c1 else c2
- while bexp do c1

... with Pointers

var :== list aexps

allocation (records)

var :== alloc aexp

allocation (arrays)

■ *var* :== @*aexp*

lookup

■ @aexp1 :== aexp2

mutation

dispose aexp

deallocation

Disjoint Heaps, Union of Heaps

■ Disjoint (⋈):

$$f\bowtie g \equiv dom \ f \cap dom \ g = \{\}$$

■ Union (++):

$$f++g \equiv \lambda x$$
. case $g \times g$ of None $\Rightarrow f \times S$ Some $g \Rightarrow S$ Some $g \Rightarrow S$

Disjoint Heaps, Union of Heaps

■ Disjoint (⋈):

$$f\bowtie g \equiv dom \ f \cap dom \ g = \{\}$$

■ Union (++):

$$f++g \equiv \lambda x$$
. case $g \times g$ of None $\Rightarrow f \times g$ Some $g \Rightarrow g$ Some $g \Rightarrow g$

Taking the union of disjoint heaps is commutative:

$$f\bowtie g \Longrightarrow f++g=g++f$$

Operational Semantics: Allocation

- [heap-isfree h a (length as); $vs = map(\lambda e. e. s)$ as] $\implies \langle x :== list \ as, Some(s, h) \rangle$ $\longrightarrow_c Some(s[x \mapsto a], heap-update h a vs)$
- \forall a. \neg heap-isfree h a (length as) \Longrightarrow $\langle x :==$ list as, Some $(s, h) \rangle \longrightarrow_c$ None

Operational Semantics: Lookup

- $a \ s \in dom \ h \Longrightarrow$ $\langle x :== @a, Some \ (s, h) \rangle$ $\longrightarrow_c Some \ (s[x \mapsto heap-lookup \ h \ (a \ s)], \ h)$
- lacksquare a $s \notin dom \ h \Longrightarrow \langle x :== @a, Some \ (s, h) \rangle \longrightarrow_c None$

Operational Semantics: Mutation

- a s ∈ dom h \Longrightarrow $\langle @a :== v, Some (s, h) \rangle$ $\longrightarrow_c Some (s, heap-update h (a s) [v s])$
- lacksquare a $s \notin dom \ h \Longrightarrow \langle @a :== v, Some \ (s, h) \rangle \longrightarrow_c None$

Operational Semantics: Deallocation

- a s \in dom h \Longrightarrow \langle dispose a,Some $(s,h)\rangle \longrightarrow_c$ Some (s,heap-remove h(as))
- \blacksquare a s \notin dom h \Longrightarrow \langle dispose a, Some $(s, h) \rangle \longrightarrow_c N$ one

Denotational Semantics

Lookup:

$$C(x :== @a) =$$
 $\{(Some (s, h), Some (s[x \mapsto heap-lookup h (a s)], h)) \mid s h. a s \in dom h\} \cup$
 $\{(Some (s, h), None) \mid s h. a s \notin dom h\} \cup$
 $\{(None, None)\}$

Equivalence of denotational and operational semantics:

$$((s, t) \in C c) = \langle c, s \rangle \longrightarrow_c t$$

Separation Logic

$$\blacksquare \land, \lor, \lnot, \longrightarrow, \ldots$$

Separating conjunction:

$$(P \land * Q) h \equiv \exists h' h'' . h' \bowtie h'' \land h' ++ h'' = h \land P h' \land Q h''$$

Separating implication:

$$(P - * Q) h \equiv \forall h'. h' \bowtie h \land P h' \longrightarrow Q (h + + h')$$

Assertions

- \blacksquare emp $h \equiv dom \ h = \{\}$
- \blacksquare $(a \mapsto v)$ $h \equiv dom \ h = \{a\} \land heap$ -lookup $h \ a = v$
- $(a \mapsto -) h \equiv \exists v. (a \mapsto v) h$
- $\blacksquare a \hookrightarrow v \equiv a \mapsto v \land * true$

Some Properties of \(\times \)

$$P \wedge * (Q \wedge * R) = P \wedge * Q \wedge * R$$

$$P \wedge * Q = Q \wedge * P$$

$$\blacksquare$$
 emp $\land * P = P$

$$\blacksquare P \land * emp = P$$

...

Hoare Logic: Partial Correctness

$$\models_p \{P\} \ c \ \{Q\} \equiv \\ \forall \ s \ h \ s' \ h'.$$

$$(Some \ (s, h), \ Some \ (s', h')) \in C \ c \longrightarrow P \ s \ h \longrightarrow Q \ s' \ h'$$

- Error state may be reachable
- Partial correctness

 $\blacksquare \vdash_p \{P\} c \{Q\}$

Soundness and Completeness

Soundness:

$$\vdash_p \{P\} \ c \{Q\} \Longrightarrow \models_p \{P\} \ c \{Q\}$$

■ Relative completeness:

$$\models_p \{P\} \ c \{Q\} \Longrightarrow \vdash_p \{P\} \ c \{Q\}$$

Weakest preconditions:

$$\vdash_p \{ wp \ c \ Q \} \ c \ \{ Q \}$$

Hoare Logic: Tight Specifications

- Error state must not be reachable
- Partial correctness

Hoare Rules

Allocation (records):

$$\vdash_t \{\lambda s \ h. \ (\exists \ a. \ heap\text{-isfree } h \ a \ (length \ as)) \land \ (\forall \ a. \ (a[\mapsto] map \ (\lambda e. \ e \ s) \ as \ -* P \ (s[x \mapsto a])) \ h)\}$$
 $x :== \text{list } as \ \{P\}$

Allocation (arrays):

$$\vdash_t \{\lambda s \ h. \ (\exists \ a. \ heap\mbox{-isfree} \ h \ a \ (n \ s)) \land \ (\forall \ a \ vs. \ length \ vs = n \ s \longrightarrow (a[\mapsto] vs \ -* P \ (s[x \mapsto a])) \ h) \} \ x :== alloc \ n \ \{P\}$$

Hoare Rules, cntd.

Lookup:

$$\vdash_t \{\lambda s h. \exists v. (a s \hookrightarrow v) h \land P(s[x \mapsto v]) h\} x :== @a\{P\}$$

Mutation:

$$\vdash_t \{\lambda s. \ as \mapsto - \land * (as \mapsto vs - *Ps)\} @a :== v\{P\}$$

Deallocation:

$$\vdash_t \{\lambda s. \ a \ s \mapsto - \land * P \ s\}$$
 dispose $a \{P\}$

Soundness and Completeness

$$\blacksquare \vdash_t \{P\} \ c \ \{Q\} \Longrightarrow \models_t \{P\} \ c \ \{Q\}$$

$$\blacksquare \models_t \{P\} \ c \ \{Q\} \Longrightarrow \vdash_t \{P\} \ c \ \{Q\}$$

Proof: same techniques as before

The Frame Rule

$$\blacksquare \models \{P\}c\{Q\} \Longrightarrow \models \{P \land R\}c\{Q \land R\}$$

The Frame Rule

$$\blacksquare \models \{P\}c\{Q\} \Longrightarrow \models \{P \land R\}c\{Q \land R\}$$

$$\blacksquare \models \{P\}c\{Q\} \Longrightarrow \models \{P \land *R\}c\{Q \land *R\}$$

- Safety monotonicity
- Frame property

Lacunary Heaps

- lacunary $h \equiv \forall n$. $\exists a$. heap-isfree h a n
- Every finite heap is lacunary:

finite
$$(dom h) \Longrightarrow lacunary h$$

Lacunarity is preserved:

$$\langle c, Some(s, h) \rangle \longrightarrow_c Some(s', h') \Longrightarrow$$

lacunary $h' = lacunary h$

Hoare Logic

- $\blacksquare \vdash_l \{P\} \ c \{Q\}$
- $\blacksquare \vdash_l \{P\} \ c \ \{Q\} \Longrightarrow \models_l \{P\} \ c \ \{Q\}$
- $\blacksquare \models_{l} \{P\} \ c \ \{Q\} \Longrightarrow \vdash_{l} \{P\} \ c \ \{Q\}$

The Frame Rule

 $h1 \bowtie h2 \Longrightarrow$ (lacunary $(h1 ++ h2) \longrightarrow$ $(Some (s, h1 ++ h2), None) \in Cc \longrightarrow (Some (s, h1), None)$ $\in Cc) \land$ $((Some (s, h1 ++ h2), Some (s', h')) \in Cc \longrightarrow$ $(Some (s, h1), None) \in Cc \lor$ $(\exists h1'. h1' \bowtie h2 \land$ $h1' + + h2 = h' \land (Some(s, h1), Some(s', h1')) \in C$ c))

Example: In-Place List Reversal

```
reverse :: var \Rightarrow var \Rightarrow var \Rightarrow com
reverse i j k \equiv
          (\mathbf{j} :== (\lambda \mathbf{s}. \, \mathbf{null}));
          while (\lambda s. s i \neq null) do
               (((k :== @(\lambda s. Suc (s i)));
                (@(\lambda s. Suc (s i)) :== (\lambda s. s j));
               (\mathbf{j} :== (\lambda \mathbf{s}. \mathbf{s} \mathbf{i}));
               (i :== (\lambda s. s k))
```


In-Place List Reversal: Correctness

Correctness theorem:

```
\models_t \{\lambda s \ h. \ heap-list \ vs \ (s \ i) \ h \land distinct \ [i, j, k]\}
reverse i \ j \ k \ \{\lambda s. \ heap-list \ (rev \ vs) \ (s \ j)\}
```

Loop invariant:

```
\lambdas h. (\exists xs ys.  (heap-list xs (s i) \land * heap-list ys (s j)) h \land  rev vs = rev xs @ ys) \land  distinct [i, j, k]
```


In-Place List Reversal: The Proof

■ (heap-list ys $j \land *$ heap-list $(x \# xs) i) h \Longrightarrow$ (heap-list xs (heap-lookup $h(Suc i)) \land *$ heap-list (x # ys) i) (heap-update h(Suc i)[j])

Conclusions

- A ready-to-use formalization of separation logic
- Meta-theoretic investigations
- Concise specifications, but less automatic proofs

Discussion

