
Sustainable Compiler Verification

Tjark Weber et al.
tjark.weber@it.uu.se

UU Cybersecurity Workshop
January 12, 2024

Tjark Weber Sustainable Compiler Verification 1 / 5

tjark.weber@it.uu.se


Background: Compiler Correctness

Applications written in high-level languages are only as secure as the
compiler that translates them into machine code: “Compiler-introduced
security bugs are common and may have serious security impacts.”1

Verified compilers, such as CompCert and CakeML, ensure that the
generated code adheres to the high-level semantics. However, the vast
majority of compilers used in production today are not verified.

1Jianhao Xu et al.: Silent Bugs Matter: A Study of Compiler-Introduced Security
Bugs. USENIX Security ’23.

Tjark Weber Sustainable Compiler Verification 2 / 5



Background: Erlang

Erlang is a programming language and runtime system designed for
distributed, fault-tolerant and highly available applications. Erlang-
powered nodes handle over 90% of all Internet traffic.

Erlang is an untyped language (like Python, JavaScript, . . . ). This makes
it difficult to reason about Erlang code at compile time, and to establish
the correctness of certain compiler transformations.

Tjark Weber Sustainable Compiler Verification 3 / 5



Idea

To verify (only) the most critical transformations and optimizations in the
Erlang compiler, thereby

ensuring their correctness, and

allowing more aggressive optimizations to be added with confidence.

Less work than full compiler verification

Can be maintained by Ericsson engineers

Tjark Weber Sustainable Compiler Verification 4 / 5



Plan

A domain-specific language to express compiler transformations

A formal model of the run-time state of Erlang programs

Verification of transformations with the help of automated provers

Integration into the Erlang tool-chain

Tjark Weber Sustainable Compiler Verification 5 / 5


	
	


