
Introduction
Translation

Caveats
Conclusions

SMT Solvers: New Oracles for the
HOL Theorem Prover

Tjark Weber

ARG Lunch

17 November 2009

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

Motivation
System Overview
Higher-Order Logic
Satisfiability Modulo Theories

Motivation

HOL4 is a popular interactive theorem prover.

Interactive theorem proving needs automation.

=⇒ Use SMT solvers to decide SMT formulas.

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

Motivation
System Overview
Higher-Order Logic
Satisfiability Modulo Theories

Motivation

HOL4 is a popular interactive theorem prover.

Interactive theorem proving needs automation.

=⇒ Use SMT solvers to decide SMT formulas.

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

Motivation
System Overview
Higher-Order Logic
Satisfiability Modulo Theories

System Overview

Input
formula

Error message

Theorem

translation

Negation,

native format
SMT−LIB or

satisfiable?

yes no

HOL4
SMT solver

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

Motivation
System Overview
Higher-Order Logic
Satisfiability Modulo Theories

Higher-Order Logic

Polymorphic λ-calculus, based on Church’s simple theory of types:

σ ::= α | (σ1, . . . , σn)c

t ::= xσ | cσ | (tσ→τ tσ)τ | (λxσ. tτ)σ→τ

Extensive libraries:

quantifiers (of arbitrary order)

arithmetic (nat, int, real, . . .)

data types (tuples, records, bit vectors, . . .)

=⇒ much of mathematics and computer science

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

Motivation
System Overview
Higher-Order Logic
Satisfiability Modulo Theories

Higher-Order Logic

Polymorphic λ-calculus, based on Church’s simple theory of types:

σ ::= α | (σ1, . . . , σn)c

t ::= xσ | cσ | (tσ→τ tσ)τ | (λxσ. tτ)σ→τ

Extensive libraries:

quantifiers (of arbitrary order)

arithmetic (nat, int, real, . . .)

data types (tuples, records, bit vectors, . . .)

=⇒ much of mathematics and computer science

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

Motivation
System Overview
Higher-Order Logic
Satisfiability Modulo Theories

Satisfiability Modulo Theories

Goal: To decide the satisfiability of (quantifier-free) first-order
formulas with respect to combinations of (decidable) background
theories.

ϕ ::= A | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

Motivation
System Overview
Higher-Order Logic
Satisfiability Modulo Theories

Satisfiability Modulo Theories: Example

Theories:

I: theory of integers
ΣI = {≤, +, −, 0, 1}
L: theory of lists
ΣL = {=, hd, tl, nil, cons}
E : theory of equality
Σ: free function and predicate symbols

Problem: Is

x ≤ y ∧ y ≤ x + hd (cons 0 nil) ∧ P (f x − f y) ∧ ¬P 0

satisfiable in I ∪ L ∪ E?

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

SMT-LIB, Yices
Basics: Propositional Logic, Arithmetic, Let Expressions
Quantifiers, Anonymous and Higher-Order Functions
Tuples, Records, Data Types
Bit Vectors

Translation from Higher-Order Logic

We must translate HOL formulas into the input language of SMT
solvers.

1 SMT-LIB format

2 Yices’s native format

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

SMT-LIB, Yices
Basics: Propositional Logic, Arithmetic, Let Expressions
Quantifiers, Anonymous and Higher-Order Functions
Tuples, Records, Data Types
Bit Vectors

SMT-LIB Format

SMT-LIB is the standard input format for SMT solvers.

LISP-like syntax

Based on first-order logic

Modular: different “theories” and “logics”

http://goedel.cs.uiowa.edu/smtlib/

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

http://goedel.cs.uiowa.edu/smtlib/

Introduction
Translation

Caveats
Conclusions

SMT-LIB, Yices
Basics: Propositional Logic, Arithmetic, Let Expressions
Quantifiers, Anonymous and Higher-Order Functions
Tuples, Records, Data Types
Bit Vectors

Yices’s Native Format

Yices is a competitive SMT solver. It supports both SMT-LIB and
a native input format.

LISP-like syntax

Based on higher-order logic

Supports data types, tuples, records, λ-expressions

http://yices.csl.sri.com/

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

http://yices.csl.sri.com/

Introduction
Translation

Caveats
Conclusions

SMT-LIB, Yices
Basics: Propositional Logic, Arithmetic, Let Expressions
Quantifiers, Anonymous and Higher-Order Functions
Tuples, Records, Data Types
Bit Vectors

Features: SMT-LIB vs. Yices

SMT-LIB Yices SMT-LIB Yices

int, real X X let (X) X
nat, bool, → X λ-terms X
prop. logic X X tuples X
equality X X records X
FOL X X data types X
HOL X bit vectors X X
arithmetic X X

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

SMT-LIB, Yices
Basics: Propositional Logic, Arithmetic, Let Expressions
Quantifiers, Anonymous and Higher-Order Functions
Tuples, Records, Data Types
Bit Vectors

Recursion & Abstraction

We translate HOL formulas by recursion over their term structure.

Abstraction is used to deal with unsupported terms/types.

Example: Pα→bool xα

SMT-LIB Yices

:extrasorts (a)
:extrafuns ((x a))
:extrapreds ((P a))
:formula (not (P x))

(define-type a)
(define P::(-> a bool))
(define x::a)
(assert (not (P x)))

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

SMT-LIB, Yices
Basics: Propositional Logic, Arithmetic, Let Expressions
Quantifiers, Anonymous and Higher-Order Functions
Tuples, Records, Data Types
Bit Vectors

Propositional Logic

A simple dictionary approach is sufficient for many HOL4
constants.

T, F, ⇐⇒ , =⇒ , ∨, ∧ and ¬
=

if c then t1 else t2 and bool case t1 t2 c

SMT-LIB makes a clear distinction between terms and formulas.

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

SMT-LIB, Yices
Basics: Propositional Logic, Arithmetic, Let Expressions
Quantifiers, Anonymous and Higher-Order Functions
Tuples, Records, Data Types
Bit Vectors

Arithmetic (I)

SMT-LIB/Yices support directly:

Types int, real, and (Yices only) nat

Numerals (e.g., 3.14)

Negation, addition, subtraction, multiplication

Comparison operators <, ≤, >, ≥

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

SMT-LIB, Yices
Basics: Propositional Logic, Arithmetic, Let Expressions
Quantifiers, Anonymous and Higher-Order Functions
Tuples, Records, Data Types
Bit Vectors

Arithmetic (II)

For certain other HOL4 functions, e.g., min, max and abs, we
introduce suitable definitions.

Example: abs xint ≥ 0

:extrafuns ((hol_int_abs Int Int) (x Int))
:assumption (forall (?x Int)

(= (hol_int_abs ?x)
(ite (< ?x 0) (- 0 ?x) ?x)))

:formula (not (>= (hol_int_abs x) 0))

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

SMT-LIB, Yices
Basics: Propositional Logic, Arithmetic, Let Expressions
Quantifiers, Anonymous and Higher-Order Functions
Tuples, Records, Data Types
Bit Vectors

Let Expressions

SMT-LIB allows let expressions only in formulas (but not in
terms). We translate the former and eliminate the latter.

Example: let x = 1 in x > 0

:formula (not (let (?x 1) (> ?x 0)))

In contrast, Yices allows let expressions to occur anywhere.

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

SMT-LIB, Yices
Basics: Propositional Logic, Arithmetic, Let Expressions
Quantifiers, Anonymous and Higher-Order Functions
Tuples, Records, Data Types
Bit Vectors

Quantifiers

SMT-LIB supports first-order quantification. Higher-order
quantification is abstracted away.

Yices supports universal and existential quantifiers of arbitrary
order.

Example: ∀fα→β. ∃gβ→α.∀xα. g (f x) = x

(define-type a)
(define-type b)
(assert (not (forall (f::(-> a b))

(exists (g::(-> b a))
(forall (x::a) (= (g (f x)) x))))))

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

SMT-LIB, Yices
Basics: Propositional Logic, Arithmetic, Let Expressions
Quantifiers, Anonymous and Higher-Order Functions
Tuples, Records, Data Types
Bit Vectors

Anonymous and Higher-Order Functions

Yices provides a lambda construct, which is used to translate
λ-abstractions. We first perform β-normalization and η-expansion
in HOL4.

Functions of more than one argument are curried.

Function update (a =+ b) f becomes update f (a) b.

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

SMT-LIB, Yices
Basics: Propositional Logic, Arithmetic, Let Expressions
Quantifiers, Anonymous and Higher-Order Functions
Tuples, Records, Data Types
Bit Vectors

Tuples

Product types α× β are mapped to their Yices counterparts,
tuple a b.

HOL4’s comma operator, (x , y), is translated as mk-tuple x y.

Accessor functions for a tuple’s components, FST p and SND p,
are translated as select p 1 and select p 2, respectively.

Tuples with more than two components are supported through
nesting.

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

SMT-LIB, Yices
Basics: Propositional Logic, Arithmetic, Let Expressions
Quantifiers, Anonymous and Higher-Order Functions
Tuples, Records, Data Types
Bit Vectors

Records

Record types in HOL4 are semantically equivalent to product
types, but with named field access and update.

Example:
Hol datatype ‘person = < | employed : bool ; age : num |>‘

(define-type person
(record employed::bool age::nat))

Field selection x .age: select x age

Field update x with employed := e: update x employed e

Record literals, e.g., < | employed := F ; age := 65 |>:
syntactic sugar for a sequence of field updates

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

SMT-LIB, Yices
Basics: Propositional Logic, Arithmetic, Let Expressions
Quantifiers, Anonymous and Higher-Order Functions
Tuples, Records, Data Types
Bit Vectors

Monomorphisation

In HOL4, record types can depend on type arguments. Since Yices
only supports monomorphic types, we may need to create multiple
copies of a polymorphic record type.

Example: Hol datatype ‘foo = < | bar : ’a |>‘

An occurrence of both (α)foo and (β)foo in the input formula
leads to two type definitions

(define-type a)
(define-type foo1 (record bar1::a))
(define-type b)
(define-type foo2 (record bar2::b))

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

SMT-LIB, Yices
Basics: Propositional Logic, Arithmetic, Let Expressions
Quantifiers, Anonymous and Higher-Order Functions
Tuples, Records, Data Types
Bit Vectors

Data Types

Yices supports recursive data types.

Example: Hol datatype ‘list = NIL | CONS of ’a => list‘

(define-type a)
(define-type list (datatype NIL

(CONS hd::a tl::list)))

Monomorphisation, just like for record types

Case distinction uses Yices’s recognizers: e.g., list case b f l
becomes ite (NIL? l) b (f (hd l) (tl l)).

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

SMT-LIB, Yices
Basics: Propositional Logic, Arithmetic, Let Expressions
Quantifiers, Anonymous and Higher-Order Functions
Tuples, Records, Data Types
Bit Vectors

Bit Vectors (I)

Fixed-width bit-vector types, e.g., word8, word32, are translated to
their Yices counterparts: as bitvector 8, bitvector 32, etc.

Yices supports directly:

Bit-vector literals

Concatenation, extraction, shift

Bitwise logical operations

Addition, subtraction, multiplication, two’s complement

Signed and unsigned comparison

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

SMT-LIB, Yices
Basics: Propositional Logic, Arithmetic, Let Expressions
Quantifiers, Anonymous and Higher-Order Functions
Tuples, Records, Data Types
Bit Vectors

Bit Vectors (II)

HOL4’s w2w function is translated using either bv-extract or
bv-concat, depending on the width of its argument and result.

Extracting a single bit from a bit vector, denoted by ′ in HOL4, is
translated using Yices’s bv-extract function.

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

Identifiers
Semantic Differences
Error Checking

Caveats

The translation is soundness critical: bugs could lead to
inconsistent theorems in HOL4.

Therefore, it is important to get every detail right.

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

Identifiers
Semantic Differences
Error Checking

Identifiers

Uniformly generating fresh identifiers is easier than re-using HOL4
identifiers:

Identifiers must not clash with interpreted functions or
keywords that have special meaning to the SMT solver.

Identifiers must not contain invalid characters.

Generated identifiers must be distinct from each other.

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

Identifiers
Semantic Differences
Error Checking

Semantic Differences

There are subtle semantic differences between certain HOL4 and
(allegedly corresponding) SMT-LIB/Yices functions.

Subtraction m − n on naturals:

(define hol_num_minus::(-> nat nat nat)
(lambda (x::nat y::nat)

(ite (< x y) 0 (- x y))))

x div 0 and x mod 0

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

Identifiers
Semantic Differences
Error Checking

Error Checking

Yices “does no checking and can behave unpredictably if given bad
input.”

To ensure soundness, the burden to produce correct input for the
SMT solver is on our translation.

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

Experiments
Conclusions
Future Work
Questions?

Experiments

Key experiences, based on “typical” proof obligations from the
HOL4 library, and from work on machine-code verification:

The SMT-LIB interface, due to its restrictions, does not add
very much to existing proof procedures.

Yices performs very well for proof obligations that involve
bit-vector operations and linear arithmetic only.

Yices’s support for quantifiers and λ-terms, however, could be
improved.

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

Experiments
Conclusions
Future Work
Questions?

Conclusions

Integration of Yices and SMT-LIB based solvers with HOL4

SMT-LIB provides support for many solvers, but is restrictive.

Yices has a rich native input language.

Custom translations seem more worthwhile than sophisticated
encodings into SMT-LIB format. (Unfortunate!)

HOL4 available at http://hol.sourceforge.net/

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

http://hol.sourceforge.net/

Introduction
Translation

Caveats
Conclusions

Experiments
Conclusions
Future Work
Questions?

Future Work

Proof reconstruction (submitted; joint work with S. Böhme)

A more expressive SMT-LIB format (Version 2.0 ?!)

Considering context information (e.g., axioms and lemmas)

Displaying models as counterexamples

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

Introduction
Translation

Caveats
Conclusions

Experiments
Conclusions
Future Work
Questions?

Questions?

Thank you!

Tjark Weber SMT Solvers: New Oracles for the HOL Theorem Prover

	Introduction
	Motivation
	System Overview
	Higher-Order Logic
	Satisfiability Modulo Theories

	Translation
	SMT-LIB, Yices
	Basics: Propositional Logic, Arithmetic, Let Expressions
	Quantifiers, Anonymous and Higher-Order Functions
	Tuples, Records, Data Types
	Bit Vectors

	Caveats
	Identifiers
	Semantic Differences
	Error Checking

	Conclusions
	Experiments
	Conclusions
	Future Work
	Questions?

