13th International
Satisfiability Modulo Theories
Competition

SMT-COMP 2018

Matthias Heizmann Aina Niemetz
Giles Reger Tjark Weber

Outline

> Design and scope

» Main changes from last year's competition

» Short presentation of solvers

» Alt-Ergo, Boolector, Ctrl-Ergo, CVC4, OpenSMT,
SMTInterpol, SPASS-SATT, Yices

» Selected results

Design and Scope

Background

SMT-COMP is an annual competition between SMT solvers.

It was first held in 2005

> to spur adoption of the common, community-designed
SMT-LIB format, and

> to spark further advances in SMT by stimulating improvement
in solver implementations.

It has evolved into the world's largest® ATP competition.

SMT-COMP - Procedure

submit

SMT-LIB benchmarks SMT-LIB benchmarks
users \) curated by

Clark Barrett,
Pascal Fontaine,

Cesare Tinelli

upload
benchmarks

SMT solver upload
solvers 4

developers
P \ StarExec

maintained by

Aaron Stump

l

competition results

SMT-COMP - Procedure

Martin Bromberger
Aman Goel

Makai Mann
Casey Mulligan
Mathias Preiner
Clifford Wolf

submit

benchmarks

D—

SMT-LIB benchmarks
curated by
Clark Barrett,
Pascal Fontaine,
Cesare Tinelli

2018

SMT solver

developers
P \ StarExec

upload
solvers

upload
benchmarks

4

maintained by

Aaron Stump

l

competition results

Main Track

Main Track benchmark

(set-logic ...)
(set-info ...)

(declare-sort ...)
(define-sort ...)
(declare-fun ...)
(define-fun ...)
(assert term0)
(assert terml)
(assert term2)

(check-sat)
(exit)

any number of
set-info, declare-sort, define-sort,
declare-fun, define-fun, assert
commands

Vs
< one check-sat command

Main Track

Main Track benchmark

(set-logic ...)
(set-info ...)
(decl‘are-sort L) any number Of
(define-sort ...) X .
(declare-fun ...) set-info, declare-sort, define-sort,
(define-fun ...) i
(assert term0) declare-fun, define-fun, assert
(assert terml)
(assert term2) Commands
.)
(check-sat) < one check-sat command
(exit)
timeout: 20 mlnL Solver output
[sat|/[unsat]

Main Track

Main Track benchmark

(set-logic ...)

(set-info ...)
.] 1 el

Scoring

n =1 if the solver correctly responds sat or unsat
e =1 if the solver incorrectly responds sat or unsat

(multiplied by a weight that varies with the benchmark)

(eXIT)

timeout: 20 mmLﬁ Solver output

[sat|/[unsat]

Application Track
Application track benchmarks may contain multiple check-sat
commands, as well as push and pop commands.

Application Track
benchmark

(set-logic ...)

(check-sat) any number of
: set-info, declare-sort, define-sort,
(check-sat) .
chee sat declare-fun, define-fun, assert, push,
(check-sat) pop, check-sat

commands

(check-sat)
(exit)

Application Track

Application track benchmarks are fed to the solver incrementally
by a trace executor.

Application Track

benchmark Solver input
(set-option :print-success true)
(set-logic ...) (set-logic ...)
(check-sat) (check-sat)

(check-sat)
(check-sat)

(check-sat)
(exit)

timeout: 40 min

Application Track

Application track benchmarks are fed to the solver incrementally
by a trace executor.

Application Track

benchmark Solver input
(set-option :print-success true)
(set-logic ...) (set-logic ...)
X X Solver output
(chec‘k—sat) (chec‘k—sat) T ‘ sat ‘ / ‘unsat ‘

(check-sat)
(check-sat)

(check-sat)
(exit)

timeout: 40 min

Application Track

Application track benchmarks are fed to the solver incrementally

by a trace executor.

Application Track
benchmark

(set-logic ...
(checi(—sat)
(checjk—sat)
(checjk—sat)

(check-sat)
(exit)

)

Solver input

(set-option :print-success true)
(set-logic ...)

(check-sat)

(check-sat)

Solver output

|sat |/ [unsat]

timeout: 40 min

Application Track

Application track benchmarks are fed to the solver incrementally
by a trace executor.

Application Track

benchmark Solver input
(set-option :print-success true)
(set-logic ...) (set-logic ...)
X X Solver output
(chec‘k—sat) (chec‘k—sat) T ‘ sat ‘ / ‘unsat ‘
(chec.k—sat) (checi(—sat) —_— ‘ sat ‘ / ‘unsat ‘

(check-sat)

(check-sat)
(exit)

timeout: 40 min

Application Track

Application track benchmarks are fed to the solver incrementally
by a trace executor.

Application Track

benchmark Solver input
(set-option :print-success true)
(set-logic ...) (set-logic ...)
X X Solver output
(check-sat) (check-sat) T ’ sat ‘ / ’unsat ‘
(chec.k—sat) (checi(—sat) —_— ’ sat ‘ / ’unsat ‘
(check—sat) (check—sat)

(check-sat)
(exit)

timeout: 40 min

Application Track

Application track benchmarks are fed to the solver incrementally
by a trace executor.

Application Track

benchmark Solver input
(set-option :print-success true)
(set-logic ...) (set-logic ...)
X X Solver output
(check-sat) (check-sat) T ’ sat ‘ / ’unsat ‘
(chec.k—sat) (checi(—sat) —_— ’ sat ‘ / ’unsat ‘
(checlk—sat) (checlk—sat) —_— ’ sat ‘ / ’unsat ‘
(chec‘k—sat)
(exit)

timeout: 40 min

Application Track

Application track benchmarks are fed to the solver incrementally
by a trace executor.

Application Track

benchmark Solver input
(set-option :print-success true)
(set-logic ...) (set-logic ...)
X X Solver output
(check-sat) (check-sat) T ’ sat ‘ / ’unsat ‘
(chec.k—sat) (checi(—sat) —_— ’ sat ‘ / ’unsat ‘
(check-sat) (check-sat) —_— ’ sat ‘ / ’unsat ‘
(chec‘k—sat) (chec‘k—sat)
(exit)

timeout: 40 min

Application Track

Application track benchmarks are fed to the solver incrementally

by a trace executor.

Application Track
benchmark

(set-logic ...
(checi(—sat)
(checjk—sat)
(checjk—sat)

(check-sat)
(exit)

)

Solver input

(set-option :print-success true)
(set-logic ...)

(check-sat)

(check-sat) —_—
(check-sat) _
(check-sat) —

Solver output

[sat|/ [unsat]

[sat]/|[unsat|

[sat|/ [unsat]

[sat]/[unsat|

timeout: 40 min

Application Track

Application track benchmarks are fed to the solver incrementally

by a trace executor.

Application Track
benchmark

(set-logic ...
(checi(—sat)
(checjk—sat)
(checjk—sat)

(check-sat)
(exit)

)

Solver input

(set-option :print-success true)
(set-logic ...)

(check-sat)

(check-sat) —_—
(check-sat) _
(check-sat) —
(exit)

Solver output

[sat|/ [unsat]

[sat]/|[unsat|

[sat|/ [unsat]

[sat]/[unsat|

timeout: 40 min

Application Track

Application track benchmarks are fed to the solver incrementally
by a trace executor.

Application Track

benchmark Solver input
(set-option :print-success true)
(set-logic ...) /v (set-logic ...)
Scoring]
n = # correct Sat/unsat responses :{
e =1 if the solver gives an incorrect sat/unsat response W
(chec.k—sat) (check-sat) — ‘ sat ‘ / ‘unsat ‘
(exit) (exit)

timeout: 40 min

Unsat-Core Track

Main Track benchmark
(unsat)

Solver input

(set-logic ...)
(set-info ...)

(declare-sort ...)
(define-sort ...)
(declare-fun ...)
(define-fun ...)
(assert term0)
(assert terml)
(assert term2)

(check-sat)
(exit)

(set-option :produce-unsat-cores true)

(set-logic ...)
(set-info ...)

(declare-sort ...
(define-sort ...)
(declare-fun ...)
(define-fun ...)

(assert (! term0
(assert (! terml
(assert (! term2

(check-sat)
(get-unsat-core)
(exit)

:named y0))
:named y1))
:named y2))

Unsat-Core Track

Main Track benchmark

(unsat) Solver input

(set-option :produce-unsat-cores true)
(set-logic ...)
(set-info ...)

(set-logic ...)
(set-info ...)

(declare-sort ...)
(define-sort ...)
(declare-fun ...)
(define-fun ...)

(declare-sort ...)
(define-sort ...)
(declare-fun ...) —
(define-fun ...)

(assert term0)
(assert terml)
(assert term2)

(check-sat)
(exit)

(assert (! term0
(assert (! terml
(assert (! term2

(check-sat)
(get-unsat-core)

(exit)

:named y0))
:named y1))
:named y2))

Solver output

unsat
(y0 y2)

timeout: 40 min

Unsat-Core Track

Main Track benchmark

(unsat) Solver input Validation script

(set-option :produce-unsat-cores true)
(set-logic ...)
(set-info ...)

(set-logic ...)
(set-info ...)

(set-logic ...)
(set-info ...)

(declare-sort ...)
(define-sort ...)
(declare-fun ...)
(define-fun ...)

(declare-sort ...) (declare-sort ...)
(define-sort ...) (define-sort ...)
(declare-fun ...) —— | (declare-fun ...) —

(define-fun ...) (define-fun ...)

(assert term0) (assert (! termO :named y0)) (assert terml)
(assert terml) (assert (! terml :named y1)) ~assert—term2)—
(assert (! term2 :named y2))

(assert term2)

(check-sat)
(exit)

(check-sat)
(get-unsat-core)

(exit)

(assert term3)

(check-sat)
(exit)

timeout: 40 min

Solver output

unsat
(y0 y2)

Unsat-Core Track

Main Track benchmark
(unsat)

Solver input

Validation script

(set-logic ...)
(set-info ...)

(declare-sort ...)
(define-sort ...)
(declare-fun ...)
(define-fun ...)
(assert term0)
(assert terml)
(assert term2)

(check-sat)
(exit)

(set-option :produce-unsat-cores true)

(set-logic ...)
(set-info ...)

(declare-sort ...
(define-sort ...)
(declare-fun ...)
(define-fun ...)

(assert (! term0
(assert (! terml
(assert (! term2

(check-sat)
(get-unsat-core)

(exit)

)

:named y0))
:named y1))
:named y2))

(set-logic ...)
(set-info ...)

(declare-sort ...)
(define-sort ...)
—» | (declare-fun ...)
(define-fun ...)
(assert terml)
~(assert—term2)—

(assert term3)

(check-sat)
(exit)

timeout: 40 min

Solver output

unsat
(y0 y2)

Validation
solver 1

1

sat/
unsat/
unknown

aram

S TN

timeout: 2 min each

N

Validation ~ Validation
solver 2 solver 3
sat/ sat/
unsat/ unsat/
unknown unknown

Validation

unknown

Unsat-Core Track

Main Track benchmark
(unsat) Solver input Validation script
(set-option :produce-unsat-cores true)
(set-logic ...) (set-logic ...) (set-logic ...)
(set-info ...) (set-info ...) (set-info ...)

(declare-sort ...)

(declare-sort ...)

(declare-sort ...

)

Scoring

n = # assert commands - size of unsatisfiable core
wrong check-sat result, or
unsat-core rejected by validating solvers

. . 40 . Solver output %
timeout: min unsat
timeout: 2 min each
(y0 y2) / / l

Validation ~ Validation Validation
solver 1 solver 2 solver 3
1 { 1
sat/ sat/ sat/
unsat/ unsat/ unsat/

unknown unknown unknown

N

Validation
solver 4

{
sat/

unsat/
unknown

Solvers, Logics, and Benchmarks

» 17 teams participated

> Solvers:
20 - 4 non-competing

. 2 non-competing

Main track

Application track
Unsat-core track [3] | 2 non-competing

» Logics:
Main track rﬂ 1 experimental
Application track
Unsat-core track ! 44 |

» Benchmarks:
Main track
Application track [J] 9257
Unsat-core track ! 130705 |

Job Pairs

1,776,062 job pairs (4 some repeats)

1,800,000

1,500,000

1,200,000

900,000

600,000

300,000

2014 2015

2016

2017

ucC

2018

App

StarExec

All job pairs were executed on StarExec, a cluster at the University
of lowa.

Hardware:
> Intel Xeon CPU E5-2609 @ 2.4 GHz, 10 MB cache
> 2 processors per node, 4 cores per processor

» Main memory capped at 60 GB per job pair

Software:
> Red Hat Enterprise Linux Server release 7.2

» Kernel 3.10.0-514, gcc 4.8.5, glibc 2.17

~ 17 days x 120 nodes x 2 processors/node of compute time

Main Changes From 2017

v

Datatype (DT) divisions no longer experimental

v

Experimental string division (QF_SLIA)

v

Unsat-core track: core validation by simple majority vote

v

Certificates

(Very) short presentations of

Solvers

that sent us slides:

Alt-Ergo, Boolector, Ctrl-Ergo, CVC4,
OpenSMT, SMTInterpol, SPASS-SATT, Yices

Alt-Ergo @ SMT-Comp 2018

» based on version 2.2.0 presented by Albin yesterday,

» improve triggers inference, in particular for multi-triggers,
» allow/propagate more triggers in the backend,

» improve handling of Let-In,

» enable additional heuristics before returning unknown,

» experimental : enable a kind of first-order resolution

» experimental : SAT detection in some situations

» add the ability to run several strategies in parallel

https://github.com/0CamlPro/alt-ergo

Mohamed IGUERNLALA {Alt, Ctrl}-Ergo @ SMT-Comp 2018

Boolector at the SMT-COMP’18

Divisions

Main: BV QF.BV QF.UFBV QF_ABV QF._AUFBV
Application: QF_BV QF_UFBV QF_ABV

Configuration

e SAT competition 2017 version of CaDiCaL for QF_-BV

SAT competition 2018 version of Lingeling for all other divisions
e Combination of prop.-based local search + bit-blasting for BV, QF_BV

e Minor improvements to array engine and simplifications/rewriting

New release of Boolector

e Version 3.0
e Now on GitHub: https://github.com/boolector/boolector

e MIT license

Ctrl-Ergo @ SMT-Comp 2018

» a prototype | developed during my thesis to validate our work
published at IJCAR'2012

» Simplex-based Fourier-Motkzin procedure to decide QF_LIA
» pre-processing for QF_LIA Let-In and lte expressions
» general Simplex for QF_LRA
» mini-SAT based SAT solver

» extended to be able to run several strategies in parallel

https://gitlab.com/0CamlPro-Iguernlala/Ctrl-Ergo

Mohamed IGUERNLALA {Alt, Ctrl}-Ergo @ SMT-Comp 2018

CVC4 at the SMT Competition 2018

Divisions

This year’s configuration of CVC4 enters all divisions in all tracks.

New Features / Improvements

New: Floating-Point Solver

New: Novel approach for Quantified Bit-Vectors

New: Experimental division QF_SLIA (strings)

Eager Bit-Blasting Solver with CaDiCal as back end

Heuristic Approaches for Non-Linear Arithmetic with CaDiCal as back end

Improvement of quantifier instantiation

Experimental Configuration CVC4-experimental-idl-2

non-competitive

e specialized IDL solver, entered division QF_IDL of the main track

OpenSMT

A relatively small DPLL(T)-based SMT Solver
Developed at University of Lugano, Switzerland
Supports QF _UF, QF LRA, and to some extent QF BV

Theory refinement
Interpolation
Integration to our model checker HiFrog

Available from http://verify.inf.usi.ch/opensmt

Quantifier Free

" Arrays)
Quantifier Free . Quantifier Free
Linear Arithmetic b=a(i<v) Uninterpreted Functions
y<i+1 A =v f(b) =v
i<y o f(a) #v
y — to_int(y) < .3 Theory combination
b[i] > i
fli+y)=2v
f(b)<i

o Ce—]
SMTInterpoI
A

interpolants

http://ultimate.informatik.uni-freiburg.de/smtinterpol

http://www.spass-prover.org/spass-satt

SATT

Developers:
Martin Bromberger, Mathias Fleury, Fabian Kunze, Dominik Wagner, Christoph Weidenbach

Ground Linear Arithmetic Solver:

newest tool in the SPASS Workbench

combines our theory solver SPASS-1Q and our unnamed SAT solver
supports QF_LIA, QF_LRA, (and QF_LIRA)

complete but efficient theory solver [IJCAR2018]

uses fast cube tests [IJCAR2016, FMSD2017]

SAT decisions based on theory solver information

uses many more well-known techniques for linear arithmetic

I Saarland
' l I I I max planck institut Informatics Campus
informatik

= Computer Science Laboratory, SRI International

Yices 2.6 in SMTCOMP 2018

Yices 2

o Supports linear and non-linear arithmetic, arrays, UF, bitvectors
o Includes two types of solvers: classic DPPL(T") + MC-SAT
ohttps://github.com/SRI-CSL/yices2
New in 2018
o Unsat cores
o Incremental MC-SAT
Entered in all the divisions that Yices supports
o Main/application track: Quantifier-free logics including linear and nonlinear
arithmetic, bitvectors, and combination with UF and Arrays.
o Unsat core track: Same logics, except that unsat cores are not yet supported
by MC-SAT (i.e., nonlinear arithmetic)

Acknowledgments: thanks to Aman Goel (UMich) for help with unsat cores

Selected Results

Unsat-Core Track

> 3 competing solvers: CVC4, SMTInterpol, Yices-2.6.0

» 16 competitive divisions (out of 44)

Solver Divisions won

CvC4

SMTInterpol
Yices-2.6.0

Unsat-Core Track

> 3 competing solvers: CVC4, SMTInterpol, Yices-2.6.0

» 16 competitive divisions (out of 44)

Solver Divisions won

CvC4 QF_AUFLIA, QF_IDL, QF_LIRA, QF_RDL,
QF_UF

SMTInterpol

Yices-2.6.0

Unsat-Core Track

> 3 competing solvers: CVC4, SMTInterpol, Yices-2.6.0

» 16 competitive divisions (out of 44)

Solver Divisions won
CVvC4 QF_AUFLIA, QF.IDL, QF_LIRA, QF_RDL,
QF_UF

SMTInterpol QF_LIA, QF_LRA, QF_UFLIA
Yices-2.6.0

Unsat-Core Track

> 3 competing solvers: CVC4, SMTInterpol, Yices-2.6.0

» 16 competitive divisions (out of 44)

Solver Divisions won
CVvC4 QF_AUFLIA, QF.IDL, QF_LIRA, QF_RDL,
QF_UF

SMTInterpol QF_LIA, QF_LRA, QF_UFLIA

Yices-2.6.0 QF_ABV, QF_ALIA, QF_AUFBV, QF_AX,
QF_BV, QF_UFBV, QF_UFIDL, QF_-UFLRA

Application Track

» 4 competing solvers: Boolector, CVC4, SMTInterpol,
Yices-2.6.0

» 12 competitive divisions (out of 21)

Solver Divisions won

Boolector
CvC4
SMTInterpol
Yices-2.6.0

Application Track

» 4 competing solvers: Boolector, CVC4, SMTInterpol,
Yices-2.6.0

» 12 competitive divisions (out of 21)

Solver Divisions won
Boolector QF_ABV, QF_UFBV
CvC4

SMTInterpol

Yices-2.6.0

Application Track

» 4 competing solvers: Boolector, CVC4, SMTInterpol,
Yices-2.6.0

» 12 competitive divisions (out of 21)

Solver Divisions won
Boolector QF_ABV, QF_UFBV
CvC4 QF_NIA, QF_UFNIA
SMTInterpol

Yices-2.6.0

Application Track

» 4 competing solvers: Boolector, CVC4, SMTInterpol,
Yices-2.6.0

» 12 competitive divisions (out of 21)

Solver Divisions won
Boolector QF_ABV, QF_UFBV
CVC4 QF_NIA, QF_UFNIA

SMTInterpol QF_ALIA, QF_UFLIA
Yices-2.6.0

Application Track

» 4 competing solvers: Boolector, CVC4, SMTInterpol,
Yices-2.6.0

» 12 competitive divisions (out of 21)

Solver Divisions won
Boolector QF_ABV, QF_UFBV
CVC4 QF_NIA, QF_UFNIA

SMTInterpol QF_ALIA, QF_UFLIA

Yices-2.6.0 QF_AUFBV, QF_AUFLIA, QF_BV, QF_LIA,
QF_LRA, QF_UFLRA

Main Track

» 20 competing solvers
» 41 competitive divisions (out of 50)

Solver Divisions won

Main Track

» 20 competing solvers
» 41 competitive divisions (out of 50)

Solver Divisions won

Boolector QF_ABV, QF_BV*®4, QF_UFBV

Main Track

» 20 competing solvers
» 41 competitive divisions (out of 50)

Solver Divisions won

Boolector QF_ABV, QF_BV*®4, QF_UFBV
COLIBRI QF_FP

Main Track

» 20 competing solvers

» 41 competitive divisions (out of 50)

Solver Divisions won

Boolector QF_ABV, QF_BV*®4, QF_UFBV

COLIBRI QF_FP

CvC4 ALIA, AUFDTLIA, AUFLIA, AUFLIRA, AUFNIRA,

BV, LIA, LRA, NIA, QF_ABVFP, QF_AUFBYV,
QF_BVFP, QF_LRA, QF_NIA, UF®*4, UFDT,
UFDTLIA, UFIDL, UFLIA, UFLRA

Main Track

» 20 competing solvers
» 41 competitive divisions (out of 50)

Solver Divisions won

Boolector QF_ABV, QF_BV*®4, QF_UFBV

COLIBRI QF_FP

CvC4 ALIA, AUFDTLIA, AUFLIA, AUFLIRA, AUFNIRA,

BV, LIA, LRA, NIA, QF_ABVFP, QF_AUFBYV,

QF_BVFP, QF_LRA, QF_NIA, UF®*4, UFDT,

UFDTLIA, UFIDL, UFLIA, UFLRA
Minkeyrink-MT — QF_BVP"

Main Track

» 20 competing solvers
» 41 competitive divisions (out of 50)

Solver Divisions won

Boolector QF_ABV, QF_BV*®4, QF_UFBV

COLIBRI QF_FP

CvC4 ALIA, AUFDTLIA, AUFLIA, AUFLIRA, AUFNIRA,

Minkeyrink-MT
SMTRAT

BV, LIA, LRA, NIA, QF_ABVFP, QF_AUFBYV,
QF_BVFP, QF_LRA, QF_NIA, UF®*4, UFDT,
UFDTLIA, UFIDL, UFLIA, UFLRA

QF_BVPr

QF_NIRA

Main Track

» 20 competing solvers
» 41 competitive divisions (out of 50)

Solver Divisions won

Boolector QF_ABV, QF_BV*®4, QF_UFBV

COLIBRI QF_FP

CvC4 ALIA, AUFDTLIA, AUFLIA, AUFLIRA, AUFNIRA,

Minkeyrink-MT
SMTRAT
SPASS-SATT

BV, LIA, LRA, NIA, QF_ABVFP, QF_AUFBYV,
QF_BVFP, QF_LRA, QF_NIA, UF®*4, UFDT,
UFDTLIA, UFIDL, UFLIA, UFLRA

QF_BVPr

QF_NIRA

QF_LIA

Main Track

» 20 competing solvers
» 41 competitive divisions (out of 50)

Solver Divisions won

Boolector QF_ABV, QF_BV*®4, QF_UFBV

COLIBRI QF_FP

CvC4 ALIA, AUFDTLIA, AUFLIA, AUFLIRA, AUFNIRA,

BV, LIA, LRA, NIA, QF_ABVFP, QF_AUFBYV,
QF_BVFP, QF_LRA, QF_NIA, UF®*4, UFDT,
UFDTLIA, UFIDL, UFLIA, UFLRA

Minkeyrink-MT — QF_BVP"

SMTRAT QF_NIRA

SPASS-SATT QF_LIA

Vampire NRA, UFP", UFNIA

Main Track

» 20 competing solvers
» 41 competitive divisions (out of 50)

Solver Divisions won

Boolector QF_ABV, QF_BV*®4, QF_UFBV

COLIBRI QF_FP

CvC4 ALIA, AUFDTLIA, AUFLIA, AUFLIRA, AUFNIRA,

BV, LIA, LRA, NIA, QF_ABVFP, QF_AUFBYV,

QF_BVFP, QF_LRA, QF_NIA, UF®*4, UFDT,

UFDTLIA, UFIDL, UFLIA, UFLRA
Minkeyrink-MT — QF_BVP"

SMTRAT QF_NIRA

SPASS-SATT QF_LIA

Vampire NRA, UFP" UFNIA

Yices-2.6.0 QF_ALIA, QF_AUFLIA, QF_AX, QF_IDL, QF_LIRA,

QF_NRA, QF_RDL, QF_UF, QF_UFIDL, QF_UFLIA,
QF_UFLRA, QF_UFNIA, QF_UFNRA

Main Track: Competition-Wide Scoring

Rank Solver Score (sequential) Score (parallel)

Best newcomer:
7 SPASS-SATT 14.81 14.81

Main Track: Competition-Wide Scoring

Rank Solver Score (sequential) Score (parallel)

3 SMTInterpol 65.32 65.38

Best newcomer:
7 SPASS-SATT 14.81 14.81

Main Track: Competition-Wide Scoring

Rank Solver Score (sequential) Score (parallel)
2 Yices-2.6.0 115.26 115.26
3 SMTInterpol 65.32 65.38

Best newcomer:
7 SPASS-SATT 14.81 14.81

Main Track: Competition-Wide Scoring

Rank Solver Score (sequential) Score (parallel)

Z3 186.19 186.19
2 Yices-2.6.0 115.26 115.26
3 SMTInterpol 65.32 65.38

Best newcomer:
7 SPASS-SATT 14.81 14.81

Main Track: Competition-Wide Scoring

Rank Solver Score (sequential) Score (parallel)
1 CvC4 211.99 211.99

Z3 186.19 186.19
2 Yices-2.6.0 115.26 115.26
3 SMTInterpol 65.32 65.38

Best newcomer:
7 SPASS-SATT 14.81 14.81

Teams:
» Congratulations on your accomplishments!

» Thanks for your participation!

FLoC Olympic Games Award Ceremony

tomorrow at 14:00 in room L3 (Mathematical Institute)

Backup Slides

Incorrect Answers

Main track:
» 125 incorrect answers (0.01%) by 6 solvers (25%)

» No disagreements between sound solvers on benchmarks with
unknown status

Application track:

» No incorrect answers

Unsat-core track:
» No incorrect check-sat answers
» 443 incorrect unsat cores (0.1%) by 1 solver (20%)

