

13th International Satisfiability Modulo Theories Competition

SMT-COMP 2018

Matthias Heizmann Aina Niemetz Giles Reger Tjark Weber

Outline

- Design and scope
 - Main changes from last year's competition

- Short presentation of solvers
 - Alt-Ergo, Boolector, Ctrl-Ergo, CVC4, OpenSMT, SMTInterpol, SPASS-SATT, Yices

Selected results

Design and Scope

Background

SMT-COMP is an annual competition between SMT solvers.

It was first held in 2005

- to spur adoption of the common, community-designed SMT-LIB format, and
- to spark further advances in SMT by stimulating improvement in solver implementations.

It has evolved into the world's largest* ATP competition.

SMT-COMP - Procedure

SMT-COMP - Procedure

Main Track

```
Main Track benchmark
 (set-logic ...)
 (set-info ...)
                        any number of
 (declare-sort ...)
 (define-sort ...)
                           set-info, declare-sort, define-sort,
 (declare-fun ...)
 (define-fun ...)
                           declare-fun, define-fun, assert
 (assert term0)
 (assert term1)
                        commands
 (assert term2)

    one check-sat command

 (check-sat)
 (exit)
```

Main Track

Main Track

Application track benchmarks may contain **multiple** check-sat commands, as well as push and pop commands.

any number of
set-info, declare-sort, define-sort,
declare-fun, define-fun, assert, push,
pop, check-sat
commands

Application track benchmarks are fed to the solver **incrementally** by a trace executor.

Application track benchmarks are fed to the solver **incrementally** by a trace executor.

Application track benchmarks are fed to the solver **incrementally** by a trace executor.

Application track benchmarks are fed to the solver **incrementally** by a trace executor.

Application track benchmarks are fed to the solver **incrementally** by a trace executor.

Application track benchmarks are fed to the solver **incrementally** by a trace executor.

Application track benchmarks are fed to the solver **incrementally** by a trace executor.

Application track benchmarks are fed to the solver incrementally by a trace executor.

Application track benchmarks are fed to the solver incrementally by a trace executor.

Application track benchmarks are fed to the solver **incrementally** by a trace executor.

Main Track benchmark (unsat)

```
(set-logic ...)
(set-info ...)
...
...
...
(declare-sort ...)
(define-sort ...)
(define-fun ...)
(dssert term0)
(assert term1)
(assert term2)
...
...
(check-sat)
(exit)
```

Solver input

```
Main Track benchmark
(unsat)
                           Solver input
                             (set-option :produce-unsat-cores true)
 (set-logic ...)
                             (set-logic ...)
 (set-info ...)
                             (set-info ...)
 (declare-sort ...)
                             (declare-sort ...)
                             (define-sort ...)
 (define-sort ...)
 (declare-fun ...)
                            (declare-fun ...)
 (define-fun ...)
                             (define-fun ...)
 (assert term0)
                             (assert (! term0 :named y0))
 (assert term1)
                             (assert (! term1 :named v1))
                             (assert (! term2 :named y2))
 (assert term2)
 (check-sat)
                             (check-sat)
 (exit)
                             (get-unsat-core)
                             (exit)
                                        Solver output
   timeout: 40 min
                                         unsat
                                          (y0 \ y2)
```

```
Main Track benchmark
(unsat)
                                                                           Validation script
                           Solver input
                             (set-option :produce-unsat-cores true)
 (set-logic ...)
                             (set-logic ...)
                                                                             (set-logic ...)
 (set-info ...)
                             (set-info ...)
                                                                             (set-info ...)
 (declare-sort ...)
                             (declare-sort ...)
                                                                             (declare-sort ...)
                             (define-sort ...)
                                                                             (define-sort ...)
 (define-sort ...)
                                                                             (declare-fun ...)
 (declare-fun ...)
                            (declare-fun ...)
 (define-fun )
                             (define-fun ...)
                                                                             (define-fun ...)
 (assert term0)
                             (assert (! term0 :named v0))
                                                                             (assert term1)
 (assert term1)
                             (assert (! term1 :named v1))
                                                                             (assert term2)
                             (assert (! term2 :named v2))
                                                                             (assert term3)
 (assert term2)
 (check-sat)
                                                                             (check-sat)
                             (check-sat)
 (exit)
                             (get-unsat-core)
                                                                             (exit)
                             (exit)
                                         Solver output
   timeout: 40 min
                                          unsat
                                          (v0 \ v2)
```


Solvers, Logics, and Benchmarks

- 17 teams participated
- Solvers:

Logics:

Benchmarks:

Job Pairs

1,776,062 job pairs (+ some repeats)

StarExec

All job pairs were executed on StarExec, a cluster at the University of Iowa.

Hardware:

- ▶ Intel Xeon CPU E5-2609 @ 2.4 GHz, 10 MB cache
- 2 processors per node, 4 cores per processor
- Main memory capped at 60 GB per job pair

Software:

- Red Hat Enterprise Linux Server release 7.2
- Kernel 3.10.0-514, gcc 4.8.5, glibc 2.17

 \sim 17 days \times 120 nodes \times 2 processors/node of compute time

Main Changes From 2017

- Datatype (DT) divisions no longer experimental
- Experimental string division (QF_SLIA)
- Unsat-core track: core validation by simple majority vote
- Certificates

(Very) short presentations of

Solvers

that sent us slides:

Alt-Ergo, Boolector, Ctrl-Ergo, CVC4, OpenSMT, SMTInterpol, SPASS-SATT, Yices

Alt-Ergo @ SMT-Comp 2018

- based on version 2.2.0 presented by Albin yesterday,
- improve triggers inference, in particular for multi-triggers,
- allow/propagate more triggers in the backend,
- improve handling of Let-In,
- enable additional heuristics before returning unknown,
- experimental : enable a kind of first-order resolution
- experimental : SAT detection in some situations
- add the ability to run several strategies in parallel

https://github.com/OCamlPro/alt-ergo

Boolector at the SMT-COMP'18

Aina Niemetz, Mathias Preiner, Armin Biere

Divisions

Main: BV QF_BV QF_UFBV QF_ABV QF_AUFBV

Application: QF_BV QF_UFBV QF_ABV

Configuration

- SAT competition 2017 version of CaDiCaL for QF_BV
- SAT competition 2018 version of Lingeling for all other divisions
- Combination of prop.-based local search + bit-blasting for BV, QF_BV
- Minor improvements to array engine and simplifications/rewriting

New release of Boolector

- Version 3.0
- Now on GitHub: https://github.com/boolector/boolector
- MIT license

1

Ctrl-Ergo @ SMT-Comp 2018

- a prototype I developed during my thesis to validate our work published at IJCAR'2012
 - ► Simplex-based Fourier-Motkzin procedure to decide QF_LIA
- pre-processing for QF_LIA Let-In and Ite expressions
- general Simplex for QF_LRA
- mini-SAT based SAT solver
- extended to be able to run several strategies in parallel

https://gitlab.com/OCamlPro-Iguernlala/Ctrl-Ergo

CVC4 at the SMT Competition 2018

Clark Barrett, Haniel Barbosa, Martin Brain, Duligur Ibeling, Tim King, Paul Meng, Aina Niemetz, Andres Nötzli, Mathias Preiner, Andrew Reynolds, Cesare Tinelli

Divisions

This year's configuration of CVC4 enters all divisions in all tracks.

New Features / Improvements

- New: Floating-Point Solver
- New: Novel approach for Quantified Bit-Vectors
- New: Experimental division QF_SLIA (strings)
- Eager Bit-Blasting Solver with CaDiCaL as back end
- Heuristic Approaches for Non-Linear Arithmetic with CaDiCaL as back end
- Improvement of quantifier instantiation

Experimental Configuration CVC4-experimental-idl-2

- non-competitive
- specialized IDL solver, entered division QF_IDL of the main track

OpenSMT

A relatively small DPLL(T)-based SMT Solver Developed at University of Lugano, Switzerland Supports QF_UF, QF_LRA, and to some extent QF_BV

Theory refinement
Interpolation
Integration to our model checker HiFrog

Available from http://verify.inf.usi.ch/opensmt

http://ultimate.informatik.uni-freiburg.de/smtinterpol

Developers:

<u>Martin Bromberger</u>, Mathias Fleury, Fabian Kunze, Dominik Wagner, Christoph Weidenbach

Ground Linear Arithmetic Solver:

- · newest tool in the SPASS Workbench
- · combines our theory solver SPASS-IQ and our unnamed SAT solver
- supports QF_LIA, QF_LRA, (and QF_LIRA)
- complete but efficient theory solver [IJCAR2018]
- uses fast cube tests [IJCAR2016, FMSD2017]
- · SAT decisions based on theory solver information
- uses many more well-known techniques for linear arithmetic

Yices 2.6 in SMTCOMP 2018

Yices 2

- o Supports linear and non-linear arithmetic, arrays, UF, bitvectors
- ∘ Includes two types of solvers: classic DPPL(T) + MC-SAT
- o https://github.com/SRI-CSL/yices2

New in 2018

- Unsat cores
- Incremental MC-SAT

Entered in all the divisions that Yices supports

- Main/application track: Quantifier-free logics including linear and nonlinear arithmetic, bitvectors, and combination with UF and Arrays.
- Unsat core track: Same logics, except that unsat cores are not yet supported by MC-SAT (i.e., nonlinear arithmetic)

Acknowledgments: thanks to Aman Goel (UMich) for help with unsat cores

1

Selected Results

- ▶ 3 competing solvers: CVC4, SMTInterpol, Yices-2.6.0
- ▶ 16 competitive divisions (out of 44)

Solver	Divisions won
CVC4	
SMTInterpol	
Yices-2.6.0	

- ▶ 3 competing solvers: CVC4, SMTInterpol, Yices-2.6.0
- ▶ 16 competitive divisions (out of 44)

Solver	Divisions won			
CVC4	QF_AUFLIA, QF_UF	QF_IDL,	QF_LIRA,	QF_RDL,
${\sf SMTInterpol}$				
Yices-2.6.0				

- ▶ 3 competing solvers: CVC4, SMTInterpol, Yices-2.6.0
- ▶ 16 competitive divisions (out of 44)

Solver	Divisions won
CVC4	QF_AUFLIA, QF_IDL, QF_LIRA, QF_RDL, QF_UF
${\sf SMTInterpol}$	QF_LIA, QF_LRA, QF_UFLIA
Yices-2.6.0	

- ▶ 3 competing solvers: CVC4, SMTInterpol, Yices-2.6.0
- ▶ 16 competitive divisions (out of 44)

Solver	Divisions won
CVC4	QF_AUFLIA, QF_IDL, QF_LIRA, QF_RDL, QF_UF
${\sf SMTInterpol}$	QF_LIA, QF_LRA, QF_UFLIA
Yices-2.6.0	QF_ABV, QF_ALIA, QF_AUFBV, QF_AX, QF_BV, QF_UFBV, QF_UFIDL, QF_UFLRA

- ▶ 4 competing solvers: Boolector, CVC4, SMTInterpol, Yices-2.6.0
- ▶ 12 competitive divisions (out of 21)

Solver	Divisions won
Boolector	
CVC4	
${\sf SMTInterpol}$	
Yices-2.6.0	

- ▶ 4 competing solvers: Boolector, CVC4, SMTInterpol, Yices-2.6.0
- ▶ 12 competitive divisions (out of 21)

Solver	Divisions won
Boolector	QF_ABV, QF_UFBV
CVC4	
SMTInterpol	
Yices-2.6.0	

- ▶ 4 competing solvers: Boolector, CVC4, SMTInterpol, Yices-2.6.0
- ▶ 12 competitive divisions (out of 21)

Solver	Divisions won
Boolector	QF_ABV, QF_UFBV
CVC4	QF_NIA, QF_UFNIA
${\sf SMTInterpol}$	
Yices-2.6.0	

- ▶ 4 competing solvers: Boolector, CVC4, SMTInterpol, Yices-2.6.0
- ▶ 12 competitive divisions (out of 21)

Solver	Divisions won
Boolector	QF_ABV, QF_UFBV
CVC4	QF_NIA, QF_UFNIA
${\sf SMTInterpol}$	QF_ALIA, QF_UFLIA
Yices-2.6.0	

- ▶ 4 competing solvers: Boolector, CVC4, SMTInterpol, Yices-2.6.0
- ▶ 12 competitive divisions (out of 21)

Solver	Divisions won
Boolector	QF_ABV, QF_UFBV
CVC4	QF_NIA, QF_UFNIA
${\sf SMTInterpol}$	QF_ALIA, QF_UFLIA
Yices-2.6.0	QF_AUFBV, QF_AUFLIA, QF_BV, QF_LIA, QF_LRA, QF_UFLRA

- ▶ 20 competing solvers
- ▶ 41 competitive divisions (out of 50)

Solver

Divisions won

- ▶ 20 competing solvers
- ▶ 41 competitive divisions (out of 50)

Solver	Divisions won
Boolector	QF_ABV, QF_BV ^{seq} , QF_UFBV

- ▶ 20 competing solvers
- ▶ 41 competitive divisions (out of 50)

Solver	Divisions won
Boolector	QF_ABV, QF_BV ^{seq} , QF_UFBV
COLIBRI	QF_FP

- ▶ 20 competing solvers
- ▶ 41 competitive divisions (out of 50)

Solver	Divisions won
Boolector	QF_ABV, QF_BV ^{seq} , QF_UFBV
COLIBRI	QF_FP
CVC4	ALIA, AUFDTLIA, AUFLIA, AUFLIRA, AUFNIRA,
	BV, LIA, LRA, NIA, QF_ABVFP, QF_AUFBV,
	QF_BVFP, QF_LRA, QF_NIA, UFseq, UFDT,
	UFDTLIA, UFIDL, UFLIA, UFLRA

- ▶ 20 competing solvers
- ▶ 41 competitive divisions (out of 50)

Solver	Divisions won			
Boolector	QF_ABV, QF_BV ^{seq} , QF_UFBV			
COLIBRI	QF_FP			
CVC4	ALIA, AUFDTLIA, AUFLIA, AUFLIRA, AUFNIRA,			
	BV, LIA, LRA, NIA, QF_ABVFP, QF_AUFBV,			
	QF_BVFP, QF_LRA, QF_NIA, UF ^{seq} , UFDT,			
	UFDTLIA, UFIDL, UFLIA, UFLRA			
Minkeyrink-MT	$QF_{-}BV^par$			

- ▶ 20 competing solvers
- ▶ 41 competitive divisions (out of 50)

Solver	Divisions won			
Boolector	QF_ABV, QF_BV ^{seq} , QF_UFBV			
COLIBRI	QF_FP			
CVC4	ALIA, AUFDTLIA, AUFLIA, AUFLIRA, AUFNIRA,			
	BV, LIA, LRA, NIA, QF_ABVFP, QF_AUFBV,			
	QF_BVFP, QF_LRA, QF_NIA, UFseq, UFDT,			
	UFDTLIA, UFIDL, UFLIA, UFLRA			
Minkeyrink-MT	QF_BV^{par}			
SMTRAT	QF_NIRA			

- ▶ 20 competing solvers
- ▶ 41 competitive divisions (out of 50)

Solver	Divisions won		
Boolector	QF_ABV, QF_BV ^{seq} , QF_UFBV		
COLIBRI	QF_FP		
CVC4	ALIA, AUFDTLIA, AUFLIA, AUFLIRA, AUFNIRA,		
	BV, LIA, LRA, NIA, QF_ABVFP, QF_AUFBV,		
	QF_BVFP, QF_LRA, QF_NIA, UFseq, UFDT,		
	UFDTLIA, UFIDL, UFLIA, UFLRA		
Minkeyrink-MT	QF_BV^{par}		
SMTRAT	QF_NIRA		
SPASS-SATT	QF_LIA		

- ▶ 20 competing solvers
- ▶ 41 competitive divisions (out of 50)

Solver	Divisions won		
Boolector	QF_ABV, QF_BV ^{seq} , QF_UFBV		
COLIBRI	QF_FP		
CVC4	ALIA, AUFDTLIA, AUFLIA, AUFLIRA, AUFNIRA,		
	BV, LIA, LRA, NIA, QF_ABVFP, QF_AUFBV,		
	QF_BVFP, QF_LRA, QF_NIA, UF ^{seq} , UFDT,		
	UFDTLIA, UFIDL, UFLIA, UFLRA		
Minkeyrink-MT	QF_BV^{par}		
SMTRAT	QF_NIRA		
SPASS-SATT	QF_LIA		
Vampire	NRA, UF ^{par} , UFNIA		

- ▶ 20 competing solvers
- ▶ 41 competitive divisions (out of 50)

Divisions won	
QF_ABV, QF_BV ^{seq} , QF_UFBV	
QF_FP	
ALIA, AUFDTLIA, AUFLIA, AUFLIRA, AUFNIRA,	
BV, LIA, LRA, NIA, QF_ABVFP, QF_AUFBV,	
QF_BVFP, QF_LRA, QF_NIA, UF ^{seq} , UFDT,	
UFDTLIA, UFIDL, UFLIA, UFLRA	
QF_BV^{par}	
QF_NIRA	
QF_LIA	
NRA, UF ^{par} , UFNIA	
QF_ALIA, QF_AUFLIA, QF_AX, QF_IDL, QF_LIRA,	
QF_NRA, QF_RDL, QF_UF, QF_UFIDL, QF_UFLIA,	
QF_UFLRA, QF_UFNIA, QF_UFNRA	

Rank	Solver	Score (s	sequential)	Score	(parallel)

Best newcomer:

7 SPASS-SATT 14.81 14.81

Rank	Solver	Score (sequential)	Score (parallel)
3	SMTInterpol	65.32	65.38
Rost n	newcomer:		
Dest II		1.4.01	1401
1	SPASS-SATT	14.81	14.81

Rank	Solver Score (sequential)		Score (parallel)	
2	Yices-2.6.0	115.26	115.26	
3	SMTInterpol	65.32	65.38	
Best newcomer:				
7	SPASS-SATT	14.81	14.81	

Rank	Solver	Score (sequential)	Score (parallel)
	Z3	186.19	186.19
2	Yices-2.6.0	115.26	115.26
3	SMTInterpol	65.32	65.38
Best n	iewcomer:		
7	SPASS-SATT	14.81	14.81

Rank	Solver	Score (sequential)	Score (parallel)
1	CVC4	211.99	211.99
	Z3	186.19	186.19
2	Yices-2.6.0	115.26	115.26
3	${\sf SMTInterpol}$	65.32	65.38
Best n	ewcomer:		
7	SPASS-SATT	14.81	14.81

Teams:

- ► Congratulations on your accomplishments!
- ► Thanks for your participation!

FLoC Olympic Games Award Ceremony tomorrow at 14:00 in room L3 (Mathematical Institute)

Backup Slides

Incorrect Answers

Main track:

- ▶ 125 incorrect answers (0.01%) by 6 solvers (25%)
- No disagreements between sound solvers on benchmarks with unknown status

Application track:

No incorrect answers

Unsat-core track:

- ▶ No incorrect check-sat answers
- ▶ 443 incorrect unsat cores (0.1%) by 1 solver (20%)