Satisfiability Modulo Theories

Tjark Weber

webertj@in.tum.de

Oberseminar Statische Analyse

November 11, 2004

Goal

To decide the satisfiability of formulas with respect to decidable background theories ...

$$\phi ::= \mathcal{A} \mid \neg \phi \mid \phi \lor \phi \mid \phi \land \phi$$

Applications:

- Formal verification
- Scheduling
- Compiler optimization

Goal

To decide the satisfiability of formulas with respect to decidable background theories ...

$$\phi ::= \mathcal{A} \mid \neg \phi \mid \phi \lor \phi \mid \phi \land \phi$$

... using a *combination* of SAT solving and theory-specific decision procedures.

Applications:

- Formal verification
- Scheduling
- Compiler optimization

People

- Armando, Alessandro (U. of Genova)
- Barrett, Clark (New York U.)
- Berezin, Sergey (Stanford U.)
- Castellini, Claudio (U. of Genova)
- Cimatti, Alessandro (IRST-ITC)
- Cok, David (Eastman Kodak Company)
- Flanagan, Cormac (UC Santa Cruz)
- Fontaine, Pascal (U. of Liège)
- Ganesh, Vijay (Stanford U.)
- Giunchiglia, Enrico (U. of Genova)
- Kiniry, Joseph (U. of Nijmegen and KindSoftware LCC)
- Krstic, Sava (Strategic CAD Labs, Intel Corporation)
- Harrison, John (Intel)
- Janicic, Predrag (U. of Belgrade)
- Lahiri, Shuvendu (Carnegie Mellon U.)

People, cntd.

- Joshi, Rajeev (NASA JPL)
- de Moura, Leonardo (SRI International)
- Nelson, Greg (HP Laboratories)
- Ranise, Silvio (INRIA-Lorraine)
- Ringeissen, Christophe (INRIA-Lorraine)
- Ruess, Harald (SRI International)
- Saxe, Jim (Compaq SRC)
- Sebastiani, Roberto (U. of Trento)
- Seshia, Sanjit (Carnegie Mellon U.)
- Shankar, Natarajan (SRI International)
- Strichman, Ofer (Technion U.)
- Stump, Aaron (Washington U.)
- Tinelli, Cesare (U. of Iowa)
- Zarba, Calogero (INRIA-Lorraine)

Source: http://goedel.cs.uiowa.edu/smtlib/group.html

Some SMT Systems

- Current:
 - Argo-lib
 - DPLL(T)
 - CVC Lite
 - haRVey
 - ICS
 - Math-SAT
 - Tsat++
 - UCLID

- Old:
 - CVC
 - LPSAT
 - RDL
 - Simplify
 - STeP
 - SVC
 - Tsat

Source: http://goedel.cs.uiowa.edu/smtlib/solvers.html

Combining Decision Procedures

Theories:

- \mathcal{R} : theory of rationals $\Sigma_{\mathcal{R}} = \{\leq, +, -, 0, 1\}$
- \mathcal{L} : theory of lists $\Sigma_{\mathcal{L}} = \{=, hd, tl, nil, cons\}$
- \mathcal{E} : theory of equality Σ : free function and predicate symbols

Problem: Is

 $x \le y \land y \le x + \operatorname{hd}(\operatorname{cons}(0, \operatorname{nil})) \land P(h(x) - h(y)) \land \neg P(0)$

satisfiable in $\mathcal{R} \cup \mathcal{L} \cup \mathcal{E}$?

The Nelson-Oppen Procedure

G. Nelson and D.C. Oppen: *Simplification by cooperating decision procedures*, ACM Trans. on Programming Languages and Systems, 1(2):245-257, 1979.

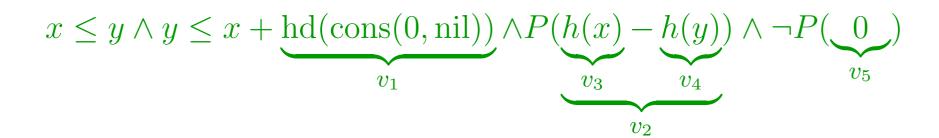
Given:

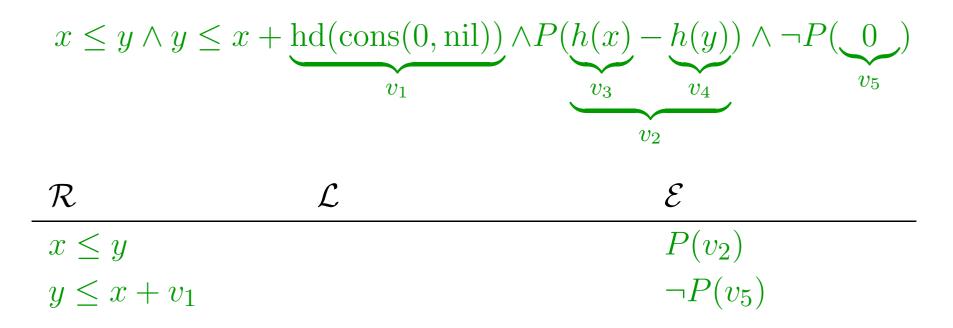
- T_1 , T_2 first-order theories with signatures Σ_1 , Σ_2
- $\Sigma_1 \cap \Sigma_2 = \emptyset$
- ϕ quantifier-free formula over $\Sigma_1 \cup \Sigma_2$

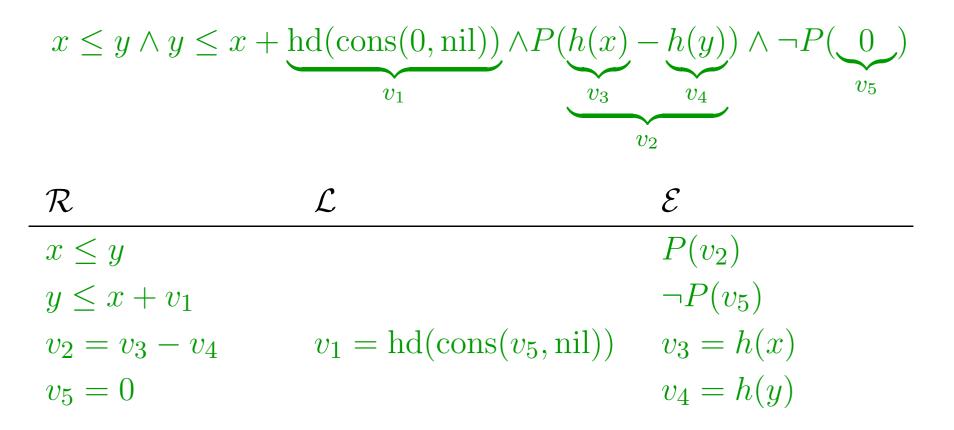
Obtain a decision procedure for satisfiability in $T_1 \cup T_2$ from decision procedures for satisfiability in T_1 and T_2 .

Variable abstraction + equality propagation:

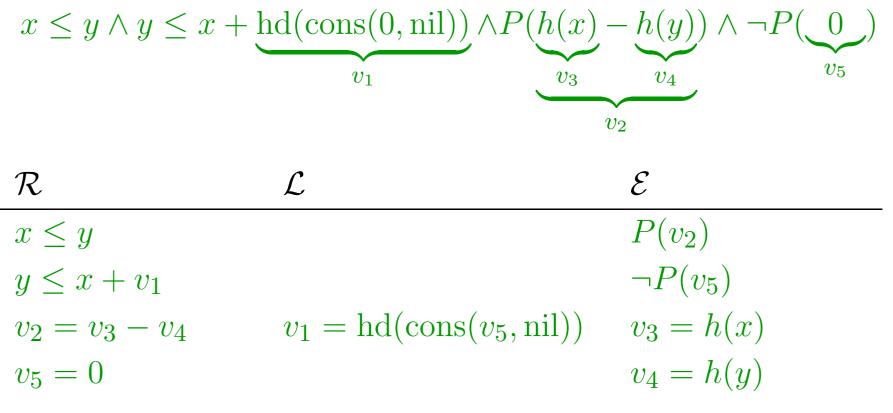
 $x \le y \land y \le x + \operatorname{hd}(\operatorname{cons}(0,\operatorname{nil})) \land P(h(x) - h(y)) \land \neg P(0)$



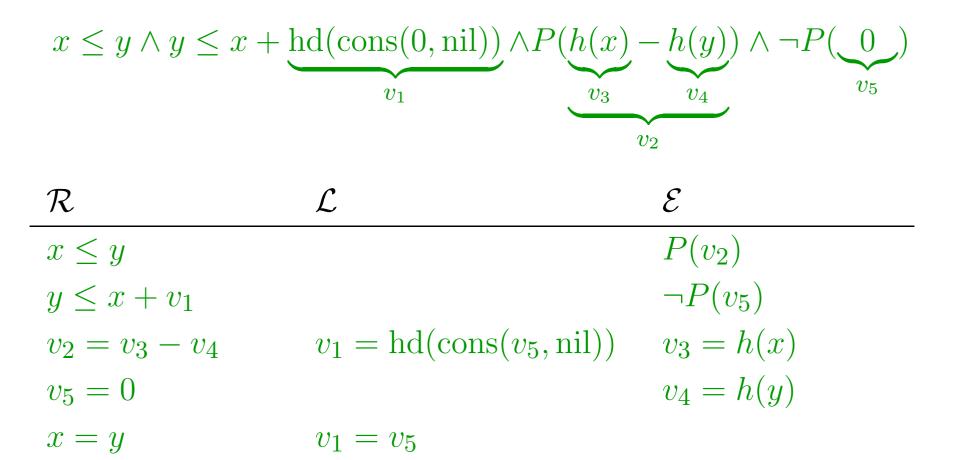




Variable abstraction + equality propagation:

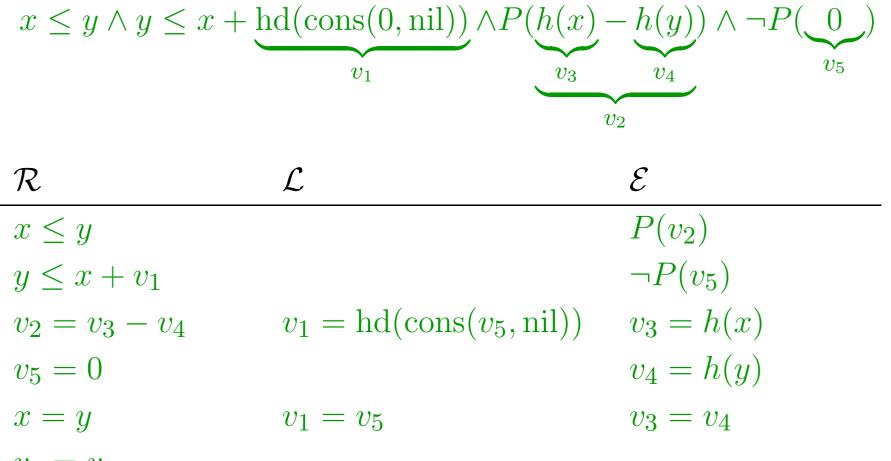


 $v_1 = v_5$



$x \le y \land y \le x + \operatorname{hd}(\operatorname{cons}(0,\operatorname{nil})) \land P(h(x) - h(y)) \land \neg P(\underbrace{0})$		
	v_1 v_3	v_4 v_5
		v_2
${\cal R}$	${\cal L}$	${\cal E}$
$x \leq y$		$P(v_2)$
$y \le x + v_1$		$\neg P(v_5)$
$v_2 = v_3 - v_4$	$v_1 = \operatorname{hd}(\operatorname{cons}(v_5, \operatorname{nil}))$	$v_3 = h(x)$
$v_5 = 0$		$v_4 = h(y)$
x = y	$v_1 = v_5$	$v_3 = v_4$

Variable abstraction + equality propagation:



 $v_2 = v_5$

$x \le y \land y \le x + \operatorname{hd}(\operatorname{cons}(0,\operatorname{nil})) \land P(h(x) - h(y)) \land \neg P(\underbrace{0})$		
	v_1 v_3	v_4 v_5
		v_2
${\cal R}$	\mathcal{L}	${\cal E}$
$x \leq y$		$P(v_2)$
$y \le x + v_1$		$\neg P(v_5)$
$v_2 = v_3 - v_4$	$v_1 = \operatorname{hd}(\operatorname{cons}(v_5, \operatorname{nil}))$	$v_3 = h(x)$
$v_5 = 0$		$v_4 = h(y)$
x = y	$v_1 = v_5$	$v_3 = v_4$
$v_2 = v_5$		\perp

Extensions and Related Work

- Relaxations of the *disjointness* requirement
- Nelson-Oppen is sound for combinations of stably-infinite theories
- R.E. Shostak: Deciding Combinations of Theories. J. of the ACM, 31(1):1-12, 1984
- Combinations of *unification* algorithms [F. Baader, K. Schulz]

SAT Solving: DPLL

M. Davis, G. Logemann, D. Loveland: *A machine program for theorem-proving*. Communications of the ACM, 5(7):394-397, 1962.

dpll(ϕ :Boolean formula, θ :partial assignment) { $\theta' := \text{deduce}(\phi, \theta);$ ϕ' := eval(ϕ , θ'); if ϕ' =True then return θ' else if ϕ' =False then return UNSATISFIABLE else { x := choose_fresh_variable(ϕ' , θ'); result := dpll(ϕ' , $\theta' \cup \{x \mapsto \text{True}\}$); if *result*=UNSATISFIABLE then <u>return</u> dpll(ϕ' , $\theta' \cup \{x \mapsto \text{False}\}$) else return result

Combining Nelson-Oppen and DPLL

```
satisfy(\phi:formula) {
 create mapping \Gamma from Boolean variables to
     atomic formulas;
 while True {
     \theta := \operatorname{dpll}(\Gamma^{-1}(\phi), \emptyset);
     if \theta = UNSATISFIABLE then return \theta
     <u>else</u> {
        \Theta := \Gamma(\theta);
        if n-o(\Theta) = SATISFIABLE then return \Theta
        else \phi := \phi \land \neg \Theta
```

Optimizations and Variants

- Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Kornilowicz, Roberto Sebastiani: A SAT Based Approach for Solving Formulas over Boolean and Linear Mathematical Propositions. 18th International Conference on Automated Deduction (CADE 2002), Copenhagen, Denmark, July 2002.
- Cormac Flanagan, Rajeev Joshi, Xinming Ou, James B. Saxe: *Theorem Proving using Lazy Proof Explication*. 15th International Conference on Computer Aided Verification (CAV 2003), Boulder, USA, July 2003.
- Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli: DPLL(T): Fast Decision Procedures. 16th International Conference on Computer Aided Verification (CAV 2004), Boston, USA, July 2004.

Preprocessing atoms
 Atoms are rewritten into *normal form*, using theory-specific facts (associativity, commutativity, ...).

- Preprocessing atoms
 Atoms are rewritten into *normal form*, using theory-specific facts (associativity, commutativity, ...).
- Several layers of decision procedures
 More powerful procedures are *invoked only when weaker ones fail* to show unsatisfiability.

- Preprocessing atoms
 Atoms are rewritten into *normal form*, using theory-specific facts (associativity, commutativity, ...).
- Several layers of decision procedures
 More powerful procedures are *invoked only when weaker ones fail* to show unsatisfiability.
- Early pruning
 Partial Boolean assignments are tested by the theory-specific decision procedure.

- Preprocessing atoms
 Atoms are rewritten into *normal form*, using theory-specific facts (associativity, commutativity, ...).
- Several layers of decision procedures
 More powerful procedures are *invoked only when weaker ones fail* to show unsatisfiability.
- Early pruning
 Partial Boolean assignments are tested by the theory-specific decision procedure.
- Enhanced early pruning Information gained from partial assignments is *passed back* to the SAT solver.

Online SAT solving

Online SAT solving

The SAT solver *continues* its search after accepting additional clauses (rather than to restart from scratch).

Proof explication/mathematical learning The theory-specific decision procedures generate lemmas.

Online SAT solving

- Proof explication/mathematical learning The theory-specific decision procedures generate lemmas.
 - Lazy/eager

Online SAT solving

- Proof explication/mathematical learning The theory-specific decision procedures generate lemmas.
 - Lazy/eager
 - Fine-grain/coarse-grain

Online SAT solving

- Proof explication/mathematical learning The theory-specific decision procedures generate lemmas.
 - Lazy/eager
 - Fine-grain/coarse-grain
 - Hiding of new proxy variables

Online SAT solving

- Proof explication/mathematical learning The theory-specific decision procedures generate lemmas.
 - Lazy/eager
 - Fine-grain/coarse-grain
 - Hiding of new proxy variables
- Mathematical backjumping The solver jumps back to the deepest branching point in which a literal contributing to a conflict was assigned a value.

Optimizations: DPLL(T)

- Tight integration of the theory-specific decision procedure with the DPLL framework:
 - Initialize(L:literal set)
 - SetTrue(l:*L*-literal):*L*-literal set
 - IsTrue?(l:L-literal):bool
 - Backtrack($n:\mathbb{N}$)
 - Explanation(l:*L*-literal):*L*-literal set

The solver maintains a stack of all \mathcal{L} -literals that are true in a partial interpretation.

Future Work

- Better (theory-dependent) heuristics for ...
 - Iemma management
 - literal selection
 - restarting
- Extension of existing SMT systems with decision procedures for other theories