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Goal

To decide the satisfiability of formulas with respect to
decidable background theories . . .

φ ::= A |¬φ |φ ∨ φ |φ ∧ φ

. . . using a combination of SAT solving and theory-specific
decision procedures.

Applications:

Formal verification

Scheduling

Compiler optimization

. . .
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Some SMT Systems

Current:
Argo-lib
DPLL(T)
CVC Lite
haRVey
ICS
Math-SAT
Tsat++
UCLID

Old:
CVC
LPSAT
RDL
Simplify
STeP
SVC
Tsat

Source: http://goedel.cs.uiowa.edu/smtlib/solvers.html
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Combining Decision Procedures

Theories:

R: theory of rationals
ΣR = {≤,+,−, 0, 1}

L: theory of lists
ΣL = {=, hd, tl, nil, cons}

E : theory of equality
Σ: free function and predicate symbols

Problem: Is

x ≤ y ∧ y ≤ x + hd(cons(0, nil)) ∧ P (h(x) − h(y)) ∧ ¬P (0)

satisfiable in R∪ L ∪ E?
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The Nelson-Oppen Procedure

G. Nelson and D.C. Oppen: Simplification by cooperating
decision procedures, ACM Trans. on Programming
Languages and Systems, 1(2):245-257, 1979.

Given:

T1, T2 first-order theories with signatures Σ1, Σ2

Σ1 ∩ Σ2 = ∅

φ quantifier-free formula over Σ1 ∪ Σ2

Obtain a decision procedure for satisfiability in T1 ∪ T2 from
decision procedures for satisfiability in T1 and T2.
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Nelson-Oppen: Example

Variable abstraction + equality propagation:

x ≤ y ∧ y ≤ x + hd(cons(0, nil)) ∧ P (h(x) − h(y)) ∧ ¬P (0)

x ≤ y ∧ y ≤ x + hd(cons(0, nil))
︸ ︷︷ ︸

v1

∧P (h(x)
︸︷︷︸

v3

−h(y)
︸︷︷︸

v4

︸ ︷︷ ︸

v2

) ∧ ¬P ( 0
︸︷︷︸

v5

)
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Extensions and Related Work

Relaxations of the disjointness requirement

Nelson-Oppen is sound for combinations of
stably-infinite theories

R.E. Shostak : Deciding Combinations of Theories. J. of
the ACM, 31(1):1-12, 1984

Combinations of unification algorithms [F. Baader,
K. Schulz]
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SAT Solving: DPLL

M. Davis, G. Logemann, D. Loveland: A machine program for
theorem-proving. Communications of the ACM, 5(7):394-397, 1962.

dpll(φ:Boolean formula, θ:partial assignment) {

θ′ := deduce(φ, θ);

φ′ := eval(φ, θ′);

if φ′=True then return θ′

else if φ′=False then return UNSATISFIABLE

else {

x := choose_fresh_variable(φ′, θ′);

result := dpll(φ′, θ′ ∪ {x 7→True});

if result=UNSATISFIABLE then

return dpll(φ′, θ′ ∪ {x 7→False})

else return result

}

}
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Combining Nelson-Oppen and DPLL

satisfy(φ:formula) {

create mapping Γ from Boolean variables to

atomic formulas;

while True {

θ := dpll(Γ−1(φ), ∅);

if θ = UNSATISFIABLE then return θ

else {

Θ := Γ(θ);

if n-o(Θ) = SATISFIABLE then return Θ

else φ := φ ∧ ¬Θ

}

}
}
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Optimizations and Variants

Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur
Kornilowicz, Roberto Sebastiani: A SAT Based Approach for Solving
Formulas over Boolean and Linear Mathematical Propositions. 18th
International Conference on Automated Deduction (CADE 2002),
Copenhagen, Denmark, July 2002. Math-SAT

Cormac Flanagan, Rajeev Joshi, Xinming Ou, James B. Saxe:
Theorem Proving using Lazy Proof Explication. 15th International
Conference on Computer Aided Verification (CAV 2003), Boulder,
USA, July 2003. Verifun

Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert
Oliveras, Cesare Tinelli: DPLL(T): Fast Decision Procedures. 16th
International Conference on Computer Aided Verification (CAV 2004),
Boston, USA, July 2004. DPLL(T)
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Optimizations: Math-SAT

Preprocessing atoms
Atoms are rewritten into normal form, using theory-specific
facts (associativity, commutativity, . . . ).

Several layers of decision procedures
More powerful procedures are invoked only when weaker ones
fail to show unsatisfiability.

Early pruning
Partial Boolean assignments are tested by the theory-specific
decision procedure.

Enhanced early pruning
Information gained from partial assignments is passed back to
the SAT solver.
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Optimizations: Math-SAT, Verifun

Online SAT solving
The SAT solver continues its search after accepting additional
clauses (rather than to restart from scratch).

Proof explication/mathematical learning
The theory-specific decision procedures generate lemmas .

Lazy/eager
Fine-grain/coarse-grain
Hiding of new proxy variables

Mathematical backjumping
The solver jumps back to the deepest branching point in which
a literal contributing to a conflict was assigned a value.
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Optimizations: DPLL(T)

Tight integration of the theory-specific decision
procedure with the DPLL framework:

Initialize(L:literal set)

SetTrue(l:L-literal):L-literal set

IsTrue?(l:L-literal):bool

Backtrack(n:N)

Explanation(l:L-literal):L-literal set

The solver maintains a stack of all L-literals that are
true in a partial interpretation.
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Future Work

Better (theory-dependent) heuristics for . . .

lemma management
literal selection
restarting

Extension of existing SMT systems with decision
procedures for other theories
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