
Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

Satisfiability Modulo Theories

Tjark Weber

Mobility Seminar

January 20, 2012

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

Job-Shop Scheduling
Background Theories

Introduction

Satisfiability Modulo Theories =

Propositional satisfiability background theories

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

Job-Shop Scheduling
Background Theories

Example: Job-Shop Scheduling

Given: n jobs, each composed of m tasks of varying duration, that
must be performed consecutively on m machines; a total maximum
time max .

di ,j Machine 1 Machine 2

Job 1 2 1
Job 2 3 1
Job 3 2 3

max = 8

Is there a schedule such that the end-time of every task is ≤ max?

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

Job-Shop Scheduling
Background Theories

Job-Shop Scheduling: SMT Encoding

The job-shop scheduling problem has a straightforward encoding in
propositional logic + linear integer arithmetic.

A schedule is specified by the start time ti ,j for the j-th task of
every job i .

Precedence constraints:
ti ,1 ≥ 0 ∧ ti ,2 ≥ ti ,1 + di ,1 ∧ ti ,2 + di ,2 ≤ max (for i = 1, 2, 3)

Resource constraints:
(t1,j ≥ t2,j + d2,j ∨ t2,j ≥ t1,j + d1,j) ∧
(t1,j ≥ t3,j + d3,j ∨ t3,j ≥ t1,j + d1,j) ∧
(t2,j ≥ t3,j + d3,j ∨ t3,j ≥ t2,j + d2,j) (for j = 1, 2)

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

Job-Shop Scheduling
Background Theories

Job-Shop Scheduling: Solution

SMT formula encoding

di ,j Machine 1 Machine 2

Job 1 2 1
Job 2 3 1
Job 3 2 3

max = 8

Solution:

t1,1 = 5, t1,2 = 7
t2,1 = 2, t2,2 = 6
t3,1 = 0, t3,2 = 3

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

Job-Shop Scheduling
Background Theories

Background Theories

EUF x = y =⇒ f (x) = f (y)

Arithmetic y < 0 =⇒ x + y < x

Arrays select(store(a, i , x), i) = x

Bit-vectors 2 · x = x << 1

Quantifiers

Algebraic data types

. . .

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

Dynamic Symbolic Execution
Program Model Checking
Static Program Analysis
Program Verification

Applications

SMT solvers are the core engine of many tools for program
analysis, testing and verification.

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

Dynamic Symbolic Execution
Program Model Checking
Static Program Analysis
Program Verification

Dynamic Symbolic Execution

Task: To find input that can steer program execution into specific
branches.

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

Dynamic Symbolic Execution
Program Model Checking
Static Program Analysis
Program Verification

Program Model Checking

Task: To prove/refute conjectures about the values of program
variables in order to characterize a finite-state abstraction.

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

Dynamic Symbolic Execution
Program Model Checking
Static Program Analysis
Program Verification

Static Program Analysis

Task: To check feasibility of certain program paths.

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

Dynamic Symbolic Execution
Program Model Checking
Static Program Analysis
Program Verification

Program Verification

Task: To prove verification conditions that arise from claims of
functional correctness.

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

The SMT-LIB Language
Inter-Process Communication
A Virtuous Circle
Choosing an SMT Solver

SMT Solver Use

We’ve seen what SMT solvers are good for. How do you actually
interact with them?

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

The SMT-LIB Language
Inter-Process Communication
A Virtuous Circle
Choosing an SMT Solver

The SMT-LIB Language

SMT solvers provide a textual interface. Most solvers support a
standard language, SMT-LIB.

SMT-LIB defines

concrete syntax for input formulas, and

a command-based scripting language.

Solver-specific syntax is often available to extend SMT-LIB, e.g.,
for data types.

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

The SMT-LIB Language
Inter-Process Communication
A Virtuous Circle
Choosing an SMT Solver

SMT-LIB: Example

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

The SMT-LIB Language
Inter-Process Communication
A Virtuous Circle
Choosing an SMT Solver

Inter-Process Communication

File-based (the basic solution)

Stream-based (when you need online functionality)

Web interface (mostly for quick experiments)

In-memory API (the tightly integrated approach)

. . .

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

The SMT-LIB Language
Inter-Process Communication
A Virtuous Circle
Choosing an SMT Solver

A Virtuous Circle

enable

SMT solvers Applications

evaluates generate

SMT-COMP Benchmarks

are used in

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

The SMT-LIB Language
Inter-Process Communication
A Virtuous Circle
Choosing an SMT Solver

Choosing an SMT Solver

There are many good SMT solvers: Barcelogic, CVC, MathSAT,
OpenSMT, Yices, Z3, . . .

Differences:

Supported background theories

Platform, license, API, incrementality, quantifiers, . . .

Performance (cf. SMT-COMP)

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

The SMT-LIB Language
Inter-Process Communication
A Virtuous Circle
Choosing an SMT Solver

Choosing an SMT Solver

Speaker’s pick:

Good all-round solver, expressive input language

Excellent performance

Many other features: MaxSMT, fixed-point constraints, proofs

Users can define custom theory solvers

However, closed source (but free for academic use)

Your mileage may vary.

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

SAT: DPLL
Interfacing Theory Solvers with SAT
Combining Theory Solvers

Algorithms

So far, we have considered SMT solvers as a black box.

SMT formula
sat (model)
unsat (proof)

This view is sufficient for many applications!

We’ll now talk about what happens inside SMT solvers.

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

SAT: DPLL
Interfacing Theory Solvers with SAT
Combining Theory Solvers

SAT: DPLL

ϑ := ∅; // partial Boolean valuation
while(true) {

ϑ := ϑ ∪ propagate(ϕ, ϑ); // deduce consequences
if([[ϕ]]ϑ == true) {

return SATISFIABLE;
} else if([[ϕ]]ϑ == false) {

ϑ := backtrack(ϕ, ϑ); // try a different branch
if(ϑ == ∅) { return UNSATISFIABLE; }
} else {

ϑ := ϑ ∪ decide(ϕ, ϑ); // branch on unassigned variable
}
}

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

SAT: DPLL
Interfacing Theory Solvers with SAT
Combining Theory Solvers

Interfacing Theory Solvers with SAT

Γ := abstraction function that maps atomic formulas to Boolean
variables;

ϕ := Γ(ϕ);
while(true) {

ϑ := dpll(ϕ);
if(ϑ == UNSATISFIABLE) { return UNSATISFIABLE; }
Θ := Γ−1(ϑ);
if(T (Θ) == SATISFIABLE) { return SATISFIABLE; }
ϕ := ϕ ∧ ¬ϑ; // theory lemma

}

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

SAT: DPLL
Interfacing Theory Solvers with SAT
Combining Theory Solvers

Combining Theory Solvers

Nelson-Oppen combination method: for disjoint, stably infinite
theories it is sufficient to propagate equalities between variables.

Example: x ≤ y ∧ y ≤ x ∧ P(f (x)− f (y)) ∧ ¬P(0)

Arithmetic EUF

x ≤ y v1 = f (x)
y ≤ x v2 = f (y)
v3 = v1 − v2 P(v3)
v4 = 0 ¬P(v4)

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

SAT: DPLL
Interfacing Theory Solvers with SAT
Combining Theory Solvers

Combining Theory Solvers

Nelson-Oppen combination method: for disjoint, stably infinite
theories it is sufficient to propagate equalities between variables.

Example: x ≤ y ∧ y ≤ x ∧ P(f (x)︸︷︷︸
v1

− f (y)︸︷︷︸
v2︸ ︷︷ ︸

v3

) ∧ ¬P(0︸︷︷︸
v4

)

Arithmetic EUF

x ≤ y v1 = f (x)
y ≤ x v2 = f (y)
v3 = v1 − v2 P(v3)
v4 = 0 ¬P(v4)

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

SAT: DPLL
Interfacing Theory Solvers with SAT
Combining Theory Solvers

Combining Theory Solvers

Nelson-Oppen combination method: for disjoint, stably infinite
theories it is sufficient to propagate equalities between variables.

Example: x ≤ y ∧ y ≤ x ∧ P(f (x)︸︷︷︸
v1

− f (y)︸︷︷︸
v2︸ ︷︷ ︸

v3

) ∧ ¬P(0︸︷︷︸
v4

)

Arithmetic EUF

x ≤ y v1 = f (x)
y ≤ x v2 = f (y)
v3 = v1 − v2 P(v3)
v4 = 0 ¬P(v4)
x = y

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

SAT: DPLL
Interfacing Theory Solvers with SAT
Combining Theory Solvers

Combining Theory Solvers

Nelson-Oppen combination method: for disjoint, stably infinite
theories it is sufficient to propagate equalities between variables.

Example: x ≤ y ∧ y ≤ x ∧ P(f (x)︸︷︷︸
v1

− f (y)︸︷︷︸
v2︸ ︷︷ ︸

v3

) ∧ ¬P(0︸︷︷︸
v4

)

Arithmetic EUF

x ≤ y v1 = f (x)
y ≤ x v2 = f (y)
v3 = v1 − v2 P(v3)
v4 = 0 ¬P(v4)
x = y v1 = v2

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

SAT: DPLL
Interfacing Theory Solvers with SAT
Combining Theory Solvers

Combining Theory Solvers

Nelson-Oppen combination method: for disjoint, stably infinite
theories it is sufficient to propagate equalities between variables.

Example: x ≤ y ∧ y ≤ x ∧ P(f (x)︸︷︷︸
v1

− f (y)︸︷︷︸
v2︸ ︷︷ ︸

v3

) ∧ ¬P(0︸︷︷︸
v4

)

Arithmetic EUF

x ≤ y v1 = f (x)
y ≤ x v2 = f (y)
v3 = v1 − v2 P(v3)
v4 = 0 ¬P(v4)
x = y v1 = v2

v3 = v4

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

SAT: DPLL
Interfacing Theory Solvers with SAT
Combining Theory Solvers

Combining Theory Solvers

Nelson-Oppen combination method: for disjoint, stably infinite
theories it is sufficient to propagate equalities between variables.

Example: x ≤ y ∧ y ≤ x ∧ P(f (x)︸︷︷︸
v1

− f (y)︸︷︷︸
v2︸ ︷︷ ︸

v3

) ∧ ¬P(0︸︷︷︸
v4

)

Arithmetic EUF

x ≤ y v1 = f (x)
y ≤ x v2 = f (y)
v3 = v1 − v2 P(v3)
v4 = 0 ¬P(v4)
x = y v1 = v2

v3 = v4 ⊥

Tjark Weber Satisfiability Modulo Theories

Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

Conclusion

SMT solvers are expressive and easy to use. They scale orders of
magnitude beyond custom ad hoc solvers.

Use them!

Do not write your own constraint solver.

Tjark Weber Satisfiability Modulo Theories

	Introduction
	Job-Shop Scheduling
	Background Theories

	Applications
	Dynamic Symbolic Execution
	Program Model Checking
	Static Program Analysis
	Program Verification

	SMT Solver Use
	The SMT-LIB Language
	Inter-Process Communication
	A Virtuous Circle
	Choosing an SMT Solver

	Algorithms
	SAT: DPLL
	Interfacing Theory Solvers with SAT
	Combining Theory Solvers

	Conclusion

