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Introduction

Satisfiability Modulo Theories =

Propositional satisfiability background theories
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Example: Job-Shop Scheduling

Given: n jobs, each composed of m tasks of varying duration, that
must be performed consecutively on m machines; a total maximum
time max .

di ,j Machine 1 Machine 2

Job 1 2 1
Job 2 3 1
Job 3 2 3

max = 8

Is there a schedule such that the end-time of every task is ≤ max?
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Job-Shop Scheduling: SMT Encoding

The job-shop scheduling problem has a straightforward encoding in
propositional logic + linear integer arithmetic.

A schedule is specified by the start time ti ,j for the j-th task of
every job i .

Precedence constraints:
ti ,1 ≥ 0 ∧ ti ,2 ≥ ti ,1 + di ,1 ∧ ti ,2 + di ,2 ≤ max (for i = 1, 2, 3)

Resource constraints:
(t1,j ≥ t2,j + d2,j ∨ t2,j ≥ t1,j + d1,j) ∧
(t1,j ≥ t3,j + d3,j ∨ t3,j ≥ t1,j + d1,j) ∧
(t2,j ≥ t3,j + d3,j ∨ t3,j ≥ t2,j + d2,j) (for j = 1, 2)
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Job-Shop Scheduling: Solution

SMT formula encoding

di ,j Machine 1 Machine 2

Job 1 2 1
Job 2 3 1
Job 3 2 3

max = 8

Solution:

t1,1 = 5, t1,2 = 7
t2,1 = 2, t2,2 = 6
t3,1 = 0, t3,2 = 3
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Background Theories

EUF x = y =⇒ f (x) = f (y)

Arithmetic y < 0 =⇒ x + y < x

Arrays select(store(a, i , x), i) = x

Bit-vectors 2 · x = x << 1

Quantifiers

Algebraic data types

. . .
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Applications

SMT solvers are the core engine of many tools for program
analysis, testing and verification.
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Dynamic Symbolic Execution

Task: To find input that can steer program execution into specific
branches.
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Program Model Checking

Task: To prove/refute conjectures about the values of program
variables in order to characterize a finite-state abstraction.
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Static Program Analysis

Task: To check feasibility of certain program paths.
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Program Verification

Task: To prove verification conditions that arise from claims of
functional correctness.
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SMT Solver Use

We’ve seen what SMT solvers are good for. How do you actually
interact with them?
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The SMT-LIB Language

SMT solvers provide a textual interface. Most solvers support a
standard language, SMT-LIB.

SMT-LIB defines

concrete syntax for input formulas, and

a command-based scripting language.

Solver-specific syntax is often available to extend SMT-LIB, e.g.,
for data types.
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SMT-LIB: Example
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Inter-Process Communication

File-based (the basic solution)

Stream-based (when you need online functionality)

Web interface (mostly for quick experiments)

In-memory API (the tightly integrated approach)

. . .
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A Virtuous Circle

enable

SMT solvers Applications

evaluates generate

SMT-COMP Benchmarks

are used in
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Choosing an SMT Solver

There are many good SMT solvers: Barcelogic, CVC, MathSAT,
OpenSMT, Yices, Z3, . . .

Differences:

Supported background theories

Platform, license, API, incrementality, quantifiers, . . .

Performance (cf. SMT-COMP)
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Choosing an SMT Solver

Speaker’s pick:

Good all-round solver, expressive input language

Excellent performance

Many other features: MaxSMT, fixed-point constraints, proofs

Users can define custom theory solvers

However, closed source (but free for academic use)

Your mileage may vary.
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Algorithms

So far, we have considered SMT solvers as a black box.

SMT formula
sat (model)
unsat (proof)

This view is sufficient for many applications!

We’ll now talk about what happens inside SMT solvers.
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SAT: DPLL

ϑ := ∅; // partial Boolean valuation
while(true) {

ϑ := ϑ ∪ propagate(ϕ, ϑ); // deduce consequences
if([[ϕ]]ϑ == true) {

return SATISFIABLE;
} else if([[ϕ]]ϑ == false) {

ϑ := backtrack(ϕ, ϑ); // try a different branch
if(ϑ == ∅) { return UNSATISFIABLE; }
} else {

ϑ := ϑ ∪ decide(ϕ, ϑ); // branch on unassigned variable
}
}
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Interfacing Theory Solvers with SAT

Γ := abstraction function that maps atomic formulas to Boolean
variables;

ϕ := Γ(ϕ);
while(true) {

ϑ := dpll(ϕ);
if(ϑ == UNSATISFIABLE) { return UNSATISFIABLE; }
Θ := Γ−1(ϑ);
if(T (Θ) == SATISFIABLE) { return SATISFIABLE; }
ϕ := ϕ ∧ ¬ϑ; // theory lemma

}
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Combining Theory Solvers

Nelson-Oppen combination method: for disjoint, stably infinite
theories it is sufficient to propagate equalities between variables.

Example: x ≤ y ∧ y ≤ x ∧ P(f (x)− f (y)) ∧ ¬P(0)

Arithmetic EUF

x ≤ y v1 = f (x)
y ≤ x v2 = f (y)
v3 = v1 − v2 P(v3)
v4 = 0 ¬P(v4)
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Combining Theory Solvers

Nelson-Oppen combination method: for disjoint, stably infinite
theories it is sufficient to propagate equalities between variables.

Example: x ≤ y ∧ y ≤ x ∧ P(f (x)︸︷︷︸
v1

− f (y)︸︷︷︸
v2︸ ︷︷ ︸

v3

) ∧ ¬P( 0︸︷︷︸
v4

)

Arithmetic EUF

x ≤ y v1 = f (x)
y ≤ x v2 = f (y)
v3 = v1 − v2 P(v3)
v4 = 0 ¬P(v4)
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Combining Theory Solvers

Nelson-Oppen combination method: for disjoint, stably infinite
theories it is sufficient to propagate equalities between variables.

Example: x ≤ y ∧ y ≤ x ∧ P(f (x)︸︷︷︸
v1

− f (y)︸︷︷︸
v2︸ ︷︷ ︸

v3

) ∧ ¬P( 0︸︷︷︸
v4

)

Arithmetic EUF

x ≤ y v1 = f (x)
y ≤ x v2 = f (y)
v3 = v1 − v2 P(v3)
v4 = 0 ¬P(v4)
x = y
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Combining Theory Solvers

Nelson-Oppen combination method: for disjoint, stably infinite
theories it is sufficient to propagate equalities between variables.

Example: x ≤ y ∧ y ≤ x ∧ P(f (x)︸︷︷︸
v1

− f (y)︸︷︷︸
v2︸ ︷︷ ︸

v3

) ∧ ¬P( 0︸︷︷︸
v4

)

Arithmetic EUF

x ≤ y v1 = f (x)
y ≤ x v2 = f (y)
v3 = v1 − v2 P(v3)
v4 = 0 ¬P(v4)
x = y v1 = v2
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Combining Theory Solvers

Nelson-Oppen combination method: for disjoint, stably infinite
theories it is sufficient to propagate equalities between variables.

Example: x ≤ y ∧ y ≤ x ∧ P(f (x)︸︷︷︸
v1

− f (y)︸︷︷︸
v2︸ ︷︷ ︸

v3

) ∧ ¬P( 0︸︷︷︸
v4

)

Arithmetic EUF

x ≤ y v1 = f (x)
y ≤ x v2 = f (y)
v3 = v1 − v2 P(v3)
v4 = 0 ¬P(v4)
x = y v1 = v2

v3 = v4
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Combining Theory Solvers

Nelson-Oppen combination method: for disjoint, stably infinite
theories it is sufficient to propagate equalities between variables.

Example: x ≤ y ∧ y ≤ x ∧ P(f (x)︸︷︷︸
v1

− f (y)︸︷︷︸
v2︸ ︷︷ ︸

v3

) ∧ ¬P( 0︸︷︷︸
v4

)

Arithmetic EUF

x ≤ y v1 = f (x)
y ≤ x v2 = f (y)
v3 = v1 − v2 P(v3)
v4 = 0 ¬P(v4)
x = y v1 = v2

v3 = v4 ⊥

Tjark Weber Satisfiability Modulo Theories



Introduction
Applications

SMT Solver Use
Algorithms
Conclusion

Conclusion

SMT solvers are expressive and easy to use. They scale orders of
magnitude beyond custom ad hoc solvers.

Use them!

Do not write your own constraint solver.
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