Satisfiability Modulo Theories

Tjark Weber

UPPSALA
UNIVERSITET

Verification of Erlang Programs Day
January 31, 2012
Satisfiability Modulo Theories =

Propositional satisfiability \oplus \text{ background theories}
Given: \(n \) jobs, each composed of \(m \) tasks of varying duration, that must be performed consecutively on \(m \) machines; a total maximum time \(\text{max} \).

<table>
<thead>
<tr>
<th>(d_{i,j})</th>
<th>Machine 1</th>
<th>Machine 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job 1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Job 2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Job 3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

\(\text{max} = 8 \)

Is there a schedule such that the end-time of every task is \(\leq \text{max} \)?
Job-Shop Scheduling: SMT Encoding

The job-shop scheduling problem has a straightforward encoding in propositional logic + linear integer arithmetic.

A schedule is specified by the start time \(t_{i,j} \) for the \(j \)-th task of every job \(i \).

Precedence constraints:

\[
\begin{align*}
 t_{i,1} &\geq 0 \land t_{i,2} \geq t_{i,1} + d_{i,1} \land t_{i,2} + d_{i,2} \leq \text{max} \quad (\text{for } i = 1, 2, 3) \\
\end{align*}
\]

Resource constraints:

\[
\begin{align*}
 (t_{1,j} &\geq t_{2,j} + d_{2,j} \lor t_{2,j} \geq t_{1,j} + d_{1,j}) \land \\
 (t_{1,j} &\geq t_{3,j} + d_{3,j} \lor t_{3,j} \geq t_{1,j} + d_{1,j}) \land \\
 (t_{2,j} &\geq t_{3,j} + d_{3,j} \lor t_{3,j} \geq t_{2,j} + d_{2,j}) \quad (\text{for } j = 1, 2)
\end{align*}
\]
Job-Shop Scheduling: Solution

SMT formula encoding

<table>
<thead>
<tr>
<th>(d_{i,j})</th>
<th>Machine 1</th>
<th>Machine 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job 1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Job 2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Job 3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

\[\text{max} = 8\]

Solution:

\[t_{1,1} = 5, \ t_{1,2} = 7\]
\[t_{2,1} = 2, \ t_{2,2} = 6\]
\[t_{3,1} = 0, \ t_{3,2} = 3\]
Background Theories

- EUF
- Arithmetic
- Arrays
- Bit-vectors
- Quantifiers
- Algebraic data types
- ...

\[
x = y \implies f(x) = f(y)
\]

\[
y < 0 \implies x + y < x
\]

\[
\text{select(store}(a, i, x), i) = x
\]

\[
2 \cdot x = x \ll 1
\]
SMT solvers are the core engine of many tools for program analysis, testing and verification.
Dynamic Symbolic Execution

Task: To find input that can steer program execution into specific branches.
Program Model Checking

Task: To prove/refute conjectures about the values of program variables in order to characterize a finite-state abstraction.
Task: To check feasibility of certain program paths.
Task: To prove verification conditions that arise from claims of functional correctness.
We’ve seen what SMT solvers are good for. How do you actually interact with them?
The SMT-LIB Language

SMT solvers provide a **textual interface**. Most solvers support a standard language, SMT-LIB.

SMT-LIB defines

- concrete syntax for input formulas, and
- a command-based scripting language.

Solver-specific syntax is often available to extend SMT-LIB, e.g., for data types.
SMT-LIB: Example

; This example illustrates basic arithmetic and
; uninterpreted functions

(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(assert (>= (* 2 x) (+ y z)))
(declare-fun f (Int) Int)
(declare-fun g (Int Int) Int)
(assert (< (f x) (g x x)))
(assert (> (f y) (g x x)))
(check-sat)
(get-model)
(push)
(assert (= x y))
(check-sat)
(pop)
(exit)

Is this formula satisfiable? Click 'ask z3'!
SMT-LIB: Example (Result)

```lisp
ask z3

sat
(model
  (define-fun z () Int
   0)
  (define-fun y () Int
   (- 38))
  (define-fun x () Int
   0)
  (define-fun f ((x!1 Int)) Int
   (ite (= x!1 0) (- 1)
    (ite (= x!1 (- 38)) 1
     (- 1))))
  (define-fun g ((x!1 Int) (x!2 Int)) Int
   (ite (and (= x!1 0) (= x!2 0)) 0
    0))
)
unsat
```
Inter-Process Communication

- File-based (the basic solution)
- Stream-based (when you need online functionality)
- Web interface (mostly for quick experiments)
- In-memory API (the tightly integrated approach)
- ...
A Virtuous Circle

- SMT solvers enable Applications
- SMT-COMP generates Benchmarks
- Applications evaluate
- Benchmarks are used in

Tjark Weber
Satisfiability Modulo Theories
There are many good SMT solvers: Barcelogic, CVC, MathSAT, OpenSMT, Yices, Z3, ...

Differences:

- Supported background theories
- Platform, license, API, incrementality, quantifiers, ...
- Performance (cf. SMT-COMP)
Choosing an SMT Solver

Speaker’s pick: **Z3**

- Good all-round solver, expressive input language
- Excellent performance
- Many other features: MaxSMT, fixed-point constraints, proofs
- Users can define custom theory solvers
- However, closed source (but free for academic use)

Your mileage may vary.
So far, we have considered SMT solvers as a black box.

This view is sufficient for many applications!
SMT solvers are expressive and easy to use. They scale orders of magnitude beyond custom ad hoc solvers.

Use them!

Do not write your own constraint solver.