Satisfiability Modulo Theories and the SMT Competition

Tjark Weber

March 29, 2017

Introduction

Satisfiability Modulo Theories $=$

Propositional satisfiability + background theories

Example: Job-Shop Scheduling

Given: n jobs, each composed of m tasks of varying duration, that must be performed consecutively on m machines; a total maximum time max.

$d_{i, j}$	Machine 1	Machine 2
Job 1	2	1
Job 2	3	1
Job 3	2	3
$\max =8$		

Is there a schedule such that the end-time of every task is $\leq \max$?

Job-Shop Scheduling: SMT Encoding

The job-shop scheduling problem has a straightforward encoding in propositional logic + linear integer arithmetic.

A schedule is specified by the start time $t_{i, j}$ for the j-th task of every job i.

Precedence constraints:
$t_{i, 1} \geq 0 \wedge t_{i, 2} \geq t_{i, 1}+d_{i, 1} \wedge t_{i, 2}+d_{i, 2} \leq \max \quad($ for $i=1,2,3)$
Resource constraints:

$$
\begin{aligned}
& \left(t_{1, j} \geq t_{2, j}+d_{2, j} \vee t_{2, j} \geq t_{1, j}+d_{1, j}\right) \wedge \\
& \left(t_{1, j} \geq t_{3, j}+d_{3, j} \vee t_{3, j} \geq t_{1, j}+d_{1, j}\right) \wedge \\
& \left(t_{2, j} \geq t_{3, j}+d_{3, j} \vee t_{3, j} \geq t_{2, j}+d_{2, j}\right) \quad(\text { for } j=1,2)
\end{aligned}
$$

Job-Shop Scheduling: Solution

Background Theories

- EUF
- Arithmetic
- Arrays
- Bit-vectors
- Quantifiers
- Algebraic data types
- ...

$$
\begin{array}{r}
x=y \Longrightarrow f(x)=f(y) \\
y<0 \Longrightarrow x+y<x \\
\text { select(store }(a, i, x), i)=x \\
2 \cdot x=x \ll 1
\end{array}
$$

Applications

SMT solvers are the core engine of many tools for program analysis, testing and verification.

Dynamic Symbolic Execution

Task: To find input that can steer program execution into specific branches.

Program Model Checking

Task: To prove/refute conjectures about the values of program variables in order to characterize a finite-state abstraction.

Static Program Analysis

Task: To check feasibility of certain program paths.

Program Verification

Task: To prove verification conditions that arise from claims of functional correctness.

SMT Solver Use

We've seen what SMT solvers are good for. How do you actually interact with them?

The SMT-LIB Language

SMT solvers provide a textual interface. Most solvers support a standard language, SMT-LIB.

SMT-LIB defines

- concrete syntax for input formulas, and
- a command-based scripting language.

Solver-specific syntax is often available to extend SMT-LIB, e.g., for data types.

SMT-LIB: Example

```
; This example illustrates basic arithmetic and
; uninterpreted functions
(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(assert (>= (* 2 x) (+ y z)))
(declare-fun f (Int) Int)
(declare-fun g (Int Int) Int)
(assert (< (f x) (g x x )))
(assert (> (f y) (g x x)))
(check-sat)
(get -model)
(push)
(assert (= x y))
(check-sat)
(pop)
(exit)
```

Is this formula satisfiable? Click 'ask z3'!
tutorial home video

SMT-LIB: Example (Result)

```
    ask z3
sat
(model
    (define-fun z () Int
        0)
        (define-fun y () Int
        (-38))
        (define-fun x () Int
            0)
        (define-fun f ((x!1 Int)) Int
        (ite (= x!1 0) (- 1)
        (ite (= x!1 (- 38)) 1
            (-1))))
    (define-fun g ((x!1 Int) (x!2 Int)) Int
        (ite (and (= x!1 0) (= x!2 0)) 0
            0))
)
unsat
```


Inter-Process Communication

- File-based (the basic solution)
- Stream-based (when you need online functionality)
- Web interface (mostly for quick experiments)
- In-memory API (the tightly integrated approach)
- ...

Algorithms

So far, we have considered SMT solvers as a black box.

This view is sufficient for many applications!

SAT: DPLL

```
\vartheta : = \emptyset ; ~ / / ~ p a r t i a l ~ B o o l e a n ~ v a l u a t i o n
while(true) {
    \vartheta : = \vartheta \cup \text { propagate } ( \varphi , \vartheta ) ; ~ / / ~ d e d u c e ~ c o n s e q u e n c e s ~
    if([[\varphi]] |\vartheta == true) {
        return SATISFIABLE;
    } else if([[\varphi]] \vartheta}\mp@subsup{\vartheta}{\vartheta}{}== false) 
        \vartheta := backtrack(\varphi,\vartheta); // try a different branch
        if}(\vartheta==\emptyset) { return UNSATISFIABLE; 
    } else {
        \vartheta : = \vartheta \cup \operatorname { d e c i d e } ( \varphi , \vartheta ) ; ~ / / ~ b r a n c h ~ o n ~ u n a s s i g n e d ~ v a r i a b l e
    }
}
```


Interfacing Theory Solvers with SAT

```
\Gamma : = ~ a b s t r a c t i o n ~ f u n c t i o n ~ t h a t ~ m a p s ~ a t o m i c ~ f o r m u l a s ~ t o ~ B o o l e a n
    variables;
\varphi:= Г(\varphi);
while(true) {
    \vartheta := dpll(\varphi);
    if(\vartheta == UNSATISFIABLE) { return UNSATISFIABLE; }
    \Theta := [-1}(\vartheta)
    if(\mathcal{T}(\Theta)== SATISFIABLE) { return SATISFIABLE; }
    \varphi:=\varphi\wedge\neg\vartheta; // theory lemma
}
```


Combining Theory Solvers

Nelson-Oppen combination method: for disjoint, stably infinite theories it is sufficient to propagate equalities between variables.

Example: $x \leq y \wedge y \leq x \wedge P(f(x)-f(y)) \wedge \neg P(0)$

Combining Theory Solvers

Nelson-Oppen combination method: for disjoint, stably infinite theories it is sufficient to propagate equalities between variables.

Example: $x \leq y \wedge y \leq x \wedge P(\underbrace{f(x)}_{v_{3}}-\underbrace{f(y)}_{v_{2}}) \wedge \neg P(\underbrace{0}_{v_{4}})$

Arithmetic	EUF
$x \leq y$	$v_{1}=f(x)$
$y \leq x$	$v_{2}=f(y)$
$v_{3}=v_{1}-v_{2}$	$P\left(v_{3}\right)$
$v_{4}=0$	$\neg P\left(v_{4}\right)$

Combining Theory Solvers

Nelson-Oppen combination method: for disjoint, stably infinite theories it is sufficient to propagate equalities between variables.

Example: $x \leq y \wedge y \leq x \wedge P(\underbrace{f(x)}_{v_{3}}-\underbrace{f(y)}_{v_{2}}) \wedge \neg P(\underbrace{0}_{v_{4}})$

Arithmetic	EUF
$x \leq y$	$v_{1}=f(x)$
$y \leq x$	$v_{2}=f(y)$
$v_{3}=v_{1}-v_{2}$	$P\left(v_{3}\right)$
$v_{4}=0$	$\neg P\left(v_{4}\right)$
$x=y$	

Combining Theory Solvers

Nelson-Oppen combination method: for disjoint, stably infinite theories it is sufficient to propagate equalities between variables.

Example: $x \leq y \wedge y \leq x \wedge P(\underbrace{f(x)}_{v_{3}}-\underbrace{f(y)}_{v_{2}}) \wedge \neg P(\underbrace{0}_{v_{4}})$

Arithmetic	EUF
$x \leq y$	$v_{1}=f(x)$
$y \leq x$	$v_{2}=f(y)$
$v_{3}=v_{1}-v_{2}$	$P\left(v_{3}\right)$
$v_{4}=0$	$\neg P\left(v_{4}\right)$
$x=y$	$v_{1}=v_{2}$

Combining Theory Solvers

Nelson-Oppen combination method: for disjoint, stably infinite theories it is sufficient to propagate equalities between variables.

Example: $x \leq y \wedge y \leq x \wedge P(\underbrace{f(x)}_{v_{3}}-\underbrace{f(y)}_{v_{2}}) \wedge \neg P(\underbrace{0}_{v_{4}})$

Arithmetic	EUF
$x \leq y$	$v_{1}=f(x)$
$y \leq x$	$v_{2}=f(y)$
$v_{3}=v_{1}-v_{2}$	$P\left(v_{3}\right)$
$v_{4}=0$	$\neg P\left(v_{4}\right)$
$x=y$	$v_{1}=v_{2}$
$v_{3}=v_{4}$	

Combining Theory Solvers

Nelson-Oppen combination method: for disjoint, stably infinite theories it is sufficient to propagate equalities between variables.

Example: $x \leq y \wedge y \leq x \wedge P(\underbrace{f(x)}_{v_{3}}-\underbrace{f(y)}_{v_{2}}) \wedge \neg P(\underbrace{0}_{v_{4}})$

Arithmetic	EUF
$x \leq y$	$v_{1}=f(x)$
$y \leq x$	$v_{2}=f(y)$
$v_{3}=v_{1}-v_{2}$	$P\left(v_{3}\right)$
$v_{4}=0$	$\neg P\left(v_{4}\right)$
$x=y$	$v_{1}=v_{2}$
$v_{3}=v_{4}$	\perp

The SMT Competition

Held annually since 2005 to spur adoption of the SMT-LIB format and to spark further advances in SMT.

Roughly similar to other competitions in automated reasoning, such as CASC and SAT.

A Virtuous Circle

