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Introduction

Satisfiability Modulo Theories =

Propositional satisfiability background theories



Example: Job-Shop Scheduling

Given: n jobs, each composed of m tasks of varying duration, that
must be performed consecutively on m machines; a total maximum
time max .

di ,j Machine 1 Machine 2

Job 1 2 1
Job 2 3 1
Job 3 2 3

max = 8

Is there a schedule such that the end-time of every task is ≤ max?



Job-Shop Scheduling: SMT Encoding

The job-shop scheduling problem has a straightforward encoding in
propositional logic + linear integer arithmetic.

A schedule is specified by the start time ti ,j for the j-th task of
every job i .

Precedence constraints:
ti ,1 ≥ 0 ∧ ti ,2 ≥ ti ,1 + di ,1 ∧ ti ,2 + di ,2 ≤ max (for i = 1, 2, 3)

Resource constraints:
(t1,j ≥ t2,j + d2,j ∨ t2,j ≥ t1,j + d1,j) ∧
(t1,j ≥ t3,j + d3,j ∨ t3,j ≥ t1,j + d1,j) ∧
(t2,j ≥ t3,j + d3,j ∨ t3,j ≥ t2,j + d2,j) (for j = 1, 2)



Job-Shop Scheduling: Solution

SMT formula encoding

di ,j Machine 1 Machine 2

Job 1 2 1
Job 2 3 1
Job 3 2 3

max = 8

Solution:

t1,1 = 5, t1,2 = 7
t2,1 = 2, t2,2 = 6
t3,1 = 0, t3,2 = 3



Background Theories

I EUF x = y =⇒ f (x) = f (y)

I Arithmetic y < 0 =⇒ x + y < x

I Arrays select(store(a, i , x), i) = x

I Bit-vectors 2 · x = x << 1

I Quantifiers

I Algebraic data types

I . . .



Applications

SMT solvers are the core engine of many tools for program
analysis, testing and verification.



Dynamic Symbolic Execution

Task: To find input that can steer program execution into specific
branches.



Program Model Checking

Task: To prove/refute conjectures about the values of program
variables in order to characterize a finite-state abstraction.



Static Program Analysis

Task: To check feasibility of certain program paths.



Program Verification

Task: To prove verification conditions that arise from claims of
functional correctness.



SMT Solver Use

We’ve seen what SMT solvers are good for. How do you actually
interact with them?



The SMT-LIB Language

SMT solvers provide a textual interface. Most solvers support a
standard language, SMT-LIB.

SMT-LIB defines

I concrete syntax for input formulas, and

I a command-based scripting language.

Solver-specific syntax is often available to extend SMT-LIB, e.g.,
for data types.



SMT-LIB: Example



SMT-LIB: Example (Result)



Inter-Process Communication

I File-based (the basic solution)

I Stream-based (when you need online functionality)

I Web interface (mostly for quick experiments)

I In-memory API (the tightly integrated approach)

I . . .



Algorithms

So far, we have considered SMT solvers as a black box.

SMT formula
sat (model)
unsat (proof)

This view is sufficient for many applications!



SAT: DPLL

ϑ := ∅; // partial Boolean valuation
while(true) {

ϑ := ϑ ∪ propagate(ϕ, ϑ); // deduce consequences
if([[ϕ]]ϑ == true) {

return SATISFIABLE;
} else if([[ϕ]]ϑ == false) {
ϑ := backtrack(ϕ, ϑ); // try a different branch
if(ϑ == ∅) { return UNSATISFIABLE; }
} else {
ϑ := ϑ ∪ decide(ϕ, ϑ); // branch on unassigned variable
}
}



Interfacing Theory Solvers with SAT

Γ := abstraction function that maps atomic formulas to Boolean
variables;

ϕ := Γ(ϕ);
while(true) {

ϑ := dpll(ϕ);
if(ϑ == UNSATISFIABLE) { return UNSATISFIABLE; }
Θ := Γ−1(ϑ);
if(T (Θ) == SATISFIABLE) { return SATISFIABLE; }
ϕ := ϕ ∧ ¬ϑ; // theory lemma

}



Combining Theory Solvers

Nelson-Oppen combination method: for disjoint, stably infinite
theories it is sufficient to propagate equalities between variables.

Example: x ≤ y ∧ y ≤ x ∧ P(f (x)− f (y)) ∧ ¬P(0)

Arithmetic EUF

x ≤ y v1 = f (x)
y ≤ x v2 = f (y)
v3 = v1 − v2 P(v3)
v4 = 0 ¬P(v4)
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Combining Theory Solvers

Nelson-Oppen combination method: for disjoint, stably infinite
theories it is sufficient to propagate equalities between variables.

Example: x ≤ y ∧ y ≤ x ∧ P(f (x)︸︷︷︸
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x ≤ y v1 = f (x)
y ≤ x v2 = f (y)
v3 = v1 − v2 P(v3)
v4 = 0 ¬P(v4)
x = y v1 = v2
v3 = v4 ⊥



The SMT Competition

Held annually since 2005 to spur adoption of the SMT-LIB format
and to spark further advances in SMT.

Roughly similar to other competitions in automated reasoning,
such as CASC and SAT.



A Virtuous Circle
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