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Introduction

Satisfiability Modulo Theories =

Propositional satisfiability @ background theories



Example: Job-Shop Scheduling

Given: n jobs, each composed of m tasks of varying duration, that
must be performed consecutively on m machines; a total maximum
time max.

dij | Machine 1 Machine 2

Job 1 2 1

Job 2 3 1

Job 3 2 3
max = 8

Is there a schedule such that the end-time of every task is < max?



Job-Shop Scheduling: SMT Encoding

The job-shop scheduling problem has a straightforward encoding in
propositional logic + linear integer arithmetic.

A schedule is specified by the start time t;; for the j-th task of
every job i.

Precedence constraints:
ti1 >0 A tio>ti1+di1 A tip+dip < max (for i =1,2,3)

Resource constraints:

(tlJ >tj+drj V tr;> l’17j—|—d17j)
(t17j > t37j+d37j V otz > t1J+d1J)
(t2,j > t3j+ d3’j V o t3j > tj+ d27j) (fOI’j = 1,2)

A
A\



Job-Shop Scheduling: Solution

d;; ‘ Machine 1 Machine 2

Job 1 2 1
SMT formula encoding Job 2 3 1
Job 3 2 3

max =8

\ 4

t11 =05 tip=7
Solution: th1 =2, tr=06
t31 =0, t32 =3



Background Theories

» EUF x=y = f(x)="1f(y)
> Arithmetic y<0 = x+y<x
> Arrays select(store(a, i, x), i) = x
» Bit-vectors 2. x = x<1
» Quantifiers

» Algebraic data types



Applications

SMT solvers are the core engine of many tools for program
analysis, testing and verification.



Dynamic Symbolic Execution

Task: To find input that can steer program execution into specific
branches.



Program Model Checking

Task: To prove/refute conjectures about the values of program
variables in order to characterize a finite-state abstraction.



Static Program Analysis

Task: To check feasibility of certain program paths.



Program Verification

Task: To prove verification conditions that arise from claims of
functional correctness.



SMT Solver Use

We've seen what SMT solvers are good for. How do you actually
interact with them?




The SMT-LIB Language

SMT solvers provide a textual interface. Most solvers support a
standard language, SMT-LIB.

SMT-LIB defines
» concrete syntax for input formulas, and

» a command-based scripting language.

Solver-specific syntax is often available to extend SMT-LIB, e.g.,
for data types.



SMT-LIB: Example

; This example illustrates basic arithmetic and
; uninterpreted functions

(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(assert (»>= (* 2 x) (+ vy 2)))
(declare-fun T (Int) Int)
(declare-fun g (Int Int) Int)
(assert (< (f x) (g x x)))
(assert (> (T y) (g x x)))
(check-sat)

(get -model)

(push)

(assert (= x y))

(check-sat)

(pop)

(exit)

Is this formula satisfiable? Click 'ask z3'!

iutorial Jl vone il video]

ask z3



SMT-LIB: Example (Result)

i (model
v (define-fun z () Int
9)
(define-fun v () Int
(- 38))
(define-fun x () Int
@)
(define-fun T ((x!'1 Int)) Int
(ite (= x!1 0) (- 1)
(ite (= x!1 (- 38)) 1

(- 1))
(define-fun g ((x!'1 Int) (x!2 Int)) Int
(ite (and (= x!1 0) (= x'2 0)) 0
0))

8 2012 Microsoft Corporation - terms of use - privacy



Inter-Process Communication

v

File-based (the basic solution)

v

Stream-based (when you need online functionality)

v

Web interface (mostly for quick experiments)

v

In-memory API (the tightly integrated approach)



Algorithms

So far, we have considered SMT solvers as a black box.

SMT formula » . » sat (model)
unsat proof)

This view is sufficient for many applications!



SAT: DPLL

¥ :=0; // partial Boolean valuation
while(true) {
¥ =19 U propagate(p,); // deduce consequences

if([[¢]]ly == true) {
return SATISFIABLE;

} else if([[¢]]y == false) {
¥ := backtrack(p,); // try a different branch
if(9 == 0) { return UNSATISFIABLE; }
} else {
¥ := 9 Udecide(p,v); // branch on unassigned variable
}
}



Interfacing Theory Solvers with SAT

[ := abstraction function that maps atomic formulas to Boolean
variables;
¢ :=T(p);
while(true) {
¥ := dpll(p);
if(¥ == UNSATISFIABLE) { return UNSATISFIABLE; }
0 :=T"1¥);
if(7(©) == SATISFIABLE) { return SATISFIABLE; }
v =@ A-0; // theory lemma



Combining Theory Solvers

Nelson-Oppen combination method: for disjoint, stably infinite
theories it is sufficient to propagate equalities between variables.

Example: x <y Ay < xA P(f(x) = f(y)) A—P(0)
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Combining Theory Solvers

Nelson-Oppen combination method: for disjoint, stably infinite
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The SMT Competition

Held annually since 2005 to spur adoption of the SMT-LIB format
and to spark further advances in SMT.

Roughly similar to other competitions in automated reasoning,
such as CASC and SAT.



A Virtuous Circle

enable

SMT solvers » Applications

evaluates generate

SMT-COMP é Benchmarks

are used in
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