o N

SAT-based Finite Model Generation
for |sabelle/HOL

Tjark Weber

webertj @n. tum de

TECHNISCHE
TUT o wvesis
MUNCHEN

.
™

Summer School Marktoberdorf, August 9, 2005

L/,

| sabelle
-

Isabelle is a generic proof assistant:
Highly flexible

Interactive

Automatic proof procedures
Advanced user interface
Readable proofs

© o o o 0

Large theories of formal mathematics

\

B

SAT-based Finite Model Generation for Isabelle/HOL — p.2/13

Finite M odel Generation

-

Theorem proving: from formulae to proofs
Finite model generation: from formulae to models

no
Input valid?
formula
yes i
Proof Counter—
model

Finding counterexamples to false conjectures

Applications:

Showing the consistency of a specification
Solving open mathematical problems
Guiding resolution-based provers J

¢ Ho
;ae\\
& 4 SAT-based Finite Model Generation for Isabelle/HOL — p.3/13

| sabelle/HOL

. -

HOL: higher-order logic based on Church’s simple theory o
types (1940)

Simply-typed \-calculus:

® Types.oc::=B|la|loc—o0o

® Terms: t, = a5 | (tor—oto)o | Aoy toy)oy—om

Two logical constants:

®» —B BBy —c—0c—B

% .

SAT-based Finite Model Generation for Isabelle/HOL — p.4/13

| sabelle/HOL

. -

HOL: higher-order logic based on Church’s simple theory o
types (1940)

Simply-typed \-calculus:

® Types.oc::=B|la|loc—o0o

® Terms: t, = a5 | (tor—oto)o | Aoy toy)oy—om

Two logical constants:

®» —B BBy —c—0c—B

Other constants, e.g.
True |False || AV V]I
are definable.

¢ Ho
;ae\\
& 4 SAT-based Finite Model Generation for Isabelle/HOL — p.4/13

The Semantics of HOL

-

Set-theoretic semantics:
Types denote certain sets.
® Terms denote elements of these sets.

The Semantics of HOL
-

Set-theoretic semantics:

Types denote certain sets.

Terms denote elements of these sets.

An environment D assigns to each type variable o a
non-empty set D,,.

Semantics of types:

®» D(B)={T, L1}

® D(a)= D,

® D(01 — 03) = D(02)"\V

% .

SAT-based Finite Model Generation for Isabelle/HOL — p.5/13

Overview

-

Input: HOL formula ¢

Output: either a model for ¢, or “no model found”

\

B

SAT-based Finite Model Generation for Isabelle/HOL — p.6/13

Overview

o N

Input: HOL formula ¢

1. Fix a finite environment D.

2. Translate ¢ into a Boolean formula that is satisfiable iff
[[gb}]é — T for some variable assignment A.

3. Use a SAT solver to search for a satisfying assignment.

4. If a satisfying assignment was found, compute from it
the variable assignment A. Otherwise repeat for a
larger environment.

Output: either a model for ¢, or “no model found”

¢ Ho

;ae\\
&3' /4
& { SAT-based Finite Model Generation for Isabelle/HOL — p.6/13

-

Input: HOL formula ¢

| sabelle

Overview

()
nput Preprocessin
formula eprocessing

DIMACS CNF

zChaff

~N

no

satisfiable?

tsggn}emj

Yes

Counter ex@<

-

J/

Output: either a model for ¢, or “no model found”

e

|

SAT-based Finite Model Generation for Isabelle/HOL — p.7/13

Fixing a Finite Environment

o N

Fix a positive integer for every type variable that occurs in
the typing of ¢.

Every type then has a finite size:
o Bl =2
|«o] IS given by the environment

Finite model generation is a generalization of satisfiability
checking, where the search tree is not necessarily binary.

% .

SAT-based Finite Model Generation for Isabelle/HOL — p.8/13

The SAT Solver

o N

Several external SAT solvers (zChaff, BerkMin, Jerusat,
...) are supported.

o Efficiency
#® Advances in SAT solver technology are “for free”

% .

SAT-based Finite Model Generation for Isabelle/HOL — p.9/13

The SAT Solver

o N

Several external SAT solvers (zChaff, BerkMin, Jerusat,
..) are supported.

o Efficiency
#® Advances in SAT solver technology are “for free”

Simple internal solvers are available as well.
Easy installation

#» Compatibility

Fast enough for small examples

eH
e\ OL

e

SAT-based Finite Model Generation for Isabelle/HOL — p.9/13

Some Extensions

-

Sets are interpreted as characteristic functions.
®» o0 set 20— B

®» reP=Px

® {r.Px}=P

Non-recursive datatypes can be interpreted in a finite
model.

k

® (ay,...,an)0u=Crof...00 |...|Croy...0k

k i
® [(a1,...,on)0| =37 TTZ

Examples: option, sum, product types

aé-\

¢, Ho,
;ae\\ |
& | SAT-based Finite Model Generation for Isabelle/HOL — p.10/13

Some Extensions

fRecursive datatypes are restricted to initial fragments. T
Examples: nat, o i st, | anbdat erm
» nat'!={0}, nat?={0,1}, nat 3 ={0,1,2},...
This works for datatypes that occur only positively.

Datatype constructors and recursive functions can be
Interpreted as partial functions.

> Examp|931 Sucnat—mat; +nat—nat—nats @Jlist—>alist—>alist

3-valued logic: true, false, unknown

Axiomatic type classes introduce additional axioms that
must be satisfied by the model.

L» Records and inductively defined sets can be treated as weIIJ
P

SAT-based Finite Model Generation for Isabelle/HOL — p.11/13

Soundness and Completeness

-

Soundness: The algorithm returns “model found” only if
the given formula has a finite model.

-

If the SAT solver is sound/complete, we have ...

#® Completeness: If the given formula has a finite model,
the algorithm will find it (given enough time).

Minimality: The model found is a smallest model for the
given formula.

|

SAT-based Finite Model Generation for Isabelle/HOL — p.12/13

-

Conclusions and Future Wor k

o N

® Finite countermodels for HOL formulae

Further optimizations, benchmarks
#® SAT-based decision procedures for fragments of HOL
|Integration of external model generators

% .

SAT-based Finite Model Generation for Isabelle/HOL — p.13/13

	Isabelle
	Finite Model Generation
	Isabelle/HOL
	The Semantics of HOL
	Overview
	Overview
	Fixing a Finite Environment
	The SAT Solver
	Some Extensions
	Some Extensions
	Soundness and Completeness
	Conclusions and Future Work

