
λ →

∀
=Isa

be
lle

β
α

HOL

SAT-based Finite Model Generation
for Isabelle/HOL

Tjark Weber

webertj@in.tum.de

Summer School Marktoberdorf, August 9, 2005

SAT-based Finite Model Generation for Isabelle/HOL – p.1/13

λ →

∀
=Isa

be
lle

β
α

HOL

Isabelle

Isabelle is a generic proof assistant:

Highly flexible

Interactive

Automatic proof procedures

Advanced user interface

Readable proofs

Large theories of formal mathematics

SAT-based Finite Model Generation for Isabelle/HOL – p.2/13

λ →

∀
=Isa

be
lle

β
α

HOL

Finite Model Generation

Theorem proving: from formulae to proofs

Finite model generation: from formulae to models

Input
formula

valid?

yes

no

Proof
Counter−
model

Applications:

Finding counterexamples to false conjectures

Showing the consistency of a specification

Solving open mathematical problems

Guiding resolution-based provers

SAT-based Finite Model Generation for Isabelle/HOL – p.3/13

λ →

∀
=Isa

be
lle

β
α

HOL

Isabelle/HOL

HOL: higher-order logic based on Church’s simple theory of
types (1940)

Simply-typed λ-calculus:

Types: σ ::= B | α | σ → σ

Terms: tσ ::= xσ | (tσ′→σ tσ′)σ | (λxσ1
. tσ2

)σ1→σ2

Two logical constants:

=⇒ �

→

�

→

� , =σ→σ→

�

Other constants, e.g.
True | False | ¬ | ∧ | ∨ | ∀ | ∃ | ∃!

are definable.

SAT-based Finite Model Generation for Isabelle/HOL – p.4/13

λ →

∀
=Isa

be
lle

β
α

HOL

Isabelle/HOL

HOL: higher-order logic based on Church’s simple theory of
types (1940)

Simply-typed λ-calculus:

Types: σ ::= B | α | σ → σ

Terms: tσ ::= xσ | (tσ′→σ tσ′)σ | (λxσ1
. tσ2

)σ1→σ2

Two logical constants:

=⇒ �

→

�

→

� , =σ→σ→

�

Other constants, e.g.
True | False | ¬ | ∧ | ∨ | ∀ | ∃ | ∃!

are definable.

SAT-based Finite Model Generation for Isabelle/HOL – p.4/13

λ →

∀
=Isa

be
lle

β
α

HOL

The Semantics of HOL

Set-theoretic semantics:

Types denote certain sets.

Terms denote elements of these sets.

An environment D assigns to each type variable α a
non-empty set Dα.

Semantics of types:

D(B) = {>,⊥}

D(α) = Dα

D(σ1 → σ2) = D(σ2)
D(σ1)

SAT-based Finite Model Generation for Isabelle/HOL – p.5/13

λ →

∀
=Isa

be
lle

β
α

HOL

The Semantics of HOL

Set-theoretic semantics:

Types denote certain sets.

Terms denote elements of these sets.

An environment D assigns to each type variable α a
non-empty set Dα.

Semantics of types:

D(B) = {>,⊥}

D(α) = Dα

D(σ1 → σ2) = D(σ2)
D(σ1)

SAT-based Finite Model Generation for Isabelle/HOL – p.5/13

λ →

∀
=Isa

be
lle

β
α

HOL

Overview

Input: HOL formula φ

1. Fix a finite environment D.

2. Translate φ into a Boolean formula that is satisfiable iff
[[φ]]AD = > for some variable assignment A.

3. Use a SAT solver to search for a satisfying assignment.

4. If a satisfying assignment was found, compute from it
the variable assignment A. Otherwise repeat for a
larger environment.

Output: either a model for φ, or “no model found”

SAT-based Finite Model Generation for Isabelle/HOL – p.6/13

λ →

∀
=Isa

be
lle

β
α

HOL

Overview

Input: HOL formula φ

1. Fix a finite environment D.

2. Translate φ into a Boolean formula that is satisfiable iff
[[φ]]AD = > for some variable assignment A.

3. Use a SAT solver to search for a satisfying assignment.

4. If a satisfying assignment was found, compute from it
the variable assignment A. Otherwise repeat for a
larger environment.

Output: either a model for φ, or “no model found”

SAT-based Finite Model Generation for Isabelle/HOL – p.6/13

λ →

∀
=Isa

be
lle

β
α

HOL

Overview

Input: HOL formula φ

Input
formula

Preprocessing satisfiable?

DIMACS CNF
zChaff

Isabelle

no yes

Counterexample

Assignment

Output: either a model for φ, or “no model found”

SAT-based Finite Model Generation for Isabelle/HOL – p.7/13

λ →

∀
=Isa

be
lle

β
α

HOL

Fixing a Finite Environment

Fix a positive integer for every type variable that occurs in
the typing of φ.

Every type then has a finite size:

|B| = 2

|α| is given by the environment

|σ1 → σ2| = |σ2|
|σ1|

Finite model generation is a generalization of satisfiability
checking, where the search tree is not necessarily binary.

SAT-based Finite Model Generation for Isabelle/HOL – p.8/13

λ →

∀
=Isa

be
lle

β
α

HOL

The SAT Solver

Several external SAT solvers (zChaff, BerkMin, Jerusat,
. . .) are supported.

Efficiency

Advances in SAT solver technology are “for free”

Simple internal solvers are available as well.

Easy installation

Compatibility

Fast enough for small examples

SAT-based Finite Model Generation for Isabelle/HOL – p.9/13

λ →

∀
=Isa

be
lle

β
α

HOL

The SAT Solver

Several external SAT solvers (zChaff, BerkMin, Jerusat,
. . .) are supported.

Efficiency

Advances in SAT solver technology are “for free”

Simple internal solvers are available as well.

Easy installation

Compatibility

Fast enough for small examples

SAT-based Finite Model Generation for Isabelle/HOL – p.9/13

λ →

∀
=Isa

be
lle

β
α

HOL

Some Extensions

Sets are interpreted as characteristic functions.

σ set ∼= σ → B

x ∈ P ∼= P x

{x. P x} ∼= P

Non-recursive datatypes can be interpreted in a finite
model.

(α1, . . . , αn)σ ::= C1 σ1
1 . . . σ1

m1
| . . . |Ck σk

1 . . . σk
mk

|(α1, . . . , αn)σ| =
∑k

i=1

∏mi

j=1 |σ
i
j |

Examples: option, sum, product types

SAT-based Finite Model Generation for Isabelle/HOL – p.10/13

λ →

∀
=Isa

be
lle

β
α

HOL

Some Extensions

Recursive datatypes are restricted to initial fragments.

Examples: nat, σ list, lambdaterm

nat1 = {0}, nat2 = {0, 1}, nat3 = {0, 1, 2}, . . .

This works for datatypes that occur only positively.

Datatype constructors and recursive functions can be
interpreted as partial functions.

Examples: Sucnat→nat, +nat→nat→nat, @σlist→σlist→σlist

3-valued logic: true, false, unknown

Axiomatic type classes introduce additional axioms that
must be satisfied by the model.

Records and inductively defined sets can be treated as well.

SAT-based Finite Model Generation for Isabelle/HOL – p.11/13

λ →

∀
=Isa

be
lle

β
α

HOL

Soundness and Completeness

If the SAT solver is sound/complete, we have ...

Soundness: The algorithm returns “model found” only if
the given formula has a finite model.

Completeness: If the given formula has a finite model,
the algorithm will find it (given enough time).

Minimality : The model found is a smallest model for the
given formula.

SAT-based Finite Model Generation for Isabelle/HOL – p.12/13

λ →

∀
=Isa

be
lle

β
α

HOL

Conclusions and Future Work

Finite countermodels for HOL formulae

Further optimizations, benchmarks

SAT-based decision procedures for fragments of HOL

Integration of external model generators

SAT-based Finite Model Generation for Isabelle/HOL – p.13/13

	Isabelle
	Finite Model Generation
	Isabelle/HOL
	The Semantics of HOL
	Overview
	Overview
	Fixing a Finite Environment
	The SAT Solver
	Some Extensions
	Some Extensions
	Soundness and Completeness
	Conclusions and Future Work

