SAT-based Finite Model Generation for Isabelle/HOL

Tjark Weber

webertj@in.tum.de

Summer School Marktoberdorf, August 9, 2005

Isabelle

Isabelle is a generic proof assistant:

- Highly flexible
- Interactive
- Automatic proof procedures
- Advanced user interface
- Readable proofs
- Large theories of formal mathematics

Finite Model Generation

Theorem proving: from formulae to proofs

Finite model generation: from formulae to models

Applications:

- Finding counterexamples to false conjectures
- Showing the consistency of a specification
- Solving open mathematical problems
- Guiding resolution-based provers

Isabelle/HOL

HOL: higher-order logic based on Church's simple theory of types (1940)

Simply-typed λ -calculus:

- Types: $\sigma ::= \mathbb{B} \mid \alpha \mid \sigma \to \sigma$
- Terms: $t_{\sigma} ::= x_{\sigma} \mid (t_{\sigma' \to \sigma} t_{\sigma'})_{\sigma} \mid (\lambda x_{\sigma_1} \cdot t_{\sigma_2})_{\sigma_1 \to \sigma_2}$

Two logical constants:

$$lacksquare$$
 $\Longrightarrow_{\mathbb{B} o\mathbb{B}}$, $=_{\sigma o\sigma o\mathbb{B}}$

Isabelle/HOL

HOL: higher-order logic based on Church's simple theory of types (1940)

Simply-typed λ -calculus:

- Types: $\sigma ::= \mathbb{B} \mid \alpha \mid \sigma \to \sigma$

Two logical constants:

$$lacksquare$$
 $\Longrightarrow_{\mathbb{B} o\mathbb{B}}$, $=_{\sigma o\sigma o\mathbb{B}}$

Other constants, e.g.

True | False |
$$\neg$$
 | \land | \lor | \forall | \exists | \exists !

are definable.

The Semantics of HOL

Set-theoretic semantics:

- Types denote certain sets.
- Terms denote elements of these sets.

The Semantics of HOL

Set-theoretic semantics:

- Types denote certain sets.
- Terms denote elements of these sets.

An *environment* D assigns to each type variable α a non-empty set D_{α} .

Semantics of types:

- $D(\mathbb{B}) = \{\top, \bot\}$
- $D(\alpha) = D_{\alpha}$
- $D(\sigma_1 \to \sigma_2) = D(\sigma_2)^{D(\sigma_1)}$

Overview

Input: HOL formula ϕ

Output: either a model for ϕ , or "no model found"

Overview

Input: HOL formula ϕ

- 1. Fix a finite environment D.
- 2. Translate ϕ into a Boolean formula that is satisfiable iff $\llbracket \phi \rrbracket_D^A = \top$ for some variable assignment A.
- 3. Use a SAT solver to search for a satisfying assignment.
- 4. If a satisfying assignment was found, compute from it the variable assignment *A*. Otherwise repeat for a larger environment.

Output: either a model for ϕ , or "no model found"

Overview

Input: HOL formula ϕ

Output: either a model for ϕ , or "no model found"

Fixing a Finite Environment

Fix a positive integer for every type variable that occurs in the typing of ϕ .

Every type then has a finite size:

- $|\mathbb{B}| = 2$
- \bullet $|\alpha|$ is given by the environment

Finite model generation is a generalization of satisfiability checking, where the search tree is not necessarily binary.

The SAT Solver

Several external SAT solvers (zChaff, BerkMin, Jerusat, ...) are supported.

- Efficiency
- Advances in SAT solver technology are "for free"

The SAT Solver

Several external SAT solvers (zChaff, BerkMin, Jerusat, ...) are supported.

- Efficiency
- Advances in SAT solver technology are "for free"

Simple *internal* solvers are available as well.

- Easy installation
- Compatibility
- Fast enough for small examples

Some Extensions

Sets are interpreted as characteristic functions.

- σ set $\cong \sigma \to \mathbb{B}$
- \bullet $x \in P \cong P x$

Non-recursive datatypes can be interpreted in a finite model.

$$(\alpha_1, \dots, \alpha_n) \sigma ::= C_1 \sigma_1^1 \dots \sigma_{m_1}^1 | \dots | C_k \sigma_1^k \dots \sigma_{m_k}^k$$

$$|(\alpha_1, \dots, \alpha_n)\sigma| = \sum_{i=1}^k \prod_{j=1}^{m_i} |\sigma_j^i|$$

Examples: option, sum, product types

Some Extensions

Recursive datatypes are restricted to initial fragments.

- Examples: nat, σ list, lambdaterm
- $nat^1 = \{0\}$, $nat^2 = \{0, 1\}$, $nat^3 = \{0, 1, 2\}$, ...
- This works for datatypes that occur only positively.

Datatype *constructors* and *recursive functions* can be interpreted as partial functions.

- Examples: $Suc_{nat \to nat}$, $+_{nat \to nat \to nat}$, $@_{\sigma list \to \sigma list}$
- 3-valued logic: true, false, unknown

Axiomatic type classes introduce additional axioms that must be satisfied by the model.

Records and inductively defined sets can be treated as well.

Soundness and Completeness

If the SAT solver is sound/complete, we have ...

- Soundness: The algorithm returns "model found" only if the given formula has a finite model.
- Completeness: If the given formula has a finite model, the algorithm will find it (given enough time).
- Minimality: The model found is a smallest model for the given formula.

Conclusions and Future Work

Finite countermodels for HOL formulae

- Further optimizations, benchmarks
- SAT-based decision procedures for fragments of HOL
- Integration of external model generators

