Introduction
Finite Model Generation
Extensions and Optimizations
Case Studies
Integration of Proof-Producing SAT Solvers
Conclusion

SAT-based Finite Model Generation for Higher-Order Logic

Tjark Weber

October 9, 2008

Motivation

Complex systems almost inevitably contain bugs.

Motivation

Complex systems almost inevitably contain bugs.

Complex formalizations almost inevitably contain bugs.

- Initial conjectures are frequently false.
- A counterexample often exhibits a fault in the implementation.

Questions

• Can we use efficient SAT solvers to find counterexamples in higher-order logic automatically?

Questions

- Can we use efficient SAT solvers to find counterexamples in higher-order logic automatically?
- Can we use efficient SAT solvers to prove theorems in an LCF-style theorem prover?

Overview

Higher-Order Logic

Isabelle/HOL: higher-order logic, based on Church's simple theory of types (1940)

- Types: $\sigma ::= \alpha \mid (\sigma_1, \dots, \sigma_n)c$
- Terms: $t_{\sigma} ::= x_{\sigma} \mid c_{\sigma} \mid (t_{\sigma' \to \sigma} t'_{\sigma'})_{\sigma} \mid (\lambda x_{\sigma_1}. t_{\sigma_2})_{\sigma_1 \to \sigma_2}$

Two special type constructors: bool and \rightarrow

Two logical constants: $\Longrightarrow_{\mathsf{bool}\to\mathsf{bool}\to\mathsf{bool}}$ and $=_{\sigma\to\sigma\to\mathsf{bool}}$

The Semantics of HOL

Standard set-theoretic semantics:

Types denote certain non-empty sets.

$$\bullet \quad \llbracket \mathsf{bool} \rrbracket = \{ \top, \bot \}$$

$$\bullet \quad \llbracket \sigma_1 \to \sigma_2 \rrbracket = \llbracket \sigma_2 \rrbracket^{\llbracket \sigma_1 \rrbracket}$$

Terms denote elements of these sets.

The Semantics of HOL

Standard set-theoretic semantics:

Types denote certain non-empty finite sets.

$$\bullet \quad \llbracket \mathsf{bool} \rrbracket = \{ \top, \bot \}$$

$$\bullet \quad \llbracket \sigma_1 \to \sigma_2 \rrbracket = \llbracket \sigma_2 \rrbracket^{\llbracket \sigma_1 \rrbracket}$$

Terms denote elements of these sets.

Translation to Propositional Logic

ullet Terms of base type: e.g., x_{lpha} , with $[\![lpha]\!]=\{a_0,a_1,a_2,a_3,a_4\}$

Translation to Propositional Logic

ullet Terms of base type: e.g., x_{α} , with $\llbracket \alpha \rrbracket = \{a_0, a_1, a_2, a_3, a_4\}$

• Functions: e.g., $f_{\beta \to \alpha}$, with $\llbracket \beta \rrbracket = \{b_0, b_1, b_2\}$

Translation to Propositional Logic

ullet Terms of base type: e.g., x_{lpha} , with $[\![lpha]\!]=\{a_0,a_1,a_2,a_3,a_4\}$

• Functions: e.g., $f_{\beta \to \alpha}$, with $\llbracket \beta \rrbracket = \{b_0, b_1, b_2\}$

• Application, lambda abstraction

Higher-Order Logic Translation to Propositional Logi Soundness, Completeness

Soundness, Completeness

Corollary 2.103 (paraphrased)

The resulting propositional formula is satisfiable if and only if the HOL input formula has a standard model of the given size.

Optimizations

- Propositional simplification
- Term abbreviations
- Specialization for certain functions
- Undefined values, 3-valued logic

Optimizations

- Propositional simplification
- Term abbreviations
- Specialization for certain functions
- Undefined values, 3-valued logic

Extensions

- Type definitions, constant definitions, overloading
- Axiomatic type classes
- Data types, recursive functions
- Sets, records
- HOLCF

Extensions

- Type definitions, constant definitions, overloading
- Axiomatic type classes
- Data types, recursive functions
- Sets, records
- HOLCF

• The RSA-PSS security protocol

Probabilistic programs

A SAT-based Sudoku solver

- The RSA-PSS security protocol
 - security of an abstract formalization of the protocol
- Probabilistic programs

A SAT-based Sudoku solver

- The RSA-PSS security protocol
 - security of an abstract formalization of the protocol
- Probabilistic programs
 - an abstract model of probabilistic programs
- A SAT-based Sudoku solver

- The RSA-PSS security protocol
 - security of an abstract formalization of the protocol
- Probabilistic programs
 - an abstract model of probabilistic programs
- A SAT-based Sudoku solver
 - a highly efficient solver with very little implementation effort

System Overview

Representation of SAT Problems

Naive: using HOL connectives \land , \lor

Representation of SAT Problems

Naive: using HOL connectives \land , \lor

Much better:

- **1** The whole CNF problem is assumed: $\{\bigwedge_{i=1}^k C_i\} \vdash \bigwedge_{i=1}^k C_i$.
- **2** Each clause is derived: $\{\bigwedge_{i=1}^k C_i\} \vdash C_1, \ldots, \{\bigwedge_{i=1}^k C_i\} \vdash C_k$.
- Then a sequent representation is used:

$$\{\bigwedge_{i=1}^k C_i, \overline{p_1}, \dots, \overline{p_n}\} \vdash \text{False.}$$

Representation of SAT Problems

Naive: using HOL connectives \land , \lor

Much better:

- **1** The whole CNF problem is assumed: $\{\bigwedge_{i=1}^k C_i\} \vdash \bigwedge_{i=1}^k C_i$.
- **2** Each clause is derived: $\{\bigwedge_{i=1}^k C_i\} \vdash C_1, \ldots, \{\bigwedge_{i=1}^k C_i\} \vdash C_k$.
- **3** Then a sequent representation is used:

$$\{\bigwedge_{i=1}^k C_i, \overline{p_1}, \dots, \overline{p_n}\} \vdash \text{False.}$$

- The problem is a set of clauses.
- Clauses are sets of literals.
- Resolution is fast.

Performance

Evaluation on **SATLIB** problems:

Problem	Variables	Clauses	Resolutions	zChaff (s)	Isabelle (s)
c7552mul.miter	11282	69529	242509	45	69
6pipe	15800	394739	310813	134	192
6pipe_6_ooo	17064	545612	782903	263	421
7pipe	23910	751118	497019	440	609

Evaluation on pigeonhole instances:

Problem	Variables	Clauses	Resolutions	zChaff (s)	Isabelle (s)
pigeon-9	90	415	73472	1	3
pigeon-10	110	561	215718	6	10
pigeon-11	132	738	601745	24	36
pigeon-12	156	949	3186775	247	315

Contributions

- A SAT-based finite model generator for higher-order logic
 - A satisfiability-equivalent translation from higher-order logic to propositional logic
 - Support for data types, recursive functions, etc.
 - Case studies

Contributions

- A SAT-based finite model generator for higher-order logic
 - A satisfiability-equivalent translation from higher-order logic to propositional logic
 - Support for data types, recursive functions, etc.
 - Case studies
- A highly optimized LCF-style integration of proof-producing SAT solvers
 - Dramatic performance improvements for propositional logic
 - Optimization techniques also applicable to other provers

Future Work

- Integration with Isabelle
- Optimizations
- External model generators
- Other methods of disproving

Future Work

- Integration with Isabelle
- Optimizations
- External model generators
- Other methods of disproving
- Analysis and optimization of resolution proofs
- SAT-based decision procedures beyond propositional logic

Future Work

- Integration with Isabelle
- Optimizations
- External model generators
- Other methods of disproving
- Analysis and optimization of resolution proofs
- SAT-based decision procedures beyond propositional logic
- Formalization

Questions?

Thank you for your attention.

