SAT-based Finite Model Generation for
Higher-Order Logic

Tjark Weber

TECHNISCHE
m UNIVERSITAT
MUNCHEN
October 9, 2008
e\\z o
&
opeg
Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

Introduction

Motivation

Motivation

Complex systems almost inevitably contain bugs.

P

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

Introduction

Motivation
Questions

Over

Motivation

Complex systems almost inevitably contain bugs.

Complex formalizations almost inevitably contain bugs.

@ Initial conjectures are frequently false.

@ A counterexample often exhibits a fault in the implementation.

\etoy

\e

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

Introduction

Motivation
Questions
Ovel

Questions

@ Can we use efficient SAT solvers to find counterexamples in
higher-order logic automatically?

N
5
e’

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

Introduction

Motivation
Questions
Over

Questions

@ Can we use efficient SAT solvers to find counterexamples in
higher-order logic automatically?

@ Can we use efficient SAT solvers to prove theorems in an
LCF-style theorem prover?

\e~Hop

\e

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

Introduction

Motivation
Questions
Overview

Overview

| Interactive Theorem Proving I
Ch.4 Ch.5
Ch.2,3
Countermodels SAT Solvers

N
5
e’

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

Finite Model Generation Higher-Order Logic

Translation to Propositional Logic
Soundness, Completeness

Higher-Order Logic

Isabelle/HOL: higher-order logic, based on Church’s simple theory
of types (1940)

@ Types: 0 =« | (01,...,0p)C

e Terms: t, = X, | Co \ (tgqa t(;/)a \ ()\Xal- tO'Q)(TlHUZ

Two special type constructors: bool and —
Two logical constants: =100/ bool—bool aNd =45 _bool

Ao

e

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

Finite Model Generation W=y e

Translation to Propositional Logic
Soundness, Completeness

The Semantics of HOL

Standard set-theoretic semantics:

@ Types denote certain non-empty sets.

o [bool] ={T,L}
o o1 — oo = |I(;-2]||[‘71]|

@ Terms denote elements of these sets.

\etoy

\e

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

Finite Model Generation W=y e

Translation to Propositional Logic
Soundness, Completeness

The Semantics of HOL

Standard set-theoretic semantics:

@ Types denote certain non-empty finite sets.

o [bool] ={T,L}
o o1 — oo = |I(;-2]||[‘71]|

@ Terms denote elements of these sets.

\etoy

\e

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

Finite Model Generation YOl et

Translation to Propositional Logic
Soundness, Completeness

Translation to Propositional Logic

e Terms of base type: e.g., x,, with [o] = {ao, a1, a2, a3, as}

[X=ag X=aq X=a, X=ag X=ay]

N
5
e’

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

Finite Model Generation ety ek

slation to Propositional Logic
Soundness, Completeness

Translation to Propositional Logic

e Terms of base type: e.g., x,, with [o] = {ao, a1, a2, a3, as}

[X=ag X=aq X=a, X=ag X=ay]

e Functions: e.g., f3_., with [3] = {bo, b1, b2}

N
5
e’

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

Finite Model Generation ety ek

slation to Propositional Logic
oundness, Completeness

Translation to Propositional Logic

e Terms of base type: e.g., x,, with [o] = {ao, a1, a2, a3, as}

[X=ag X=aq X=a, X=ag X=ay]

e Functions: e.g., f3_., with [3] = {bo, b1, b2}

@ Application, lambda abstraction

N
5
e’

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

Finite Model Generation @iy et

a tion to Propositional Logic
Soundness, Completeness

Soundness, Completeness

Corollary 2.103 (paraphrased)

The resulting propositional formula is satisfiable if and only if the
HOL input formula has a standard model of the given size.

\etoy

\e

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

Extensions and Optimizations imizations
Extensions

Optimizations

Propositional simplification
Term abbreviations
Specialization for certain functions

Undefined values, 3-valued logic

\etoy

\e

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

Extensions and Optimizations imizations
Extensions

Optimizations

Propositional simplification
Term abbreviations
Specialization for certain functions

Undefined values, 3-valued logic

\etoy

\e

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

Extensions and Optimizations Optimizations
Extensions

Extensions

]
"]
"]
]
("]

Type definitions, constant definitions, overloading
Axiomatic type classes

Data types, recursive functions

Sets, records

HOLCF

\etoy

\e

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

Extensions and Optimizations Optimizations
Extensions

Extensions

]
"]
"]
]
("]

Type definitions, constant definitions, overloading
Axiomatic type classes

Data types, recursive functions

Sets, records

HOLCF

\e-to

\e

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

The RSA-PSS Security Protocol
Probabilistic Programs

Case Studies A SAT-based Sudoku Solver

Case Studies

@ The RSA-PSS security protocol
@ Probabilistic programs

@ A SAT-based Sudoku solver

N
5
e’

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

The RSA-PSS Security Protocol
Probabilistic Programs

Case Studies A SAT-based Sudoku Solver

Case Studies

@ The RSA-PSS security protocol

— security of an abstract formalization of the protocol

@ Probabilistic programs

@ A SAT-based Sudoku solver

\e-to

\e

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

The RSA-PSS Security Protocol
Probabilistic Programs

Case Studies A SAT-based Sudoku Solver

Case Studies

@ The RSA-PSS security protocol

— security of an abstract formalization of the protocol

@ Probabilistic programs

— an abstract model of probabilistic programs

@ A SAT-based Sudoku solver

\etoy

\e

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

The RSA-PSS Security Protocol
Case Studies Probabilistic Prog
A SAT-based Sudoku Solver

Case Studies

@ The RSA-PSS security protocol
— security of an abstract formalization of the protocol

@ Probabilistic programs

— an abstract model of probabilistic programs

@ A SAT-based Sudoku solver

— a highly efficient solver with very little implementation effort

%

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

System Overview
ion of SAT Problems

Integration of Proof-Producing SAT Solvers

System Overview

Isabelle
SAT Solver
DIMACS CNF
Input / #=(Preprocessin J\ = satisfiable?
formula o P ¥ o y
yes
Model
Counter - T
Proof Trace
Proof _/_\
Theorem \<& reconstruction /™%

@

SAT-based Finite Model Generation for Highe

Integration of Proof-Producing SAT Solvers Performance

Representation of SAT Problems

Naive: using HOL connectives A, V

N
5
e’

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

System Overview
of SAT Problems

Integration of Proof-Producing SAT Solvers Performance

Representation of SAT Problems

Naive: using HOL connectives A, V

Much better:
@ The whole CNF problem is assumed: {\F, Ci} - AL, G
@ Each clause is derived: {A, G} F G, ..., (A, G} G
© Then a sequent representation is used:
{/\f-(:1 Ci,p1,--.,Pn} | False.

N
5
e’

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

W
of SAT Problems

Integration of Proof-Producing SAT Solvers Performance

Representation of SAT Problems

Naive: using HOL connectives A, V
Much better:
@ The whole CNF problem is assumed: {/\f‘:l Gl /\f-(:l G.
@ Each clause is derived: {A, G} F G, ..., (A, G} G
© Then a sequent representation is used:
{/\f-(:1 Ci,p1,--.,Pn} | False.

@ The problem is a set of clauses.

@ Clauses are sets of literals.

@ Resolution is fast. S
s

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

Integration of Proof-Producing SAT Solvers

Performance

System Overview
Representation of SAT Problems

Performance

Evaluation on SATLIB problems:

Problem Variables | Clauses | Resolutions | zChaff (s) | Isabelle (s)
c7552mul.miter 11282 69529 242509 45 69
6pipe 15800 | 394739 310813 134 192
6pipe_6_ooo 17064 | 545612 782903 263 421
Tpipe 23910 | 751118 497019 440 609
Evaluation on pigeonhole instances:
Problem Variables | Clauses | Resolutions | zChaff (s) | Isabelle (s)
pigeon-9 90 415 73472 1 3
pigeon-10 110 561 215718 6 10
pigeon-11 132 738 601745 24 36
pigeon-12 156 949 3186775 247 315

Tjark Weber

W\ Ho
S
e’

SAT-based Finite Model Generation for Higher-Order Logic

Contributions
Future Work
Questions?

Conclusion

Contributions

@ A SAT-based finite model generator for higher-order logic

o A satisfiability-equivalent translation from higher-order logic to
propositional logic

e Support for data types, recursive functions, etc.

o Case studies

N
5
e’

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

Contributions
Future Work
Questions?

Conclusion

Contributions

@ A SAT-based finite model generator for higher-order logic

o A satisfiability-equivalent translation from higher-order logic to
propositional logic

e Support for data types, recursive functions, etc.

o Case studies

@ A highly optimized LCF-style integration of proof-producing
SAT solvers

e Dramatic performance improvements for propositional logic
e Optimization techniques also applicable to other provers

N
5
e’

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

Contributions
Future Work
Questions?

Conclusion

Future Work

]
"]
]
(]

Integration with Isabelle
Optimizations
External model generators

Other methods of disproving

N
5
e’

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

Contributions
Future Work
Questions?

Conclusion

Future Work

]
"]
]
(]

Integration with Isabelle
Optimizations
External model generators

Other methods of disproving

Analysis and optimization of resolution proofs

@ SAT-based decision procedures beyond propositional logic

\etoy

\e

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

Contributions
Future Work
Questions?

Conclusion

Future Work

]
"]
]
(]

Integration with Isabelle
Optimizations
External model generators

Other methods of disproving

Analysis and optimization of resolution proofs

@ SAT-based decision procedures beyond propositional logic

@ Formalization

\etoy

\e

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

Contributions
Futur: ork
Questions?

Conclusion

Questions?

Thank you for your attention.

& Ho,
&

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

	Introduction
	Motivation
	Questions
	Overview

	Finite Model Generation
	Higher-Order Logic
	Translation to Propositional Logic
	Soundness, Completeness

	Extensions and Optimizations
	Optimizations
	Extensions

	Case Studies
	The RSA-PSS Security Protocol
	Probabilistic Programs
	A SAT-based Sudoku Solver

	Integration of Proof-Producing SAT Solvers
	System Overview
	Representation of SAT Problems
	Performance

	Conclusion
	Contributions
	Future Work
	Questions?

