
λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

SAT-based Finite Model Generation for
Higher-Order Logic

Tjark Weber

October 9, 2008

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Motivation
Questions
Overview

Motivation

Complex systems almost inevitably contain bugs.

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Motivation
Questions
Overview

Motivation

Complex systems almost inevitably contain bugs.

Complex formalizations almost inevitably contain bugs.

Initial conjectures are frequently false.

A counterexample often exhibits a fault in the implementation.

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Motivation
Questions
Overview

Questions

1 Can we use efficient SAT solvers to find counterexamples in
higher-order logic automatically?

2 Can we use efficient SAT solvers to prove theorems in an
LCF-style theorem prover?

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Motivation
Questions
Overview

Questions

1 Can we use efficient SAT solvers to find counterexamples in
higher-order logic automatically?

2 Can we use efficient SAT solvers to prove theorems in an
LCF-style theorem prover?

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Motivation
Questions
Overview

Overview

Ch. 5

Ch. 2, 3

Ch. 4

Countermodels SAT Solvers

Interactive Theorem Proving

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Higher-Order Logic
Translation to Propositional Logic
Soundness, Completeness

Higher-Order Logic

Isabelle/HOL: higher-order logic, based on Church’s simple theory
of types (1940)

Types: σ ::= α | (σ1, . . . , σn)c

Terms: tσ ::= xσ | cσ | (tσ′→σ t ′σ′)σ | (λxσ1 . tσ2)σ1→σ2

Two special type constructors: bool and →
Two logical constants: =⇒bool→bool→bool and =σ→σ→bool

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Higher-Order Logic
Translation to Propositional Logic
Soundness, Completeness

The Semantics of HOL

Standard set-theoretic semantics:

Types denote certain non-empty sets.

[[bool]] = {>,⊥}
[[σ1 → σ2]] = [[σ2]][[σ1]]

Terms denote elements of these sets.

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Higher-Order Logic
Translation to Propositional Logic
Soundness, Completeness

The Semantics of HOL

Standard set-theoretic semantics:

Types denote certain non-empty finite sets.

[[bool]] = {>,⊥}
[[σ1 → σ2]] = [[σ2]][[σ1]]

Terms denote elements of these sets.

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Higher-Order Logic
Translation to Propositional Logic
Soundness, Completeness

Translation to Propositional Logic

Terms of base type: e.g., xα, with [[α]] = {a0, a1, a2, a3, a4}

x=a 0 x=a 1 x=a 2 x=a 4x=a 3

Functions: e.g., fβ→α, with [[β]] = {b0, b1, b2}

Application, lambda abstraction

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Higher-Order Logic
Translation to Propositional Logic
Soundness, Completeness

Translation to Propositional Logic

Terms of base type: e.g., xα, with [[α]] = {a0, a1, a2, a3, a4}

x=a 0 x=a 1 x=a 2 x=a 4x=a 3

Functions: e.g., fβ→α, with [[β]] = {b0, b1, b2}

Application, lambda abstraction

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Higher-Order Logic
Translation to Propositional Logic
Soundness, Completeness

Translation to Propositional Logic

Terms of base type: e.g., xα, with [[α]] = {a0, a1, a2, a3, a4}

x=a 0 x=a 1 x=a 2 x=a 4x=a 3

Functions: e.g., fβ→α, with [[β]] = {b0, b1, b2}

Application, lambda abstraction

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Higher-Order Logic
Translation to Propositional Logic
Soundness, Completeness

Soundness, Completeness

Corollary 2.103 (paraphrased)

The resulting propositional formula is satisfiable if and only if the
HOL input formula has a standard model of the given size.

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Optimizations
Extensions

Optimizations

Propositional simplification

Term abbreviations

Specialization for certain functions

Undefined values, 3-valued logic

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Optimizations
Extensions

Optimizations

Propositional simplification

Term abbreviations

Specialization for certain functions

Undefined values, 3-valued logic

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Optimizations
Extensions

Extensions

Type definitions, constant definitions, overloading

Axiomatic type classes

Data types, recursive functions

Sets, records

HOLCF

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Optimizations
Extensions

Extensions

Type definitions, constant definitions, overloading

Axiomatic type classes

Data types, recursive functions

Sets, records

HOLCF

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

The RSA-PSS Security Protocol
Probabilistic Programs
A SAT-based Sudoku Solver

Case Studies

The RSA-PSS security protocol

– security of an abstract formalization of the protocol

Probabilistic programs

– an abstract model of probabilistic programs

A SAT-based Sudoku solver

– a highly efficient solver with very little implementation effort

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

The RSA-PSS Security Protocol
Probabilistic Programs
A SAT-based Sudoku Solver

Case Studies

The RSA-PSS security protocol

– security of an abstract formalization of the protocol

Probabilistic programs

– an abstract model of probabilistic programs

A SAT-based Sudoku solver

– a highly efficient solver with very little implementation effort

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

The RSA-PSS Security Protocol
Probabilistic Programs
A SAT-based Sudoku Solver

Case Studies

The RSA-PSS security protocol

– security of an abstract formalization of the protocol

Probabilistic programs

– an abstract model of probabilistic programs

A SAT-based Sudoku solver

– a highly efficient solver with very little implementation effort

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

The RSA-PSS Security Protocol
Probabilistic Programs
A SAT-based Sudoku Solver

Case Studies

The RSA-PSS security protocol

– security of an abstract formalization of the protocol

Probabilistic programs

– an abstract model of probabilistic programs

A SAT-based Sudoku solver

– a highly efficient solver with very little implementation effort

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

System Overview
Representation of SAT Problems
Performance

System Overview

Input

formula
Preprocessing

Counterexample

Model

Isabelle

Theorem reconstruction

Proof

DIMACS CNF

satisfiable?

SAT Solver

yes no

Proof Trace

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

System Overview
Representation of SAT Problems
Performance

Representation of SAT Problems

Naive: using HOL connectives ∧, ∨

Much better:

1 The whole CNF problem is assumed: {
∧k

i=1 Ci} `
∧k

i=1 Ci .

2 Each clause is derived: {
∧k

i=1 Ci} ` C1, . . . , {
∧k

i=1 Ci} ` Ck .

3 Then a sequent representation is used:

{
∧k

i=1 Ci , p1, . . . , pn} ` False.

The problem is a set of clauses.

Clauses are sets of literals.

Resolution is fast.

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

System Overview
Representation of SAT Problems
Performance

Representation of SAT Problems

Naive: using HOL connectives ∧, ∨

Much better:

1 The whole CNF problem is assumed: {
∧k

i=1 Ci} `
∧k

i=1 Ci .

2 Each clause is derived: {
∧k

i=1 Ci} ` C1, . . . , {
∧k

i=1 Ci} ` Ck .

3 Then a sequent representation is used:

{
∧k

i=1 Ci , p1, . . . , pn} ` False.

The problem is a set of clauses.

Clauses are sets of literals.

Resolution is fast.

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

System Overview
Representation of SAT Problems
Performance

Representation of SAT Problems

Naive: using HOL connectives ∧, ∨

Much better:

1 The whole CNF problem is assumed: {
∧k

i=1 Ci} `
∧k

i=1 Ci .

2 Each clause is derived: {
∧k

i=1 Ci} ` C1, . . . , {
∧k

i=1 Ci} ` Ck .

3 Then a sequent representation is used:

{
∧k

i=1 Ci , p1, . . . , pn} ` False.

The problem is a set of clauses.

Clauses are sets of literals.

Resolution is fast.

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

System Overview
Representation of SAT Problems
Performance

Performance

Evaluation on SATLIB problems:

Problem Variables Clauses Resolutions zChaff (s) Isabelle (s)

c7552mul.miter 11282 69529 242509 45 69
6pipe 15800 394739 310813 134 192
6pipe 6 ooo 17064 545612 782903 263 421
7pipe 23910 751118 497019 440 609

Evaluation on pigeonhole instances:

Problem Variables Clauses Resolutions zChaff (s) Isabelle (s)

pigeon-9 90 415 73472 1 3
pigeon-10 110 561 215718 6 10
pigeon-11 132 738 601745 24 36
pigeon-12 156 949 3186775 247 315

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Contributions
Future Work
Questions?

Contributions

A SAT-based finite model generator for higher-order logic

A satisfiability-equivalent translation from higher-order logic to
propositional logic
Support for data types, recursive functions, etc.
Case studies

A highly optimized LCF-style integration of proof-producing
SAT solvers

Dramatic performance improvements for propositional logic
Optimization techniques also applicable to other provers

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Contributions
Future Work
Questions?

Contributions

A SAT-based finite model generator for higher-order logic

A satisfiability-equivalent translation from higher-order logic to
propositional logic
Support for data types, recursive functions, etc.
Case studies

A highly optimized LCF-style integration of proof-producing
SAT solvers

Dramatic performance improvements for propositional logic
Optimization techniques also applicable to other provers

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Contributions
Future Work
Questions?

Future Work

Integration with Isabelle

Optimizations

External model generators

Other methods of disproving

Analysis and optimization of resolution proofs

SAT-based decision procedures beyond propositional logic

Formalization

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Contributions
Future Work
Questions?

Future Work

Integration with Isabelle

Optimizations

External model generators

Other methods of disproving

Analysis and optimization of resolution proofs

SAT-based decision procedures beyond propositional logic

Formalization

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Contributions
Future Work
Questions?

Future Work

Integration with Isabelle

Optimizations

External model generators

Other methods of disproving

Analysis and optimization of resolution proofs

SAT-based decision procedures beyond propositional logic

Formalization

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Contributions
Future Work
Questions?

Questions?

Thank you for your attention.

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic

	Introduction
	Motivation
	Questions
	Overview

	Finite Model Generation
	Higher-Order Logic
	Translation to Propositional Logic
	Soundness, Completeness

	Extensions and Optimizations
	Optimizations
	Extensions

	Case Studies
	The RSA-PSS Security Protocol
	Probabilistic Programs
	A SAT-based Sudoku Solver

	Integration of Proof-Producing SAT Solvers
	System Overview
	Representation of SAT Problems
	Performance

	Conclusion
	Contributions
	Future Work
	Questions?

