
λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

SAT-based Finite Model Generation for
Higher-Order Logic

Tjark Weber

October 9, 2008

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic



λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Motivation
Questions
Overview

Motivation

Complex systems almost inevitably contain bugs.
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Motivation

Complex systems almost inevitably contain bugs.

Complex formalizations almost inevitably contain bugs.

Initial conjectures are frequently false.

A counterexample often exhibits a fault in the implementation.
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Questions

1 Can we use efficient SAT solvers to find counterexamples in
higher-order logic automatically?

2 Can we use efficient SAT solvers to prove theorems in an
LCF-style theorem prover?
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Ch. 5

Ch. 2, 3

Ch. 4

Countermodels SAT Solvers

Interactive Theorem Proving

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic



λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Higher-Order Logic
Translation to Propositional Logic
Soundness, Completeness

Higher-Order Logic

Isabelle/HOL: higher-order logic, based on Church’s simple theory
of types (1940)

Types: σ ::= α | (σ1, . . . , σn)c

Terms: tσ ::= xσ | cσ | (tσ′→σ t ′σ′)σ | (λxσ1 . tσ2)σ1→σ2

Two special type constructors: bool and →
Two logical constants: =⇒bool→bool→bool and =σ→σ→bool
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The Semantics of HOL

Standard set-theoretic semantics:

Types denote certain non-empty sets.

[[bool]] = {>,⊥}
[[σ1 → σ2]] = [[σ2]][[σ1]]

Terms denote elements of these sets.
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The Semantics of HOL

Standard set-theoretic semantics:

Types denote certain non-empty finite sets.

[[bool]] = {>,⊥}
[[σ1 → σ2]] = [[σ2]][[σ1]]

Terms denote elements of these sets.

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic



λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

Higher-Order Logic
Translation to Propositional Logic
Soundness, Completeness

Translation to Propositional Logic

Terms of base type: e.g., xα, with [[α]] = {a0, a1, a2, a3, a4}

x=a 0 x=a 1 x=a 2 x=a 4x=a 3

Functions: e.g., fβ→α, with [[β]] = {b0, b1, b2}

Application, lambda abstraction
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Soundness, Completeness

Corollary 2.103 (paraphrased)

The resulting propositional formula is satisfiable if and only if the
HOL input formula has a standard model of the given size.
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Optimizations
Extensions

Optimizations

Propositional simplification

Term abbreviations

Specialization for certain functions

Undefined values, 3-valued logic
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Extensions

Extensions

Type definitions, constant definitions, overloading

Axiomatic type classes

Data types, recursive functions

Sets, records

HOLCF
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The RSA-PSS Security Protocol
Probabilistic Programs
A SAT-based Sudoku Solver

Case Studies

The RSA-PSS security protocol

– security of an abstract formalization of the protocol

Probabilistic programs

– an abstract model of probabilistic programs

A SAT-based Sudoku solver

– a highly efficient solver with very little implementation effort
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System Overview

Input

formula
Preprocessing

Counterexample

Model

Isabelle

Theorem reconstruction

Proof

DIMACS CNF

satisfiable?

SAT Solver

yes no

Proof Trace

Tjark Weber SAT-based Finite Model Generation for Higher-Order Logic



λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Extensions and Optimizations
Case Studies

Integration of Proof-Producing SAT Solvers
Conclusion

System Overview
Representation of SAT Problems
Performance

Representation of SAT Problems

Naive: using HOL connectives ∧, ∨

Much better:

1 The whole CNF problem is assumed: {
∧k

i=1 Ci} `
∧k

i=1 Ci .

2 Each clause is derived: {
∧k

i=1 Ci} ` C1, . . . , {
∧k

i=1 Ci} ` Ck .

3 Then a sequent representation is used:

{
∧k

i=1 Ci , p1, . . . , pn} ` False.

The problem is a set of clauses.

Clauses are sets of literals.

Resolution is fast.
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Performance

Evaluation on SATLIB problems:

Problem Variables Clauses Resolutions zChaff (s) Isabelle (s)

c7552mul.miter 11282 69529 242509 45 69
6pipe 15800 394739 310813 134 192
6pipe 6 ooo 17064 545612 782903 263 421
7pipe 23910 751118 497019 440 609

Evaluation on pigeonhole instances:

Problem Variables Clauses Resolutions zChaff (s) Isabelle (s)

pigeon-9 90 415 73472 1 3
pigeon-10 110 561 215718 6 10
pigeon-11 132 738 601745 24 36
pigeon-12 156 949 3186775 247 315
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Contributions

A SAT-based finite model generator for higher-order logic

A satisfiability-equivalent translation from higher-order logic to
propositional logic
Support for data types, recursive functions, etc.
Case studies

A highly optimized LCF-style integration of proof-producing
SAT solvers

Dramatic performance improvements for propositional logic
Optimization techniques also applicable to other provers
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Future Work

Integration with Isabelle

Optimizations

External model generators

Other methods of disproving

Analysis and optimization of resolution proofs

SAT-based decision procedures beyond propositional logic

Formalization
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Questions?

Thank you for your attention.
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