
λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Isabelle/HOL:
Selected Features and Recent Improvements

Tjark Weber
webertj@in.tum.de

Security of Systems Group, Radboud University Nijmegen

February 20, 2007

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

1 Introduction

2 Core Features
Logic
User Interface
Proof Language
Automation
Correctness
Existing Libraries

3 Selected Extensions

4 Conclusion

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Motivation
Theorem Proving

Motivation

Errare humanum est.

Cicero

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Motivation
Theorem Proving

Motivation

Complex systems almost inevitably contain bugs.

Program testing can be used to show the presence of
bugs, but never to show their absence!

Edsger W. Dijkstra

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Motivation
Theorem Proving

Motivation

Complex systems almost inevitably contain bugs.

Program testing can be used to show the presence of
bugs, but never to show their absence!

Edsger W. Dijkstra

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Motivation
Theorem Proving

Motivation

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Motivation
Theorem Proving

Theorem Provers

A theorem prover is a computer program to prove theorems.

Given a precise description of a system, and a formal specification
of its intended behavior, we obtain a computer-checked proof that
the system meets its specification.

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Motivation
Theorem Proving

Theorem Provers

A theorem prover is a computer program to prove theorems.

Given a precise description of a system, and a formal specification
of its intended behavior,

we obtain a computer-checked proof that
the system meets its specification.

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Motivation
Theorem Proving

Theorem Provers

A theorem prover is a computer program to prove theorems.

Given a precise description of a system, and a formal specification
of its intended behavior, we obtain a computer-checked proof that
the system meets its specification.

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Motivation
Theorem Proving

Theorem Provers: Characteristic Features

Logic

User interface

Proof language

Automation

Correctness

Existing libraries

. . .

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Logic
User Interface
Proof Language
Automation
Correctness
Existing Libraries

Isabelle

Isabelle is a generic interactive theorem prover, developed by Larry
Paulson at Cambridge University and Tobias Nipkow at Technische
Universität München. First release in 1986.

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Logic
User Interface
Proof Language
Automation
Correctness
Existing Libraries

Isabelle’s Logics

Isabelle implements a meta-logic, Isabelle/Pure, based on the
simply-typed λ-calculus.

This meta-logic serves as the basis for several different object
logics:

ZF set theory (Isabelle/ZF)

First-order logic (Isabelle/FOL)

Higher-order logic (Isabelle/HOL)

Modal logics

. . .

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Logic
User Interface
Proof Language
Automation
Correctness
Existing Libraries

Isabelle/HOL

Isabelle/HOL: higher-order logic, based on Church’s simple theory
of types (1940).

Simply-typed λ-calculus:

Types: σ ::= B | α | σ → σ

Terms: tσ ::= xσ | (tσ′→σ tσ′)σ | (λxσ1 . tσ2)σ1→σ2

Two logical constants:

=⇒B→B→B, =σ→σ→B

Other constants, e.g.

True | False | ¬ | ∧ | ∨ | ∀ | ∃ | ∃!
are definable.

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Logic
User Interface
Proof Language
Automation
Correctness
Existing Libraries

Isabelle/HOL

Isabelle/HOL: higher-order logic, based on Church’s simple theory
of types (1940).

Simply-typed λ-calculus:

Types: σ ::= B | α | σ → σ

Terms: tσ ::= xσ | (tσ′→σ tσ′)σ | (λxσ1 . tσ2)σ1→σ2

Two logical constants:

=⇒B→B→B, =σ→σ→B

Other constants, e.g.

True | False | ¬ | ∧ | ∨ | ∀ | ∃ | ∃!
are definable.

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Logic
User Interface
Proof Language
Automation
Correctness
Existing Libraries

Isabelle/HOL

Isabelle/HOL: higher-order logic, based on Church’s simple theory
of types (1940).

Simply-typed λ-calculus:

Types: σ ::= B | α | σ → σ

Terms: tσ ::= xσ | (tσ′→σ tσ′)σ | (λxσ1 . tσ2)σ1→σ2

Two logical constants:

=⇒B→B→B, =σ→σ→B

Other constants, e.g.

True | False | ¬ | ∧ | ∨ | ∀ | ∃ | ∃!
are definable.

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Logic
User Interface
Proof Language
Automation
Correctness
Existing Libraries

Isabelle/HOL

Isabelle/HOL: higher-order logic, based on Church’s simple theory
of types (1940).

Simply-typed λ-calculus:

Types: σ ::= B | α | σ → σ

Terms: tσ ::= xσ | (tσ′→σ tσ′)σ | (λxσ1 . tσ2)σ1→σ2

Two logical constants:

=⇒B→B→B, =σ→σ→B

Other constants, e.g.

True | False | ¬ | ∧ | ∨ | ∀ | ∃ | ∃!
are definable.

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Logic
User Interface
Proof Language
Automation
Correctness
Existing Libraries

The Semantics of HOL

Standard set-theoretic semantics:

Types denote certain non-empty sets.

Terms denote elements of these sets.

Semantics of types:

[[B]] = {>,⊥}
[[α]] is given by the model

[[σ1 → σ2]] = [[σ2]]
[[σ1]]

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Logic
User Interface
Proof Language
Automation
Correctness
Existing Libraries

The Semantics of HOL

Standard set-theoretic semantics:

Types denote certain non-empty sets.

Terms denote elements of these sets.

Semantics of types:

[[B]] = {>,⊥}
[[α]] is given by the model

[[σ1 → σ2]] = [[σ2]]
[[σ1]]

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Logic
User Interface
Proof Language
Automation
Correctness
Existing Libraries

Features of Isabelle/HOL

Isabelle/HOL also provides . . .

axiomatic type classes

type and constant definitions

recursive datatypes

recursive functions

inductively defined sets

Isabelle/HOL is both a specification logic and a programming
language.

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Logic
User Interface
Proof Language
Automation
Correctness
Existing Libraries

User Interface

Isabelle uses Proof General as its default interface.

(X-)Emacs-based

Proof script management

Mathematical symbols

Theory dependency graph

. . .

A batch mode is available as well:
$ isatool usedir ...

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Logic
User Interface
Proof Language
Automation
Correctness
Existing Libraries

Proof Language

Many interactive theorem provers (including Isabelle) offer a
tactic-style proof language.

The prover maintains a proof state which keeps track of the
formulae that remain to be shown.

Tactics (which can implement simple natural-deduction rules or
complex decision procedures) are applied to the proof state to
simplify remaining proof goals.

A proof is a sequence of tactic applications.

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Logic
User Interface
Proof Language
Automation
Correctness
Existing Libraries

Tactic-Style Proofs: Example

lemma “(∃x .∀y .P x y) =⇒ (∀y .∃x .P x y)”
apply (erule exE)
apply (rule allI)
apply (erule tac x=“y” in allE)
apply (rule tac x=“x” in exI)
apply assumption

done

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Logic
User Interface
Proof Language
Automation
Correctness
Existing Libraries

Tactic-Style Proofs: Shortcomings

Tactic-style proofs have little in common with traditional
mathematical proofs.

Tactic-style proofs are impossible to understand independently of
the theorem prover.

Tactic-style proofs are hard to maintain.

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Logic
User Interface
Proof Language
Automation
Correctness
Existing Libraries

Isabelle/Isar: Readable Proofs

Isabelle/Isar is a structured proof language, where proofs resemble
those found in mathematical textbooks.

lemma “(∃x .∀y .P x y) =⇒ (∀y .∃x .P x y)”
proof

assume “∃x .∀y .P x y”
from this obtain x where X: “∀y .P x y” ..
fix y
from X have “P x y” ..
then show “∃x .P x y” ..

qed

Isar proofs can be understood independently of the theorem prover.

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Logic
User Interface
Proof Language
Automation
Correctness
Existing Libraries

Automation

lemma “(∃x .∀y .P x y) =⇒ (∀y .∃x .P x y)”
proof

assume “∃x .∀y .P x y”
from this obtain x where X: “∀y .P x y” ..
fix y
from X have “P x y” ..
then show “∃x .P x y” ..

qed

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Logic
User Interface
Proof Language
Automation
Correctness
Existing Libraries

Automation

lemma “(∃x .∀y .P x y) =⇒ (∀y .∃x .P x y)”
by auto

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Logic
User Interface
Proof Language
Automation
Correctness
Existing Libraries

Isabelle’s Automatic Tactics

Isabelle provides several automatic tactics and decision procedures.

term rewriting (auto, simp)

tableau-based (blast)

Fourier-Motzkin (arith)

Cooper’s quantifier elimination (presburger)

. . .

These can easily be instantiated for different object logics.

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Logic
User Interface
Proof Language
Automation
Correctness
Existing Libraries

Correctness

Quis custodiet ipsos custodes?

Juvenal

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Logic
User Interface
Proof Language
Automation
Correctness
Existing Libraries

LCF-Style Systems

Theorems are implemented as an abstract datatype. They can be
constructed only in a very controlled manner, through calling
functions from the system’s kernel.

There is one such kernel function for each inference rule of the
system’s logic.

Advanced tactics and decision procedures are built on top of the
kernel. They must use the kernel functions (or other, more basic
tactics) to create theorems.

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Logic
User Interface
Proof Language
Automation
Correctness
Existing Libraries

Existing Libraries

Substantial amounts of mathematics and computer science have
been formalized.

Algebra

Calculus

Graph theory

. . .

Automata theory

Programming language semantics, program logics

. . .

Isabelle/HOL alone contains over 7,300 definitions and theorems.

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Logic
User Interface
Proof Language
Automation
Correctness
Existing Libraries

Some Recent Projects

Verified Java Bytecode Verification (Gerwin Klein, PhD thesis,
2003)

Verisoft: the pervasive formal verification of computer
systems (since 2003)

Flyspeck: a formal proof of the Kepler conjecture (Thomas C.
Hales, since 2003)

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Document Preparation
Integration of External Provers
Proof Objects
Code Generation
Reflection
Disproving Non-Theorems

Document Preparation

Isabelle generates LATEX sources from theory files. Other output
modes (e.g. HTML) are available as well.

Theory files can contain comments and annotations without logical
significance. Antiquotations in these comments refer to Isabelle
theorems, terms etc.

You can use one tool to prove your theorems and write your paper!

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Document Preparation
Integration of External Provers
Proof Objects
Code Generation
Reflection
Disproving Non-Theorems

Integration of External Provers

Motivation:

Increased Automation

Improved Performance

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Document Preparation
Integration of External Provers
Proof Objects
Code Generation
Reflection
Disproving Non-Theorems

In Tools We Trust?

The Oracle Approach

A formula is accepted as a theorem if the external tool claims it to
be provable.

The LCF-style Approach

The external tool provides a certificate of its answer that is
translated into an Isabelle proof.

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Document Preparation
Integration of External Provers
Proof Objects
Code Generation
Reflection
Disproving Non-Theorems

In Tools We Trust?

The Oracle Approach

A formula is accepted as a theorem if the external tool claims it to
be provable.

The LCF-style Approach

The external tool provides a certificate of its answer that is
translated into an Isabelle proof.

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Document Preparation
Integration of External Provers
Proof Objects
Code Generation
Reflection
Disproving Non-Theorems

System Overview

Input
formula Preprocessing

Theorem reconstruction
Proof

Counterexample

Isabelle
External Prover

Certificate

provable?

no yes

Model

DIMACS
SMT−LIB
TPTP

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Document Preparation
Integration of External Provers
Proof Objects
Code Generation
Reflection
Disproving Non-Theorems

Recent Prover Integrations

SAT: zChaff, MiniSAT (Tjark Weber, Alwen Tiu et al.)

SMT: haRVey (Pascal Fontaine, Stephan Merz et al.)

FOL: Spass, Vampire (Jia Meng, Larry Paulson)

HOL: HOL 4, HOL-Light (Sebastian Skalberg, Steven Obua)

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Document Preparation
Integration of External Provers
Proof Objects
Code Generation
Reflection
Disproving Non-Theorems

Proof Objects

Proof objects constitute certificates that are easily verifiable by an
external proof checker.

Proof objects in Isabelle (implemented by Stefan Berghofer) use
λ-terms, based on the Curry-Howard isomorphism. Information
that can be inferred is omitted to reduce the size of the proof
object.

Applications: proof-carrying code, proof export, program
extraction from proofs

For programs extracted from proofs, a realizability statement is
automatically proven to establish the program’s correctness.

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Document Preparation
Integration of External Provers
Proof Objects
Code Generation
Reflection
Disproving Non-Theorems

Code Generation

Motivation: executing formal specifications, rapid prototyping,
program extraction, reflection

ML and Haskell code can be generated from executable HOL terms
(Stefan Berghofer, Florian Haftmann). Such terms are built from
executable constants, datatypes, inductive relations and recursive
functions.

Translating inductive relations requires a mode analysis.

Normalization by evaluation: simplifies executable terms (possibly
containing free variables) by evaluating them symbolically. Orders
of magnitude faster than rewriting.

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Document Preparation
Integration of External Provers
Proof Objects
Code Generation
Reflection
Disproving Non-Theorems

Reflection

Instead of implementing a decision procedure in ML, we write it in
the logic (Isabelle/HOL)—as a recursive function on an
appropriately defined datatype representing terms—, prove its
correctness, and generate code from the definition.

Motivation: Assuming that the code generator is part of the
trusted kernel, the generated code can simply be executed, with no
need for proof checking. This can lead to a significant speed-up.

Amine Chaieb has implemented a reflected version of Cooper’s
quantifier elimination procedure for Presburger arithmetic and a
generic reflection interface for user-defined decision procedures.

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Document Preparation
Integration of External Provers
Proof Objects
Code Generation
Reflection
Disproving Non-Theorems

Disproving Non-Theorems

Traditionally, the focus in theorem proving has been on, well,
proving theorems.

However, disproving a faulty conjecture can be just as important.
In formal verification, initial conjectures are more often false than
not, and a counterexample often exhibits a fault in the
implementation.

Isabelle provides two essentially different tools for disproving
conjectures: quickcheck (by Stefan Berghofer) and refute (by Tjark
Weber).

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Document Preparation
Integration of External Provers
Proof Objects
Code Generation
Reflection
Disproving Non-Theorems

quickcheck

Inspired by the Haskell quickcheck library (for testing Haskell
programs).

Free variables are instantiated with random values.

The code generator is used to simplify the resulting term.

Parameters: size of instantiations, number of iterations.

Fast, but not suited for existential or non-executable
statements.

Implications with strong premises are problematic.

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Document Preparation
Integration of External Provers
Proof Objects
Code Generation
Reflection
Disproving Non-Theorems

refute

A SAT-based finite model generator.

A HOL formula is translated into a propositional formula that
is satisfiable iff the HOL formula has a model of a given size.

Parameters: (minimal, maximal) size of the model.

Any statement can be handled, but non-elementary
complexity.

Still useful in practice (“small model property”).

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Document Preparation
Integration of External Provers
Proof Objects
Code Generation
Reflection
Disproving Non-Theorems

Finite Model Generation

Theorem proving: from formulae to proofs

Finite model generation: from formulae to models

Input
formula valid?

yes

no

Proof Counter−
model

Applications:

Finding counterexamples to false conjectures

Showing the consistency of a specification

Solving open mathematical problems

Guiding resolution-based provers

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Conclusion
Questions?

Conclusion

Isabelle is a powerful interactive theorem prover.

A reasonably high degree of automation is available through
both internal and external tools.

Definitional packages and existing libraries facilitate the
development of new specifications.

A human-readable proof language, existing lemmas and a
decent user interface facilitate the development of proofs.

Several side applications: proof import/export, code
extraction, counterexamples for unprovable formulae

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
Core Features

Selected Extensions
Conclusion

Conclusion
Questions?

Questions?

Beware of bugs in the above code; I have only proved it
correct, not tried it.

Donald Knuth

Tjark Weber Isabelle/HOL:Selected Features and Recent Improvements

	Introduction
	
	

	Core Features
	Logic
	User Interface
	Proof Language
	Automation
	Correctness
	Existing Libraries

	Selected Extensions
	
	
	
	
	
	

	Conclusion
	
	

