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Isabelle

Isabelle is a generic proof assistant:

Highly flexible

Interactive

Automatic proof procedures

Advanced user interface

Readable proofs

Large theories of formal mathematics
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Isabelle is Highly Flexible

Isabelle provides a meta-logic, Isabelle/Pure, based on the
simply-typed λ-calculus.

This meta-logic serves as the basis for several different
object logics:

ZF set theory (Isabelle/ZF)

First-order logic (Isabelle/FOL)

Higher-order logic (Isabelle/HOL)

Modal logics

. . .
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Isabelle’s Automatic Proof Procedures

Isabelle provides several automatic tactics and decision
procedures.

term rewriting (auto, simp)

tableau-based (blast)

Fourier-Motzkin (arith)

Cooper’s quantifier elimination (presburger)

. . .

These can easily be instantiated for different object logics.

Isabelle/HOL: Integrated Theorem Proving – p.4/43



λ →

∀
=Isa

be
lle

β
α

HOL

Isabelle’s User Interface

Isabelle uses Proof General as its default interface.

Proof script management

Mathematical symbols

Document generation

Theory dependency graph

. . .

A batch mode is available as well.
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Isabelle/Isar: Readable Proofs

Isabelle/Isar is a structured proof language, where proofs
resemble those found in mathematical textbooks.

proof (induct n)
case 0 { ... }
case (Suc n) { ... }

qed

A tactic-style proof language, where a proof is a sequence
of tactic applications, is available as well.
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Existing Formalizations in Isabelle

Substantial amounts of mathematics and computer science
have been formalized with Isabelle.

Algebra

Calculus

Graph theory

. . .

Automata theory

Programming language semantics, program logics

Java bytecode verification

. . .
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Isabelle/HOL

Isabelle/HOL: higher-order logic, based on Church’s simple
theory of types (1940)

Simply-typed λ-calculus:

Types: σ ::= B | α | σ → σ

Terms: tσ ::= xσ | (tσ′→σ tσ′)σ | (λxσ1
. tσ2

)σ1→σ2

Two logical constants:

=⇒B→B→B, =σ→σ→B

Other constants, e.g.
True | False | ¬ | ∧ | ∨ | ∀ | ∃ | ∃!

are definable.
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Features of Isabelle/HOL

Isabelle/HOL also includes . . .

axiomatic type classes

type and constant definitions

recursive datatypes

recursive functions

inductively defined sets

locales (parameterized theory modules)

Isabelle/HOL is both a specification logic and a
programming language.
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The Semantics of HOL

Set-theoretic semantics:

Types denote certain sets.

Terms denote elements of these sets.

A type environment E assigns to each type variable α a
non-empty set Eα.

Semantics of types:

[[B]] = {>,⊥}

[[α]] = Eα

[[σ1 → σ2]] = [[σ2]]
[[σ1]]
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LCF-Style Systems

Theorems are implemented as an abstract datatype. They
can be constructed only in a very controlled manner,
through calling functions from the system’s kernel.

There is one such kernel function for each inference rule of
the system’s logic.

Advanced tactics and decision procedures are built on top
of the kernel. They must use the kernel functions (or other
existing tactics) to create theorems.
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Integrating External Provers

The oracle approach: the system is told to simply accept
the external prover’s result, bypassing any checking by the
kernel.

The LCF-style approach: every statement claimed to be
valid by the external prover is proved again in the system,
using the kernel’s inference rules.

We are aiming for the LCF-style approach. This requires
the external system to return not just a theorem, but also its
proof (which must then be replayed).

Isabelle/HOL: Integrated Theorem Proving – p.12/43



λ →

∀
=Isa

be
lle

β
α

HOL

Recent Prover Integrations

SAT: zChaff, MiniSAT (Tjark Weber, Alwen Tiu et al.)

SMT: haRVey (Stephan Merz et al.)

FOL: Spass, Vampire (Jia Meng, Larry Paulson)

HOL: HOL 4, HOL-Light (Sebastian Skalberg, Steven
Obua)
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SAT: Motivation

Verification problems can often be reduced to Boolean
satisfiability.

Recent SAT solver advances have made this approach
feasible in practice.

Can an LCF-style theorem prover benefit from these
advances?
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zChaff

A leading SAT solver (winner of the SAT 2002 and SAT
2004 competitions in several categories)

Developed by Sharad Malik and Zhaohui Fu, Princeton
University

Returns a satisfying assignment, or . . .

. . . a proof of unsatisfiability (since 2003)
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System Overview

Input
formula

Preprocessing

Theorem reconstruction
Proof

Trace

satisfiable?

DIMACS CNF

Assignment

Counterexample

zChaff

yes no

Isabelle
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Preprocessing

Input: propositional formula φ

CNF conversion

Normalization

Removal of duplicate literals

Removal of tautological clauses

Output: a theorem of the form φ = φ∗
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The SAT Solver’s Trace

CL: 184 <= 173 28 35 142 154
CL: 185 <= 43 4 11 59 55
[...]
VAR: 16 L: 35 V: 0 A: 55 Lits: 29 33
VAR: 26 L: 28 V: 1 A: 202 Lits: 52 98 57
[...]
CONF: 206 == 80 82 64 70 37

conflict clause id

variable id

clause id resolvents

antecedent

CL: 184 <= 173 28 35 142 154
CL: 185 <= 43 4 11 59 55
[...]
VAR: 16 L: 35 V: 0 A: 55 Lits: 29 33
VAR: 26 L: 28 V: 1 A: 202 Lits: 52 98 57
[...]
CONF: 206 == 80 82 64 70 37

conflict clause id

clause id resolvents

variable id antecedent

type proof = (int list) Inttab.table * int
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The Intermediate Proof Format

type proof = (int list) Inttab.table * int

Each integer is a clause identifier.

Clauses of the original problem are numbered
consecutively, starting from 0.

Each list of integers gives the resolvents for the
associated key.

No circular dependencies between clauses.

(At least) one clause must be the empty clause.

Its ID is given by the second component of the proof.
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Proof Reconstruction

resolution : Thm.thm list -> Thm.thm

prove_clause : int -> Thm.thm

replay_proof : (Thm.thm option) array
-> SatSolver.proof -> Thm.thm
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Proof Reconstruction

resolution : Thm.thm list -> Thm.thm
Input: [[x1; . . . ; a; . . . ; xn]] =⇒ False

[[y1; . . . ;¬a; . . . ; ym]] =⇒ False

Result: [[x1; . . . ; xn; y1; . . . ; ym]] =⇒ False

prove_clause : int -> Thm.thm

replay_proof : (Thm.thm option) array
-> SatSolver.proof -> Thm.thm
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Proof Reconstruction

resolution : Thm.thm list -> Thm.thm
Input: [[x1; . . . ; a; . . . ; xn]] =⇒ False

[[y1; . . . ;¬a; . . . ; ym]] =⇒ False

Result: [[x1; . . . ; xn; y1; . . . ; ym]] =⇒ False

prove_clause : int -> Thm.thm
prove clause clause id =

resolution (map prove clause

(resolvents of clause id))

replay_proof : (Thm.thm option) array
-> SatSolver.proof -> Thm.thm
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Proof Reconstruction

resolution : Thm.thm list -> Thm.thm
Input: [[x1; . . . ; a; . . . ; xn]] =⇒ False

[[y1; . . . ;¬a; . . . ; ym]] =⇒ False

Result: [[x1; . . . ; xn; y1; . . . ; ym]] =⇒ False

prove_clause : int -> Thm.thm
prove clause clause id =

resolution (map prove clause

(resolvents of clause id))

replay_proof : (Thm.thm option) array
-> SatSolver.proof -> Thm.thm

prove clause empty clause id
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Evaluation

Isabelle is several orders of magnitude slower than
zverify_df.

However, zChaff vs. auto/blast/fast . . .

42 propositional problems in TPTP, v2.6.0
19 “easy” problems, solved in less than a second
each by auto, blast, fast, and zChaff
23 harder problems
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Performance (1)

Problem Status auto blast fast sat
MSC007-1.008 unsat. x x x 726.5
NUM285-1 sat. x x x 0.2
PUZ013-1 unsat. 0.5 x 5.0 0.1
PUZ014-1 unsat. 1.4 x 6.1 0.1
PUZ015-2.006 unsat. x x x 10.5
PUZ016-2.004 sat. x x x 0.3
PUZ016-2.005 unsat. x x x 1.6
PUZ030-2 unsat. x x x 0.7
PUZ033-1 unsat. 0.2 6.4 0.1 0.1
SYN001-1.005 unsat. x x x 0.4
SYN003-1.006 unsat. 0.9 x 1.6 0.1
SYN004-1.007 unsat. 0.3 822.2 2.8 0.1
SYN010-1.005.005 unsat. x x x 0.4
SYN086-1.003 sat. x x x 0.1
SYN087-1.003 sat. x x x 0.1
SYN090-1.008 unsat. 13.8 x x 0.5
SYN091-1.003 sat. x x x 0.1
SYN092-1.003 sat. x x x 0.1
SYN093-1.002 unsat. 1290.8 16.2 1126.6 0.1
SYN094-1.005 unsat. x x x 0.8
SYN097-1.002 unsat. x 19.2 x 0.2
SYN098-1.002 unsat. x x x 0.4
SYN302-1.003 sat. x x x 0.4
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Improvements

Representation of clauses as implications:
l1 ∨ . . . ∨ ln is equivalent to [[¬l1; . . . ;¬ln]] =⇒ False

Representation of clauses as sequents:
the above is equivalent to {¬l1; . . . ;¬ln} |− False

Proof reconstruction for needed clauses only:
starting with the conflict clause, resolvents are proved
recursively and stored in an array

Minor implementation optimizations:
bookkeeping instead of “trial and error” during
resolution; reordering resolution steps to minimize the
size of the assumption sets
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Performance (2)

Problem Status sat sat sat sat
(naive) (implications) (optimized (sequents)

implications)
MSC007-1.008 unsat. 726.5 11.5 7.9 1.2
PUZ015-2.006 unsat. 10.5 2.4 0.7 0.2
PUZ016-2.005 unsat. 1.6 1.2 0.6 0.1
PUZ030-2 unsat. 0.7 0.5 0.4 0.1
PUZ033-1 unsat. 0.1 0.1 0.1 0.1
SYN090-1.008 unsat. 0.5 0.5 0.3 0.1
SYN093-1.002 unsat. 0.1 0.1 0.1 0.1
SYN094-1.005 unsat. 0.8 0.7 0.5 0.1

A fast decision procedure for propositional logic

Proof reconstruction (and preprocessing) takes most of
the time.

A good understanding of the prover’s internals is
important for an efficient implementation.

Integration of an incremental SAT solver?
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Proof Objects for Isabelle/HOL

Proof objects constitute certificates that are easily verifiable
by an external proof checker.

Proof objects in Isabelle (implemented by Stefan Berghofer)
use λ-terms, based on the Curry-Howard isomorphism.
Information that can be inferred is omitted to reduce the
size of the proof object.

Applications: proof-carrying code, proof export, program
extraction from proofs

For programs extracted from proofs, a realizability
statement is automatically proven to establish the program’s
correctness.
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Code Generation for Isabelle/HOL

Motivation: executing formal specifications, rapid
prototyping, program extraction, reflection

ML code can be generated from executable HOL terms
(implemented by Stefan Berghofer). Such terms are built
from executable constants, datatypes, inductive relations
and recursive functions.

Translating inductive relations requires a mode analysis.

Normalization by evaluation: simplifies executable terms
(possibly containing free variables) by evaluating them
symbolically. Orders of magnitude faster than rewriting.
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Reflection

Instead of implementing a decision procedure in ML, we
write it in the logic (Isabelle/HOL) – as a recursive function
on an appropriately defined datatype representing terms –,
prove its correctness, and generate code from the definition.

Motivation: Assuming that the code generator is part of the
trusted kernel, the generated code can simply be executed,
with no need for proof checking. This can lead to a
significant speed-up.

Amine Chaieb has implemented a reflected version of
Cooper’s quantifier elimination procedure for Presburger
arithmetic. A generic reflection interface for user-defined
decision procedures is soon to come.
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Disproving Non-Theorems

Traditionally, the focus in theorem proving has been on,
well, proving theorems.

However, disproving a faulty conjecture can be just as
important. In formal verification, initial conjectures are more
often false than not, and a counterexample often exhibits a
fault in the implementation.

Isabelle provides two essentially different tools for
disproving conjectures: quickcheck (by Stefan Berghofer)
and refute (by Tjark Weber).
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quickcheck

Inspired by the Haskell quickcheck library (for testing
Haskell programs)

Free variables are instantiated with random values.

The code generator is used to simplify the resulting
term.

Parameters: size of instantiations, number of iterations

Fast, but not suited for existential or non-executable
statements

Implications with strong premises are problematic.
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refute

A SAT-based finite model generator

A HOL formula is translated into a propositional formula
that is satisfiable iff the HOL formula has a model of a
given size.

Parameters: (minimal, maximal) size of the model

Any statement can be handled, but non-elementary
complexity.

Still useful in practice (“small model property”)
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Finite Model Generation

Theorem proving: from formulae to proofs

Finite model generation: from formulae to models

Input
formula

valid?

yes

no

Proof
Counter−
model

Applications:

Finding counterexamples to false conjectures

Showing the consistency of a specification

Solving open mathematical problems

Guiding resolution-based provers
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Overview

Input: HOL formula φ

1. Fix a finite type environment E.

2. Translate φ into a Boolean formula that is satisfiable iff
[[φ]]AE = > for some variable assignment A.

3. Use a SAT solver to search for a satisfying assignment.

4. If a satisfying assignment was found, compute from it
the variable assignment A. Otherwise repeat for a
larger environment.

Output: either a model for φ, or “no model found”
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Overview

Input: HOL formula φ

Input
formula

Preprocessing satisfiable?

DIMACS CNF
zChaff

Isabelle

no yes

Counterexample

Assignment

Output: either a model for φ, or “no model found”

Isabelle/HOL: Integrated Theorem Proving – p.36/43



λ →

∀
=Isa

be
lle

β
α

HOL

Fixing a Finite Environment

Fix a positive integer for every type variable that occurs in
the typing of φ.

Every type then has a finite size:

|B| = 2

|α| is given by the environment

|σ1 → σ2| = |σ2|
|σ1|

Finite model generation is a generalization of satisfiability
checking, where the search tree is not necessarily binary.
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The SAT Solver

Several external SAT solvers (zChaff, BerkMin, Jerusat, . . . )
are supported.

Efficiency

Advances in SAT solver technology are “for free”

Simple internal solvers are available as well.

Easy installation

Compatibility

Fast enough for small examples
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Some Extensions

Sets are interpreted as characteristic functions.

σ set ∼= σ → B

x ∈ P ∼= P x

{x. P x} ∼= P

Non-recursive datatypes can be interpreted in a finite
model.

(α1, . . . , αn)σ ::= C1 σ1
1 . . . σ1

m1
| . . . |Ck σk

1 . . . σk
mk

|(α1, . . . , αn)σ| =
∑k

i=1

∏mi

j=1 |σ
i
j |

Examples: option, sum, product types
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Some Extensions

Recursive datatypes are restricted to initial fragments.

Examples: nat, σ list, lambdaterm

nat1 = {0}, nat2 = {0, 1}, nat3 = {0, 1, 2}, . . .

This works for datatypes that occur only positively.

Datatype constructors and recursive functions can be
interpreted as partial functions.

Examples: Sucnat→nat, +nat→nat→nat, @σlist→σlist→σlist

3-valued logic: true, false, unknown

Axiomatic type classes introduce additional axioms that
must be satisfied by the model.

Records and inductively defined sets can be treated as well.
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Soundness and Completeness

If the SAT solver is sound/complete, we have ...

Soundness: The algorithm returns “model found” only if
the given formula has a finite model.

Completeness: If the given formula has a finite model,
the algorithm will find it (given enough time).

Minimality: The model found is a “smallest” model for
the given formula.
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Conclusions

Isabelle is a powerful interactive theorem prover.

A reasonably high degree of automation is available
through both internal and external tools.

Definitional packages and existing libraries facilitate the
development of new specifications.

A human-readable proof language, existing lemmas
and a good user interface facilitate the development of
proofs.

Several side applications: proof import/export, code
extraction, counterexamples for unprovable formulae
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Future Work / Wishlist

The integration of external provers for different logics is
ongoing work.

External provers often lack the ability to produce proofs.

Even if they can produce proofs, usually no standard
proof format exists.

Performance is an issue – more with Isabelle than with
the external tool.
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