
Introduction
There . . .

. . . and Back Again
Conclusions

Integration of SMT Solvers with ITPs —
There and Back Again

Sascha Böhme and Tjark Weber

University of Sheffield

7 May 2010

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

1 Introduction

2 There . . .
Features: SMT-LIB vs. Yices
Translation Techniques
Caveats

3 . . . and Back Again
Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

4 Conclusions

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Motivation
System Overview
Higher-Order Logic
Satisfiability Modulo Theories

Motivation

HOL4 and Isabelle/HOL are
popular interactive theorem
provers.

Interactive theorem proving
benefits from automation.

We want to use SMT solvers to decide SMT formulas.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Motivation
System Overview
Higher-Order Logic
Satisfiability Modulo Theories

Motivation

HOL4 and Isabelle/HOL are
popular interactive theorem
provers.

Interactive theorem proving
benefits from automation.

We want to use SMT solvers to decide SMT formulas.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Motivation
System Overview
Higher-Order Logic
Satisfiability Modulo Theories

System Overview

There ...

Input
formula

Theorem

Error message

satisfiable?

SMT solver
Isabelle / HOL4

Model

Proof

translation

Negation,

reconstruction

Proof

SMT

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Motivation
System Overview
Higher-Order Logic
Satisfiability Modulo Theories

System Overview

Input
formula

Theorem

Error message

satisfiable?

SMT solver
Isabelle / HOL4

Model

Proof

translation

Negation,

reconstruction

Proof

SMT

There ...

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Motivation
System Overview
Higher-Order Logic
Satisfiability Modulo Theories

System Overview

Input
formula

Theorem

Error message

satisfiable?

SMT solver
Isabelle / HOL4

Model

Proof

translation

Negation,

reconstruction

Proof

SMT

There ...

... and Back Again

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Motivation
System Overview
Higher-Order Logic
Satisfiability Modulo Theories

Higher-Order Logic

Polymorphic λ-calculus, based on Church’s simple theory of types:

σ ::= α | (σ1, . . . , σn)c

t ::= xσ | cσ | (tσ→τ tσ)τ | (λxσ. tτ)σ→τ

Sufficient for much of mathematics and computer science:

quantifiers of arbitrary order

arithmetic (nat, int, real, . . .)

data types (lists, records, bit vectors, . . .)

Extensive libraries with thousands of theorems

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Motivation
System Overview
Higher-Order Logic
Satisfiability Modulo Theories

Higher-Order Logic

Polymorphic λ-calculus, based on Church’s simple theory of types:

σ ::= α | (σ1, . . . , σn)c

t ::= xσ | cσ | (tσ→τ tσ)τ | (λxσ. tτ)σ→τ

Sufficient for much of mathematics and computer science:

quantifiers of arbitrary order

arithmetic (nat, int, real, . . .)

data types (lists, records, bit vectors, . . .)

Extensive libraries with thousands of theorems

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Motivation
System Overview
Higher-Order Logic
Satisfiability Modulo Theories

Satisfiability Modulo Theories

Goal: To decide the satisfiability of (quantifier-free) first-order
formulas with respect to combinations of (decidable) background
theories.

ϕ ::= A | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Motivation
System Overview
Higher-Order Logic
Satisfiability Modulo Theories

Satisfiability Modulo Theories: Example

Theories:

I: theory of integers
ΣI = {≤, +, −, 0, 1}
L: theory of lists
ΣL = {=, hd, tl, nil, cons}
E : theory of equality
Σ: free function and predicate symbols

Problem: Is

x ≤ y ∧ y ≤ x + hd (cons 0 nil) ∧ P (f x − f y) ∧ ¬P 0

satisfiable in I ∪ L ∪ E?

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Features: SMT-LIB vs. Yices
Translation Techniques
Caveats

There . . .

We must translate HOL formulas into the
input language of SMT solvers.

1 SMT-LIB format

2 Yices’s native format

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Features: SMT-LIB vs. Yices
Translation Techniques
Caveats

Features: SMT-LIB vs. Yices

SMT-LIB Yices SMT-LIB Yices

int, real let ()
nat, bool, → λ-terms
prop. logic tuples
equality records
FOL data types
HOL bit vectors
arithmetic

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Features: SMT-LIB vs. Yices
Translation Techniques
Caveats

Recursion & Abstraction

We translate HOL formulas by recursion over their term structure:

[[Pα→bool xα]] = ([[Pα→bool]] [[xα]])

Abstraction is used to deal with unsupported terms/types.

SMT-LIB Yices

:extrasorts (a)
:extrafuns ((x a))
:extrapreds ((P a))
:formula (not (P x))

(define-type a)
(define P::(-> a bool))
(define x::a)
(assert (not (P x)))

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Features: SMT-LIB vs. Yices
Translation Techniques
Caveats

Recursion & Abstraction

We translate HOL formulas by recursion over their term structure:

[[Pα→bool xα]] = ([[Pα→bool]] [[xα]])

Abstraction is used to deal with unsupported terms/types.

SMT-LIB Yices

:extrasorts (a)
:extrafuns ((x a))
:extrapreds ((P a))
:formula (not (P x))

(define-type a)
(define P::(-> a bool))
(define x::a)
(assert (not (P x)))

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Features: SMT-LIB vs. Yices
Translation Techniques
Caveats

Basic Techniques

A simple dictionary approach is sufficient for many HOL
constants (e.g., propositional logic, arithmetic, bit vectors).

We try to replace HOL constants without SMT counterparts:
terms are β-normalized, some constants (e.g., ∈) are unfolded.

We add (universally quantified) definitions for certain other
HOL constants (e.g., min, max).

Some terms require special code (e.g., numerals, quantifiers).

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Features: SMT-LIB vs. Yices
Translation Techniques
Caveats

Basic Techniques

A simple dictionary approach is sufficient for many HOL
constants (e.g., propositional logic, arithmetic, bit vectors).

We try to replace HOL constants without SMT counterparts:
terms are β-normalized, some constants (e.g., ∈) are unfolded.

We add (universally quantified) definitions for certain other
HOL constants (e.g., min, max).

Some terms require special code (e.g., numerals, quantifiers).

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Features: SMT-LIB vs. Yices
Translation Techniques
Caveats

Basic Techniques

A simple dictionary approach is sufficient for many HOL
constants (e.g., propositional logic, arithmetic, bit vectors).

We try to replace HOL constants without SMT counterparts:
terms are β-normalized, some constants (e.g., ∈) are unfolded.

We add (universally quantified) definitions for certain other
HOL constants (e.g., min, max).

Some terms require special code (e.g., numerals, quantifiers).

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Features: SMT-LIB vs. Yices
Translation Techniques
Caveats

Basic Techniques

A simple dictionary approach is sufficient for many HOL
constants (e.g., propositional logic, arithmetic, bit vectors).

We try to replace HOL constants without SMT counterparts:
terms are β-normalized, some constants (e.g., ∈) are unfolded.

We add (universally quantified) definitions for certain other
HOL constants (e.g., min, max).

Some terms require special code (e.g., numerals, quantifiers).

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Features: SMT-LIB vs. Yices
Translation Techniques
Caveats

Monomorphisation

In HOL, types can depend on type parameters. Since Yices only
supports monomorphic types, we may need to create multiple
copies of a polymorphic data type.

Example: datatype α list = NIL | CONS α α list

(define-type a)
(define-type a-list (datatype

a-NIL (a-CONS a-hd::a a-tl::a-list)))

(define-type b)
(define-type b-list (datatype

b-NIL (b-CONS b-hd::b b-tl::b-list)))

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Features: SMT-LIB vs. Yices
Translation Techniques
Caveats

Monomorphisation

In HOL, types can depend on type parameters. Since Yices only
supports monomorphic types, we may need to create multiple
copies of a polymorphic data type.

Example: datatype α list = NIL | CONS α α list

(define-type a)
(define-type a-list (datatype

a-NIL (a-CONS a-hd::a a-tl::a-list)))

(define-type b)
(define-type b-list (datatype

b-NIL (b-CONS b-hd::b b-tl::b-list)))

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Features: SMT-LIB vs. Yices
Translation Techniques
Caveats

Caveats

Uniformly generating fresh identifiers is easier than
re-using HOL identifiers.

There are subtle semantic differences between certain
HOL and (allegedly corresponding) SMT-LIB/Yices
functions.

Yices “does no checking and can behave unpredictably if
given bad input.” The burden to produce correct input
for the SMT solver is on our translation.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Features: SMT-LIB vs. Yices
Translation Techniques
Caveats

Caveats

Uniformly generating fresh identifiers is easier than
re-using HOL identifiers.

There are subtle semantic differences between certain
HOL and (allegedly corresponding) SMT-LIB/Yices
functions.

Yices “does no checking and can behave unpredictably if
given bad input.” The burden to produce correct input
for the SMT solver is on our translation.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Features: SMT-LIB vs. Yices
Translation Techniques
Caveats

Caveats

Uniformly generating fresh identifiers is easier than
re-using HOL identifiers.

There are subtle semantic differences between certain
HOL and (allegedly corresponding) SMT-LIB/Yices
functions.

Yices “does no checking and can behave unpredictably if
given bad input.” The burden to produce correct input
for the SMT solver is on our translation.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

. . . and Back Again

What if there is a bug in the translation . . . or in the SMT solver?

We require the SMT solver to produce a
proof of unsatisfiability.

The proof is then checked (automatically)
in the interactive prover.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

. . . and Back Again

What if there is a bug in the translation . . . or in the SMT solver?

We require the SMT solver to produce a
proof of unsatisfiability.

The proof is then checked (automatically)
in the interactive prover.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Z3’s Proofs

Z3 is a leading SMT solver. It generates natural deduction proofs.

Z3’s proof calculus consists of 34 axiom schemata and inference
rules—some simple, some very powerful.

Proofs are directed acyclic graphs. Nodes are inference steps.

Proofs can be checked by depth-first (postorder) traversal.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Z3’s Proofs

Z3 is a leading SMT solver. It generates natural deduction proofs.

Z3’s proof calculus consists of 34 axiom schemata and inference
rules—some simple, some very powerful.

Proofs are directed acyclic graphs. Nodes are inference steps.

R1...

Assume` ϕ
R2... R3...

Assume` ϕ
R4...

R5... R6` ⊥

Proofs can be checked by depth-first (postorder) traversal.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Z3’s Proofs

Z3 is a leading SMT solver. It generates natural deduction proofs.

Z3’s proof calculus consists of 34 axiom schemata and inference
rules—some simple, some very powerful.

Proofs are directed acyclic graphs. Nodes are inference steps.

Proofs can be checked by depth-first (postorder) traversal.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Z3’s Proofs

Z3 is a leading SMT solver. It generates natural deduction proofs.

Z3’s proof calculus consists of 34 axiom schemata and inference
rules—some simple, some very powerful.

Proofs are directed acyclic graphs. Nodes are inference steps.

Proofs can be checked by depth-first (postorder) traversal.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Z3’s Proofs

Z3 is a leading SMT solver. It generates natural deduction proofs.

Z3’s proof calculus consists of 34 axiom schemata and inference
rules—some simple, some very powerful.

Proofs are directed acyclic graphs. Nodes are inference steps.

Proofs can be checked by depth-first (postorder) traversal.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Z3’s Proofs

Z3 is a leading SMT solver. It generates natural deduction proofs.

Z3’s proof calculus consists of 34 axiom schemata and inference
rules—some simple, some very powerful.

Proofs are directed acyclic graphs. Nodes are inference steps.

Proofs can be checked by depth-first (postorder) traversal.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Z3’s Proofs

Z3 is a leading SMT solver. It generates natural deduction proofs.

Z3’s proof calculus consists of 34 axiom schemata and inference
rules—some simple, some very powerful.

Proofs are directed acyclic graphs. Nodes are inference steps.

Proofs can be checked by depth-first (postorder) traversal.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Z3’s Proofs

Z3 is a leading SMT solver. It generates natural deduction proofs.

Z3’s proof calculus consists of 34 axiom schemata and inference
rules—some simple, some very powerful.

Proofs are directed acyclic graphs. Nodes are inference steps.

Proofs can be checked by depth-first (postorder) traversal.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Z3’s Proofs

Z3 is a leading SMT solver. It generates natural deduction proofs.

Z3’s proof calculus consists of 34 axiom schemata and inference
rules—some simple, some very powerful.

Proofs are directed acyclic graphs. Nodes are inference steps.

Proofs can be checked by depth-first (postorder) traversal.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Z3’s Proofs

Z3 is a leading SMT solver. It generates natural deduction proofs.

Z3’s proof calculus consists of 34 axiom schemata and inference
rules—some simple, some very powerful.

Proofs are directed acyclic graphs. Nodes are inference steps.

Proofs can be checked by depth-first (postorder) traversal.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Z3’s Proofs

Z3 is a leading SMT solver. It generates natural deduction proofs.

Z3’s proof calculus consists of 34 axiom schemata and inference
rules—some simple, some very powerful.

Proofs are directed acyclic graphs. Nodes are inference steps.

Proofs can be checked by depth-first (postorder) traversal.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Z3’s Proofs

Z3 is a leading SMT solver. It generates natural deduction proofs.

Z3’s proof calculus consists of 34 axiom schemata and inference
rules—some simple, some very powerful.

Proofs are directed acyclic graphs. Nodes are inference steps.

Proofs can be checked by depth-first (postorder) traversal.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Z3’s Proofs

Z3 is a leading SMT solver. It generates natural deduction proofs.

Z3’s proof calculus consists of 34 axiom schemata and inference
rules—some simple, some very powerful.

Proofs are directed acyclic graphs. Nodes are inference steps.

Proofs can be checked by depth-first (postorder) traversal.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Z3’s Proofs

Z3 is a leading SMT solver. It generates natural deduction proofs.

Z3’s proof calculus consists of 34 axiom schemata and inference
rules—some simple, some very powerful.

Proofs are directed acyclic graphs. Nodes are inference steps.

Proofs can be checked by depth-first (postorder) traversal.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Z3’s Proofs

Z3 is a leading SMT solver. It generates natural deduction proofs.

Z3’s proof calculus consists of 34 axiom schemata and inference
rules—some simple, some very powerful.

Proofs are directed acyclic graphs. Nodes are inference steps.

Proofs can be checked by depth-first (postorder) traversal.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Z3’s Proofs

Z3 is a leading SMT solver. It generates natural deduction proofs.

Z3’s proof calculus consists of 34 axiom schemata and inference
rules—some simple, some very powerful.

Proofs are directed acyclic graphs. Nodes are inference steps.

Proofs can be checked by depth-first (postorder) traversal.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Z3’s Proofs

Z3 is a leading SMT solver. It generates natural deduction proofs.

Z3’s proof calculus consists of 34 axiom schemata and inference
rules—some simple, some very powerful.

Proofs are directed acyclic graphs. Nodes are inference steps.

Proofs can be checked by depth-first (postorder) traversal.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

LCF-style Theorem Proving

Theorems are implemented as an abstract data type.

There is a fixed number of constructor functions—one
for each axiom schema/inference rule of HOL.

More complicated proof procedures must be
implemented by composing these functions.

The trusted code base consists only of the theorem ADT.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

LCF-style Theorem Proving

Theorems are implemented as an abstract data type.

There is a fixed number of constructor functions—one
for each axiom schema/inference rule of HOL.

More complicated proof procedures must be
implemented by composing these functions.

The trusted code base consists only of the theorem ADT.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

LCF-style Theorem Proving — Disadvantages

Proof procedures are more difficult to implement.

Proof procedures are less efficient.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Reconstruction Techniques

1 A single primitive inference rule or theorem instantiation

2 Combinations of primitive inferences/instantiations

3 Automated proof procedures

4 Combinations of the above

Implementation of Z3’s inference rules:

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Reconstruction Techniques

1 A single primitive inference rule or theorem instantiation

2 Combinations of primitive inferences/instantiations

3 Automated proof procedures

4 Combinations of the above

Implementation of Z3’s inference rules:

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Performance Optimizations

Profiling is essential!

Avoiding automated proof procedures

Schematic theorems

Theorem memoization

Generalization

Speed-ups of up to 3 orders of magnitude

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Avoiding Automated Proof Procedures

About two thirds of Z3’s proof rules perform propositional or
simple first-order reasoning. They could be implemented by a
single call to an automated proof procedure.

Rapid prototyping Bad performance

Instead, we use derived rules: combinations of primitive inferences
of manageable size that perform specific reasoning tasks.

Example:
`

∧n
i=1 ϕi

Rewrite`
∧n

i=1 ϕπ(i)

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Avoiding Automated Proof Procedures

About two thirds of Z3’s proof rules perform propositional or
simple first-order reasoning. They could be implemented by a
single call to an automated proof procedure.

Rapid prototyping Bad performance

Instead, we use derived rules: combinations of primitive inferences
of manageable size that perform specific reasoning tasks.

Example:
`

∧n
i=1 ϕi

Rewrite`
∧n

i=1 ϕπ(i)

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Schematic Theorems

Instantiating a generic theorem is typically much faster than
proving the specific instance using primitive inferences alone.

Examples:

` (p =⇒ q) ⇐⇒ (¬p ∨ q)

` (x = y) ⇐⇒ (y = x)

` x + 0 = x

Over 230 theorems allow about 76% of all Rewrite goals to
be proved by instantiation.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Theorem Memoization

Theorems derived by Rewrite and Th-Lemma
are indexed by a term net and re-used rather than
re-proved when possible.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Theorem Memoization

Theorems derived by Rewrite and Th-Lemma
are indexed by a term net and re-used rather than
re-proved when possible.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Theorem Memoization

Theorems derived by Rewrite and Th-Lemma
are indexed by a term net and re-used rather than
re-proved when possible.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Theorem Memoization

Theorems derived by Rewrite and Th-Lemma
are indexed by a term net and re-used rather than
re-proved when possible.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Theorem Memoization

Theorems derived by Rewrite and Th-Lemma
are indexed by a term net and re-used rather than
re-proved when possible.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Theorem Memoization

Theorems derived by Rewrite and Th-Lemma
are indexed by a term net and re-used rather than
re-proved when possible.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Theorem Memoization

Theorems derived by Rewrite and Th-Lemma
are indexed by a term net and re-used rather than
re-proved when possible.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Theorem Memoization

Theorems derived by Rewrite and Th-Lemma
are indexed by a term net and re-used rather than
re-proved when possible.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Theorem Memoization

Theorems derived by Rewrite and Th-Lemma
are indexed by a term net and re-used rather than
re-proved when possible.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Theorem Memoization

Theorems derived by Rewrite and Th-Lemma
are indexed by a term net and re-used rather than
re-proved when possible.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Theorem Memoization

Theorems derived by Rewrite and Th-Lemma
are indexed by a term net and re-used rather than
re-proved when possible.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Theorem Memoization

Theorems derived by Rewrite and Th-Lemma
are indexed by a term net and re-used rather than
re-proved when possible.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Theorem Memoization

Theorems derived by Rewrite and Th-Lemma
are indexed by a term net and re-used rather than
re-proved when possible.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Theorem Memoization

Theorems derived by Rewrite and Th-Lemma
are indexed by a term net and re-used rather than
re-proved when possible.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Generalization

Goals proved by Th-Lemma are generalized before being passed
to a theory-specific decision procedure.

Example:
` some lengthy expression < some lengthy expression + 1 is a
theorem of linear arithmetic—instead we prove ` x < x + 1.

Avoids expensive preprocessing in the decision procedure

More potential for theorem re-use

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Evaluation

Logic Solved (Z3) Reconstructed Ratios
Time Size # Time Success Timeout Time

AUFLIA+p 187 0.095 s 64 KB 187 0.413 s 100% 0% 4.34
AUFLIA−p 192 0.117 s 81 KB 190 1.962 s 98% 0% 16.72
AUFLIRA 189 0.292 s 366 KB 144 0.794 s 76% 0% 2.72
QF AUFLIA 92 0.158 s 694 KB 49 136.498 s 53% 42% 863.85
QF IDL 40 2.322 s 12 MB 19 173.875 s 47% 52% 74.89
QF LIA 100 17.154 s 77 MB 26 208.713 s 26% 65% 12.17
QF LRA 88 4.849 s 10 MB 55 142.351 s 62% 36% 29.36
QF RDL 52 9.773 s 16 MB 26 173.953 s 50% 50% 17.80
QF UF 87 16.131 s 62 MB 73 73.242 s 83% 16% 4.54
QF UFIDL 55 4.511 s 12 MB 8 260.351 s 14% 85% 57.72
QF UFLIA 91 1.543 s 4 MB 85 29.086 s 93% 6% 18.85
QF UFLRA 100 0.086 s 914 KB 100 3.916 s 100% 0% 45.68
Total 1273 3.656 s 13 MB 962 67.785 s 75% 19% 18.54

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Z3’s Proofs
LCF-style Theorem Proving
Reconstruction Techniques
Performance

Evaluation

Logic Solved (Z3) Reconstructed Ratios
Time Size # Time Success Timeout Time

Total 1273 3.656 s 13 MB 962 67.785 s 75% 19% 18.54

We can check sizeable proofs with millions of inferences.

Proof search in Z3 is almost 20 times faster (on average) than
LCF-style proof reconstruction.

Not enough proof information for theory-specific reasoning.

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Conclusions
Future Work

Conclusions

Integration of SMT solvers with HOL4 and Isabelle/HOL

SMT-LIB is restrictive—custom translations seem more
worthwhile than sophisticated SMT-LIB encodings.

Z3’s proofs could be easier to check.

LCF-style proof checking for SMT is feasible.

Isabelle: http://isabelle.in.tum.de/
HOL4: http://hol.sourceforge.net/

Related papers at http://www.cl.cam.ac.uk/~tw333/

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

http://isabelle.in.tum.de/
http://hol.sourceforge.net/
http://www.cl.cam.ac.uk/~tw333/

Introduction
There . . .

. . . and Back Again
Conclusions

Conclusions
Future Work

Future Work

A more expressive SMT-LIB format (Version 2.0?!)

A better SMT proof format (a standard?!)

Proof reconstruction for bit vectors

Case studies, applications

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

Introduction
There . . .

. . . and Back Again
Conclusions

Conclusions
Future Work

Future Work

A more expressive SMT-LIB format (Version 2.0?!)

A better SMT proof format (a standard?!)

Proof reconstruction for bit vectors

Case studies, applications

Tjark Weber Integration of SMT Solvers with Interactive Theorem Provers

	Introduction
	
	
	
	

	There …
	Features: SMT-LIB vs. Yices
	Translation Techniques
	Caveats

	… and Back Again
	Z3's Proofs
	LCF-style Theorem Proving
	Reconstruction Techniques
	Performance

	Conclusions
	
	

