
λ →

∀
=Isa

be
lle

β
α

HOL

Integrating a SAT Solver with an
LCF-style Theorem Prover

A Fast Decision Procedure for Propositional
Logic for the Isabelle System

Tjark Weber

webertj@in.tum.de

PDPAR’05, July 12, 2005

Integrating a SAT Solver with an LCF-style Theorem Prover – p.1/15



λ →

∀
=Isa

be
lle

β
α

HOL

Motivation

Verification problems can often be reduced to Boolean
satisfiability.

Recent SAT solver advances have made this approach
feasible in practice.

Can an LCF-style theorem prover benefit from these
advances?

Integrating a SAT Solver with an LCF-style Theorem Prover – p.2/15



λ →

∀
=Isa

be
lle

β
α

HOL

zChaff

A leading SAT solver (winner of the SAT 2002 and SAT
2004 competitions in several categories)

Developed by Sharad Malik and Zhaohui Fu, Princeton
University

Returns a satisfying assignment, or . . .

. . . a proof of unsatisfiability (since 2003)

Integrating a SAT Solver with an LCF-style Theorem Prover – p.3/15



λ →

∀
=Isa

be
lle

β
α

HOL

System Overview

Input
formula

Preprocessing

Theorem reconstruction
Proof

Trace

satisfiable?

DIMACS CNF

Assignment

Counterexample

zChaff

yes no

Isabelle

Integrating a SAT Solver with an LCF-style Theorem Prover – p.4/15



λ →

∀
=Isa

be
lle

β
α

HOL

Preprocessing

Input: propositional formula φ

CNF conversion

Normalization

Removal of duplicate literals

Removal of tautological clauses

Output: a theorem of the form φ = φ∗

thm of decomp t =

let

(ts, recomb) = decomb t

in recomb (map (thm of decomp) ts)

Integrating a SAT Solver with an LCF-style Theorem Prover – p.5/15



λ →

∀
=Isa

be
lle

β
α

HOL

The SAT Solver’s Trace

CL: 184 <= 173 28 35 142 154
CL: 185 <= 43 4 11 59 55
[...]
VAR: 16 L: 35 V: 0 A: 55 Lits: 29 33
VAR: 26 L: 28 V: 1 A: 202 Lits: 52 98 57
[...]
CONF: 206 == 80 82 64 70 37

conflict clause id

variable id

clause id resolvents

antecedent

Integrating a SAT Solver with an LCF-style Theorem Prover – p.6/15



λ →

∀
=Isa

be
lle

β
α

HOL

The SAT Solver’s Trace

CL: 184 <= 173 28 35 142 154
CL: 185 <= 43 4 11 59 55
[...]
VAR: 16 L: 35 V: 0 A: 55 Lits: 29 33
VAR: 26 L: 28 V: 1 A: 202 Lits: 52 98 57
[...]
CONF: 206 == 80 82 64 70 37

conflict clause id

clause id resolvents

variable id antecedent

Integrating a SAT Solver with an LCF-style Theorem Prover – p.6/15



λ →

∀
=Isa

be
lle

β
α

HOL

Proof Reconstruction (1)

resolution : Thm.thm list -> Thm.thm

prove_clause : int -> Thm.thm

prove_literal : int -> Thm.thm

Integrating a SAT Solver with an LCF-style Theorem Prover – p.7/15



λ →

∀
=Isa

be
lle

β
α

HOL

Proof Reconstruction (1)

resolution : Thm.thm list -> Thm.thm
Input: [X −→ P ∨ Q ∨ R, X −→ S ∨ ¬Q ∨ T ]

Result: X −→ P ∨ R ∨ S ∨ T

prove_clause : int -> Thm.thm

prove_literal : int -> Thm.thm

Integrating a SAT Solver with an LCF-style Theorem Prover – p.8/15



λ →

∀
=Isa

be
lle

β
α

HOL

Proof Reconstruction (1)

resolution : Thm.thm list -> Thm.thm
Input: [X −→ Q, X −→ ¬Q]

Result: X −→ False

prove_clause : int -> Thm.thm

prove_literal : int -> Thm.thm

Integrating a SAT Solver with an LCF-style Theorem Prover – p.9/15



λ →

∀
=Isa

be
lle

β
α

HOL

Proof Reconstruction (1)

resolution : Thm.thm list -> Thm.thm
Input: [X −→ Q, X −→ ¬Q]

Result: X −→ False

prove_clause : int -> Thm.thm
prove clause clause id =

resolution (map prove clause

(resolvents of clause id))

prove_literal : int -> Thm.thm

Integrating a SAT Solver with an LCF-style Theorem Prover – p.10/15



λ →

∀
=Isa

be
lle

β
α

HOL

Proof Reconstruction (1)

resolution : Thm.thm list -> Thm.thm
Input: [X −→ Q, X −→ ¬Q]

Result: X −→ False

prove_clause : int -> Thm.thm
prove clause clause id =

resolution (map prove clause

(resolvents of clause id))

prove_literal : int -> Thm.thm
prove literal var id =

let th ante = prove clause (antecedent of var id)

var ids = filter (λi. i 6= var id)

(var ids in clause th ante)

in resolution

(th ante :: map prove literal var ids)

Integrating a SAT Solver with an LCF-style Theorem Prover – p.11/15



λ →

∀
=Isa

be
lle

β
α

HOL

Proof Reconstruction (2)

Many clauses may be redundant.

Clauses and literals may be needed many times.

Two arrays store . . .

each clause’s resolvents or its proof,

each variable’s antecedent or its proof

. . . and are updated during proof reconstruction.

1. Initialize arrays with information from the trace.

2. Prove conflict clause C.

3. Perform resolution with prove_literal for each literal in C.

Integrating a SAT Solver with an LCF-style Theorem Prover – p.12/15



λ →

∀
=Isa

be
lle

β
α

HOL

Proof Reconstruction (2)

Many clauses may be redundant.

Clauses and literals may be needed many times.

Two arrays store . . .

each clause’s resolvents or its proof,

each variable’s antecedent or its proof

. . . and are updated during proof reconstruction.

1. Initialize arrays with information from the trace.

2. Prove conflict clause C.

3. Perform resolution with prove_literal for each literal in C.

Integrating a SAT Solver with an LCF-style Theorem Prover – p.12/15



λ →

∀
=Isa

be
lle

β
α

HOL

Proof Reconstruction (2)

Many clauses may be redundant.

Clauses and literals may be needed many times.

Two arrays store . . .

each clause’s resolvents or its proof,

each variable’s antecedent or its proof

. . . and are updated during proof reconstruction.

1. Initialize arrays with information from the trace.

2. Prove conflict clause C.

3. Perform resolution with prove_literal for each literal in C.

Integrating a SAT Solver with an LCF-style Theorem Prover – p.12/15



λ →

∀
=Isa

be
lle

β
α

HOL

Evaluation

Isabelle is several orders of magnitude slower than
zverify_df.

However, zChaff vs. auto/blast/fast . . .

42 propositional problems in TPTP, v2.6.0
19 “easy” problems, solved in less than a second
each by auto, blast, fast, and zChaff
23 harder problems

Integrating a SAT Solver with an LCF-style Theorem Prover – p.13/15



λ →

∀
=Isa

be
lle

β
α

HOL

Performance

Problem Status auto blast fast zChaff
MSC007-1.008 unsat. x x x 726.5
NUM285-1 sat. x x x 0.2
PUZ013-1 unsat. 0.5 x 5.0 0.1
PUZ014-1 unsat. 1.4 x 6.1 0.1
PUZ015-2.006 unsat. x x x 10.5
PUZ016-2.004 sat. x x x 0.3
PUZ016-2.005 unsat. x x x 1.6
PUZ030-2 unsat. x x x 0.7
PUZ033-1 unsat. 0.2 6.4 0.1 0.1
SYN001-1.005 unsat. x x x 0.4
SYN003-1.006 unsat. 0.9 x 1.6 0.1
SYN004-1.007 unsat. 0.3 822.2 2.8 0.1
SYN010-1.005.005 unsat. x x x 0.4
SYN086-1.003 sat. x x x 0.1
SYN087-1.003 sat. x x x 0.1
SYN090-1.008 unsat. 13.8 x x 0.5
SYN091-1.003 sat. x x x 0.1
SYN092-1.003 sat. x x x 0.1
SYN093-1.002 unsat. 1290.8 16.2 1126.6 0.1
SYN094-1.005 unsat. x x x 0.8
SYN097-1.002 unsat. x 19.2 x 0.2
SYN098-1.002 unsat. x x x 0.4
SYN302-1.003 sat. x x x 0.4

Integrating a SAT Solver with an LCF-style Theorem Prover – p.14/15



λ →

∀
=Isa

be
lle

β
α

HOL

Conclusions and Future Work

A fast decision procedure for propositional logic

Counterexamples for unprovable formulae

Huge SAT problems are still out of scope

Extension to (fragments of) richer logics

Integration of first-order provers

Integrating a SAT Solver with an LCF-style Theorem Prover – p.15/15


	Motivation
	zChaff
	System Overview
	Preprocessing
	The SAT Solver's Trace
	Proof Reconstruction (1)
	Proof Reconstruction (1)
	Proof Reconstruction (1)
	Proof Reconstruction (1)
	Proof Reconstruction (1)
	Proof Reconstruction (2)
	Evaluation
	Performance
	Conclusions and Future Work

