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Motivation

Verification problems can often be reduced to Boolean
satisfiability.

Recent SAT solver advances have made this approach
feasible in practice.

Can an LCF-style theorem prover benefit from these
advances?
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zChaff

A leading SAT solver (winner of the SAT 2002 and SAT
2004 competitions in several categories)

Developed by Sharad Malik and Zhaohui Fu, Princeton
University

Returns a satisfying assignment, or . . .

. . . a proof of unsatisfiability (since 2003)
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System Overview

Input
formula

Preprocessing

Theorem reconstruction
Proof

Trace

satisfiable?

DIMACS CNF

Assignment

Counterexample

zChaff

yes no

Isabelle
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Preprocessing

Input: propositional formula φ

CNF conversion

Normalization

Removal of duplicate literals

Removal of tautological clauses

Output: a theorem of the form φ = φ∗

thm of decomp t =

let

(ts, recomb) = decomb t

in recomb (map (thm of decomp) ts)
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The SAT Solver’s Trace

CL: 184 <= 173 28 35 142 154
CL: 185 <= 43 4 11 59 55
[...]
VAR: 16 L: 35 V: 0 A: 55 Lits: 29 33
VAR: 26 L: 28 V: 1 A: 202 Lits: 52 98 57
[...]
CONF: 206 == 80 82 64 70 37

conflict clause id

variable id

clause id resolvents

antecedent
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Proof Reconstruction (1)

resolution : Thm.thm list -> Thm.thm

prove_clause : int -> Thm.thm

prove_literal : int -> Thm.thm
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Proof Reconstruction (1)

resolution : Thm.thm list -> Thm.thm
Input: [X −→ P ∨ Q ∨ R, X −→ S ∨ ¬Q ∨ T ]

Result: X −→ P ∨ R ∨ S ∨ T

prove_clause : int -> Thm.thm

prove_literal : int -> Thm.thm
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Proof Reconstruction (1)

resolution : Thm.thm list -> Thm.thm
Input: [X −→ Q, X −→ ¬Q]

Result: X −→ False

prove_clause : int -> Thm.thm

prove_literal : int -> Thm.thm
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Proof Reconstruction (1)

resolution : Thm.thm list -> Thm.thm
Input: [X −→ Q, X −→ ¬Q]

Result: X −→ False

prove_clause : int -> Thm.thm
prove clause clause id =

resolution (map prove clause

(resolvents of clause id))

prove_literal : int -> Thm.thm
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Proof Reconstruction (1)

resolution : Thm.thm list -> Thm.thm
Input: [X −→ Q, X −→ ¬Q]

Result: X −→ False

prove_clause : int -> Thm.thm
prove clause clause id =

resolution (map prove clause

(resolvents of clause id))

prove_literal : int -> Thm.thm
prove literal var id =

let th ante = prove clause (antecedent of var id)

var ids = filter (λi. i 6= var id)

(var ids in clause th ante)

in resolution

(th ante :: map prove literal var ids)
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Proof Reconstruction (2)

Many clauses may be redundant.

Clauses and literals may be needed many times.

Two arrays store . . .

each clause’s resolvents or its proof,

each variable’s antecedent or its proof

. . . and are updated during proof reconstruction.

1. Initialize arrays with information from the trace.

2. Prove conflict clause C.

3. Perform resolution with prove_literal for each literal in C.
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Evaluation

Isabelle is several orders of magnitude slower than
zverify_df.

However, zChaff vs. auto/blast/fast . . .

42 propositional problems in TPTP, v2.6.0
19 “easy” problems, solved in less than a second
each by auto, blast, fast, and zChaff
23 harder problems
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Performance

Problem Status auto blast fast zChaff
MSC007-1.008 unsat. x x x 726.5
NUM285-1 sat. x x x 0.2
PUZ013-1 unsat. 0.5 x 5.0 0.1
PUZ014-1 unsat. 1.4 x 6.1 0.1
PUZ015-2.006 unsat. x x x 10.5
PUZ016-2.004 sat. x x x 0.3
PUZ016-2.005 unsat. x x x 1.6
PUZ030-2 unsat. x x x 0.7
PUZ033-1 unsat. 0.2 6.4 0.1 0.1
SYN001-1.005 unsat. x x x 0.4
SYN003-1.006 unsat. 0.9 x 1.6 0.1
SYN004-1.007 unsat. 0.3 822.2 2.8 0.1
SYN010-1.005.005 unsat. x x x 0.4
SYN086-1.003 sat. x x x 0.1
SYN087-1.003 sat. x x x 0.1
SYN090-1.008 unsat. 13.8 x x 0.5
SYN091-1.003 sat. x x x 0.1
SYN092-1.003 sat. x x x 0.1
SYN093-1.002 unsat. 1290.8 16.2 1126.6 0.1
SYN094-1.005 unsat. x x x 0.8
SYN097-1.002 unsat. x 19.2 x 0.2
SYN098-1.002 unsat. x x x 0.4
SYN302-1.003 sat. x x x 0.4
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Conclusions and Future Work

A fast decision procedure for propositional logic

Counterexamples for unprovable formulae

Huge SAT problems are still out of scope

Extension to (fragments of) richer logics

Integration of first-order provers
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