Finite Model Generation, Proof-Producing
SAT Solvers, and SMT

Tjark Weber

UNIVERSITY OF
CAMBRIDGE

Computer Laboratory

ARG Lunch
3 February 2009

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction

Motivation
Questions

Motivation

Complex systems almost inevitably contain bugs.

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers

Introduction
Motivation
Questions

Motivation

Complex systems almost inevitably contain bugs.

Complex formalizations almost inevitably contain bugs.

@ Initial conjectures are frequently false.

@ A counterexample often exhibits a fault in the implementation.

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Motivation
Questions

Questions

@ How can we find counterexamples in higher-order logic
automatically?

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Motivation
Questions

Questions

@ How can we find counterexamples in higher-order logic
automatically?

@ Can we use efficient SAT solvers to prove theorems in an
LCF-style theorem prover?

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Motivation
Questions

Questions

@ How can we find counterexamples in higher-order logic
automatically?

@ Can we use efficient SAT solvers to prove theorems in an
LCF-style theorem prover?

© Can we use efficient provers for richer logics, beyond SAT?

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Finite Model Generation

ions and Optimizations
tudies

SAT-Based

Finite Model Generation

for Higher-Order Logic

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Higher-Order Logic
Finite Model Generation Translation to Propositional Logic
ions and Optimizations
tudies

Example

Conjecture:

The transitive closure of AN B is equal to the intersection of the
transitive closures of A(,.q)set and B, q)sets i€,

(ANB)T =ATNBT

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Higher-Order Logic
Finite Model Generation Tr tion to Propositional Logic
nsions and Optimizations
Studies

Example

Conjecture:

The transitive closure of AN B is equal to the intersection of the
transitive closures of A(,.q)set and B, q)sets i€,

(ANB)T =ATNBT

Counterexample:

a={x,y}
A= {(Xv)/)v (y,X), (ys)/))

}
B = {(x,x), (y,x), (v,¥)}

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Higher-Order Logic
Finite Model Generation Translation to Propositional Logic
ions and Optimizations
tudies

Higher-Order Logic

HOL 4, Isabelle/HOL, etc.: higher-order logic, based on Church's
“simple theory of types” (1940)

e Types: 0 =« | (01,...,0p5)C

o Terms: ty =Xy | ¢ | (tor—o tl))o | (AXoy- toy)oy—or

Two special type constructors: bool and —

Two logical constants: =100/ _-bool—bool aNd =45 _.bool

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Higher-Order Logic
Finite Model Generation Translation to Propositional Logic
ions and Optimizations
tudies

The Semantics of HOL

Standard set-theoretic semantics:

@ Types denote certain non-empty sets.

o [bool] ={T, L}
o [o1 — 2] = [oo]l7]

@ Terms denote elements of these sets.

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Higher-Order Logic
Finite Model Generation Translation to Propositional Logic
ions and Optimizations
tudies

The Semantics of HOL

Standard set-theoretic semantics:

@ Types denote certain non-empty finite sets.

o [bool] ={T, L}
o [o1 — 2] = [oo]l7]

@ Terms denote elements of these sets.

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Finite Model Generation
ns and Optimizations
tudies

Translation to Propositional Logic

e Terms of base type: e.g., x,, with [o] = {ao, a1, a2, a3, as}

[X=ap X=ay X=as X=ag X=ay]

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Finite Model Generation
nsions and Optimizations
Studies

Translation to Propositional Logic

e Terms of base type: e.g., x,, with [o] = {ao, a1, a2, a3, as}

[X=ap X=ay X=as X=ag X=ay]

e Functions: e.g., f3_.., with [5] = {bo, b1, b2}

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Finite Model Generation
nsions and Optimizations
Studies

Translation to Propositional Logic

e Terms of base type: e.g., x,, with [o] = {ao, a1, a2, a3, as}

[X=ap X=ay X=as X=ag X=ay]

e Functions: e.g., f3_.., with [5] = {bo, b1, b2}

@ Application, lambda abstraction

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Finite Model Generation slation to Pl;opositional Logic
ions and Optimizations
tudies

Soundness, Completeness

The resulting propositional formula is satisfiable if and only if the
HOL input formula has a standard model of the given size.

Algorithm:
Input Fix asizefor .
forrﬁula each basetype »(Trangation

Increasethe
model’ssize

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Finite Model Generation r itional Logic
Extensions and Optimizations
Case Studies

Extensions and Optimizations

o Integrated with Isabelle/HOL (refute)
@ Various optimizations

e Propositional simplification

e Term abbreviations

e Specialization for certain functions

e Undefined values, 3-valued logic

@ Various extensions

o Type definitions, constant definitions, overloading
Axiomatic type classes

Data types, recursive functions

Sets, records

HOLCF

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Higher-Order Logi

Finite Model Generation Translation tc ositional Logic
Extensions and Optimizations
Case Studies

Case Studies

@ The RSA-PSS security protocol
@ Probabilistic programs

@ A SAT-based Sudoku solver

N
58
(g’

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Finite Model Generation
ions and Optimizations
Case Studies

Case Studies

@ The RSA-PSS security protocol

— security of an abstract formalization of the protocol

@ Probabilistic programs

@ A SAT-based Sudoku solver

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Finite Model Generation
ions and Optimizations
Case Studies

Case Studies

@ The RSA-PSS security protocol

— security of an abstract formalization of the protocol

@ Probabilistic programs
— an abstract model of probabilistic programs

@ A SAT-based Sudoku solver

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Finite Model Generation E ropositional Logic
Extensions and Optimizations
Case Studies

Case Studies

@ The RSA-PSS security protocol

— security of an abstract formalization of the protocol

@ Probabilistic programs
— an abstract model of probabilistic programs

o A SAT-based Sudoku solver
— a highly efficient solver with very little implementation effort

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Proof-Producing SAT Solvers

Performance

An LCF-Style Integration of
Proof-Producing SAT Solvers

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

ic, Resolution

S v
Proof-Producing SAT Solvers e ntation of SAT Problems

Performance

Propositional Logic

Propositional logic:
@ Boolean variables: p, g, ...

e Formulae: pr=plopleVe |l

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Proof-Producing SAT Solvers

Propositional Logic

Propositional logic:
@ Boolean variables: p, g, ...

e Formulae: pr=plopleVe |l

Conjunctive normal form (CNF): a conjunction of clauses, where
each clause is a disjunction of literals (i.e., possibly negated
variables)

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Proof-Producing SAT Solvers

Propositional Logic

Propositional logic:
@ Boolean variables: p, g, ...
e Formulae: pr=plopleVe |l

Conjunctive normal form (CNF): a conjunction of clauses, where
each clause is a disjunction of literals (i.e., possibly negated
variables)

Abstraction from higher-order to propositional logic: replace
subterms by Boolean variables, e.g.,

(Vx.Px)V—(Vx.Px) +— pV-p

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

ic, Resolution

S v
Proof-Producing SAT Solvers e ntation of SAT Problems

Performance

Propositional Resolution

PU{x} QU {—x}
PUQ

Propositional resolution is sound and refutation complete.

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Proof-Producing SAT Solvers

System Overview

Propositional Logic, Resolution
System Overview

Representation of SAT Problems
Performance

Theorem prover

SAT solver

DIMACSCNF

\,/\

Input / o .
formula #(Preprocessing

yes
Model

\,/\

Counterexample -

Proof
Theorem \w=

Proof trace

\,/\

reconstruction /%

Finite Model Generation, Proof-Produci

»_satisfiable?

no

SAT Solvers, and SMT

0 ic, Resolution

System Ov

Proof-Producing SAT Solvers Representation of SAT Problems
Performance

Representation of SAT Problems

Bad: use HOL connectives A, V

Good: use sets of clauses and literals

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Propositional L Resolution
System Over

Proof-Producing SAT Solvers Representation of SAT Problems
Performance

Representation of SAT Problems

Bad: use HOL connectives A, V

Good: use sets of clauses and literals

© The whole CNF problem is assumed: {/\f-(:1 Gt /\f-;l G.
@ Each clause is derived: {/\f-(:1 GG, ..oy {/\f;l G} F Ck.
© Then a sequent representation is used:

{/\f-;l Ci,p1,---,Pn} - False.

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Propositional L Resolution
System Over

Proof-Producing SAT Solvers Representation of SAT Problems
Performance

Representation of SAT Problems

Bad: use HOL connectives A, V

Good: use sets of clauses and literals

© The whole CNF problem is assumed: {/\f-(:1 Gt /\f-;l G.
@ Each clause is derived: {/\f-(:1 GG, ..oy {/\f;l G} F Ck.
© Then a sequent representation is used:

{/\f-;l Ci,p1,---,Pn} - False.

@ The problem is an array of clauses. Clauses are sets of literals.

@ Resolution is fast.

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Proof-Producing SAT Solvers

Performance

Propositiona
System Over
Representati
Performance

Evaluation on SATLIB problems:

ogic, Resolution

w
of SAT Problems

Problem Variables | Clauses | Resolutions | zChaff (s) | Isabelle (s)
c7552mul.miter 11282 69529 242509 45 69
6pipe 15800 | 394739 310813 134 192
6pipe_6_ooo 17064 | 545612 782903 263 421
Tpipe 23910 | 751118 497019 440 609
Evaluation on pigeonhole instances:
Problem Variables | Clauses | Resolutions | zChaff (s) | Isabelle (s)
pigeon-9 90 415 73472 1 3
pigeon-10 110 561 215718 6 10
pigeon-11 132 738 601745 24 36
pigeon-12 156 949 3186775 247 315

Tjark Weber

Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Satisfiability Modulo Theories

Satisfiability Modulo Theories

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Overview

Algorithms

Community
Satisfiability Modulo Theories Future Work

Satisfiability Modulo Theories

Goal: To decide the satisfiability of (quantifier-free) first-order
formulae with respect to combinations of (decidable) background
theories.

pru=Al-pleVelehe

Applications:
e Formal verification
@ Scheduling
e Compiler optimization

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Overview

Algorithms

Community
Satisfiability Modulo Theories Future Work

Example

Theories:
@ R: theory of rationals
Yr={< + - 01}
o L: theory of lists
Y, ={=, hd, tl, nil, cons}

o &: theory of equality
> : free function and predicate symbols

Problem: Is
x<yANy<x+hd(consOnil)ANP(fx—fy)A=PO
satisfiable in RUL UE?

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Satisfiability Modulo Theories Future Work

Algorithms

SMT solvers typically use a combination of SAT solving and
theory-specific decision procedures.

@ DPLL: standard decision procedure for SAT (based on
splitting and unit propagation)

@ Nelson-Oppen: a decision procedure for the union of decidable
theories (using variable abstraction and equality propagation)

@ DPLL(T): tight integration of a theory-specific decision
procedure with the DPLL algorithm

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

O r '.E‘\J\./

Alg hms

Community
Satisfiability Modulo Theories Future Work

SMT-LIB

Collection of SMT benchmark problems

@ Standard syntax
@ Various theories (arrays, bit vectors, integers, reals)
e Many logics (difference logic, linear arithmetic, ...)

@ http://goedel.cs.uiowa.edu/smtlib/

Greatly helped to unify the field!)

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

http://goedel.cs.uiowa.edu/smtlib/

Community
Satisfiability Modulo Theories Future Work

SMT-COMP

Satisfiability Modulo Theories Competition

@ Annual satellite event of CAV (since 2005)
@ Many different categories

@ Many participating solvers: Barcelogic, clsat, CVC3,
MathSAT, Yices, 73, ...

@ http://www.smtcomp.org/

Stimulates further solver improvement! J

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

http://www.smtcomp.org/

Community
Satisfiability Modulo Theories Future Work

Future Work

3-year EPSRC research project “Expressive Multi-theory Reasoning
for Interactive Verification” (until Dec. 2011)

o LCF-style integration of SMT solvers
@ Improved quantifier support
@ Performance enhancements

@ Validation case studies

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Algorithms
Community
Satisfiability Modulo Theories Future Work

Questions?

Thank you for your attention.

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

	Introduction
	Motivation
	Questions

	Finite Model Generation
	Higher-Order Logic
	Translation to Propositional Logic
	Extensions and Optimizations
	Case Studies

	Proof-Producing SAT Solvers
	Propositional Logic, Resolution
	System Overview
	Representation of SAT Problems
	Performance

	Satisfiability Modulo Theories
	Overview
	Algorithms
	Community
	Future Work

