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Complex systems almost inevitably contain bugs.

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT



Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Motivation
Questions

Motivation

Complex systems almost inevitably contain bugs.

Complex formalizations almost inevitably contain bugs.

Initial conjectures are frequently false.

A counterexample often exhibits a fault in the implementation.
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Questions

1 How can we find counterexamples in higher-order logic
automatically?

2 Can we use efficient SAT solvers to prove theorems in an
LCF-style theorem prover?

3 Can we use efficient provers for richer logics, beyond SAT?
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Example

Conjecture:

The transitive closure of A ∩ B is equal to the intersection of the
transitive closures of A(α×α) set and B(α×α) set, i.e.,

(A ∩ B)+ = A+ ∩ B+

Counterexample:

α = {x , y}
A = {(x , y), (y , x), (y , y)}
B = {(x , x), (y , x), (y , y)}
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Higher-Order Logic

HOL 4, Isabelle/HOL, etc.: higher-order logic, based on Church’s
“simple theory of types” (1940)

Types: σ ::= α | (σ1, . . . , σn)c

Terms: tσ ::= xσ | cσ | (tσ′→σ t ′σ′)σ | (λxσ1 . tσ2)σ1→σ2

Two special type constructors: bool and →
Two logical constants: =⇒bool→bool→bool and =σ→σ→bool
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The Semantics of HOL

Standard set-theoretic semantics:

Types denote certain non-empty sets.

[[bool]] = {>,⊥}
[[σ1 → σ2]] = [[σ2]][[σ1]]

Terms denote elements of these sets.
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The Semantics of HOL

Standard set-theoretic semantics:

Types denote certain non-empty finite sets.

[[bool]] = {>,⊥}
[[σ1 → σ2]] = [[σ2]][[σ1]]

Terms denote elements of these sets.
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Translation to Propositional Logic

Terms of base type: e.g., xα, with [[α]] = {a0, a1, a2, a3, a4}

x=a 0 x=a 1 x=a 2 x=a 4x=a 3

Functions: e.g., fβ→α, with [[β]] = {b0, b1, b2}

Application, lambda abstraction
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Soundness, Completeness

Theorem

The resulting propositional formula is satisfiable if and only if the
HOL input formula has a standard model of the given size.

Algorithm:

satisfiable?Input
formula each base type Translation HOL

model

Increase the
model’s size

yes

Assignment

no

Fix a size for
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Extensions and Optimizations

Integrated with Isabelle/HOL (refute)

Various optimizations

Propositional simplification
Term abbreviations
Specialization for certain functions
Undefined values, 3-valued logic

Various extensions

Type definitions, constant definitions, overloading
Axiomatic type classes
Data types, recursive functions
Sets, records
HOLCF
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Case Studies

The RSA-PSS security protocol

– security of an abstract formalization of the protocol

Probabilistic programs

– an abstract model of probabilistic programs

A SAT-based Sudoku solver

– a highly efficient solver with very little implementation effort
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An LCF-Style Integration of

Proof-Producing SAT Solvers
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Propositional Logic

Propositional logic:

Boolean variables: p, q, . . .

Formulae: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

Conjunctive normal form (CNF): a conjunction of clauses, where
each clause is a disjunction of literals (i.e., possibly negated
variables)

Abstraction from higher-order to propositional logic: replace
subterms by Boolean variables, e.g.,

(∀x .P x) ∨ ¬(∀x .P x) 7→ p ∨ ¬p
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Propositional Resolution

P ∪ {x} Q ∪ {¬x}
P ∪ Q

Theorem

Propositional resolution is sound and refutation complete.
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System Overview

Input
formula

Model

satisfiable?

SAT solver

yes no

Theorem

Proof trace

Counterexample

Proof
reconstruction

DIMACS CNF

Preprocessing

Theorem prover
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Representation of SAT Problems

Bad: use HOL connectives ∧, ∨

Good: use sets of clauses and literals

1 The whole CNF problem is assumed: {
∧k

i=1 Ci} `
∧k

i=1 Ci .

2 Each clause is derived: {
∧k

i=1 Ci} ` C1, . . . , {
∧k

i=1 Ci} ` Ck .

3 Then a sequent representation is used:

{
∧k

i=1 Ci , p1, . . . , pn} ` False.

The problem is an array of clauses. Clauses are sets of literals.

Resolution is fast.

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT



Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Propositional Logic, Resolution
System Overview
Representation of SAT Problems
Performance

Representation of SAT Problems

Bad: use HOL connectives ∧, ∨

Good: use sets of clauses and literals

1 The whole CNF problem is assumed: {
∧k

i=1 Ci} `
∧k

i=1 Ci .

2 Each clause is derived: {
∧k

i=1 Ci} ` C1, . . . , {
∧k

i=1 Ci} ` Ck .

3 Then a sequent representation is used:

{
∧k

i=1 Ci , p1, . . . , pn} ` False.

The problem is an array of clauses. Clauses are sets of literals.

Resolution is fast.

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT



Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Propositional Logic, Resolution
System Overview
Representation of SAT Problems
Performance

Representation of SAT Problems

Bad: use HOL connectives ∧, ∨

Good: use sets of clauses and literals

1 The whole CNF problem is assumed: {
∧k

i=1 Ci} `
∧k

i=1 Ci .

2 Each clause is derived: {
∧k

i=1 Ci} ` C1, . . . , {
∧k

i=1 Ci} ` Ck .

3 Then a sequent representation is used:

{
∧k

i=1 Ci , p1, . . . , pn} ` False.

The problem is an array of clauses. Clauses are sets of literals.

Resolution is fast.

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT



λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Propositional Logic, Resolution
System Overview
Representation of SAT Problems
Performance

Performance

Evaluation on SATLIB problems:

Problem Variables Clauses Resolutions zChaff (s) Isabelle (s)

c7552mul.miter 11282 69529 242509 45 69
6pipe 15800 394739 310813 134 192
6pipe 6 ooo 17064 545612 782903 263 421
7pipe 23910 751118 497019 440 609

Evaluation on pigeonhole instances:

Problem Variables Clauses Resolutions zChaff (s) Isabelle (s)

pigeon-9 90 415 73472 1 3
pigeon-10 110 561 215718 6 10
pigeon-11 132 738 601745 24 36
pigeon-12 156 949 3186775 247 315
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Satisfiability Modulo Theories

Goal: To decide the satisfiability of (quantifier-free) first-order
formulae with respect to combinations of (decidable) background
theories.

ϕ ::= A | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

Applications:

Formal verification

Scheduling

Compiler optimization

. . .
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Example

Theories:

R: theory of rationals
ΣR = {≤, +, −, 0, 1}
L: theory of lists
ΣL = {=, hd, tl, nil, cons}
E : theory of equality
Σ: free function and predicate symbols

Problem: Is

x ≤ y ∧ y ≤ x + hd (cons 0 nil) ∧ P (f x − f y) ∧ ¬P 0

satisfiable in R∪ L ∪ E?
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Algorithms

SMT solvers typically use a combination of SAT solving and
theory-specific decision procedures.

DPLL: standard decision procedure for SAT (based on
splitting and unit propagation)

Nelson-Oppen: a decision procedure for the union of decidable
theories (using variable abstraction and equality propagation)

DPLL(T): tight integration of a theory-specific decision
procedure with the DPLL algorithm
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SMT-LIB

Collection of SMT benchmark problems

Standard syntax

Various theories (arrays, bit vectors, integers, reals)

Many logics (difference logic, linear arithmetic, . . . )

http://goedel.cs.uiowa.edu/smtlib/

Greatly helped to unify the field!
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SMT-COMP

Satisfiability Modulo Theories Competition

Annual satellite event of CAV (since 2005)

Many different categories

Many participating solvers: Barcelogic, clsat, CVC3,
MathSAT, Yices, Z3, . . .

http://www.smtcomp.org/

Stimulates further solver improvement!
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Future Work

3-year EPSRC research project “Expressive Multi-theory Reasoning
for Interactive Verification” (until Dec. 2011)

LCF-style integration of SMT solvers

Improved quantifier support

Performance enhancements

Validation case studies
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Questions?

Thank you for your attention.
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