
Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Finite Model Generation, Proof-Producing
SAT Solvers, and SMT

Tjark Weber

ARG Lunch

3 February 2009

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Motivation
Questions

Motivation

Complex systems almost inevitably contain bugs.

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Motivation
Questions

Motivation

Complex systems almost inevitably contain bugs.

Complex formalizations almost inevitably contain bugs.

Initial conjectures are frequently false.

A counterexample often exhibits a fault in the implementation.

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Motivation
Questions

Questions

1 How can we find counterexamples in higher-order logic
automatically?

2 Can we use efficient SAT solvers to prove theorems in an
LCF-style theorem prover?

3 Can we use efficient provers for richer logics, beyond SAT?

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Motivation
Questions

Questions

1 How can we find counterexamples in higher-order logic
automatically?

2 Can we use efficient SAT solvers to prove theorems in an
LCF-style theorem prover?

3 Can we use efficient provers for richer logics, beyond SAT?

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Motivation
Questions

Questions

1 How can we find counterexamples in higher-order logic
automatically?

2 Can we use efficient SAT solvers to prove theorems in an
LCF-style theorem prover?

3 Can we use efficient provers for richer logics, beyond SAT?

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Higher-Order Logic
Translation to Propositional Logic
Extensions and Optimizations
Case Studies

SAT-Based

Finite Model Generation

for Higher-Order Logic

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Higher-Order Logic
Translation to Propositional Logic
Extensions and Optimizations
Case Studies

Example

Conjecture:

The transitive closure of A ∩ B is equal to the intersection of the
transitive closures of A(α×α) set and B(α×α) set, i.e.,

(A ∩ B)+ = A+ ∩ B+

Counterexample:

α = {x , y}
A = {(x , y), (y , x), (y , y)}
B = {(x , x), (y , x), (y , y)}

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Higher-Order Logic
Translation to Propositional Logic
Extensions and Optimizations
Case Studies

Example

Conjecture:

The transitive closure of A ∩ B is equal to the intersection of the
transitive closures of A(α×α) set and B(α×α) set, i.e.,

(A ∩ B)+ = A+ ∩ B+

Counterexample:

α = {x , y}
A = {(x , y), (y , x), (y , y)}
B = {(x , x), (y , x), (y , y)}

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Higher-Order Logic
Translation to Propositional Logic
Extensions and Optimizations
Case Studies

Higher-Order Logic

HOL 4, Isabelle/HOL, etc.: higher-order logic, based on Church’s
“simple theory of types” (1940)

Types: σ ::= α | (σ1, . . . , σn)c

Terms: tσ ::= xσ | cσ | (tσ′→σ t ′σ′)σ | (λxσ1 . tσ2)σ1→σ2

Two special type constructors: bool and →
Two logical constants: =⇒bool→bool→bool and =σ→σ→bool

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Higher-Order Logic
Translation to Propositional Logic
Extensions and Optimizations
Case Studies

The Semantics of HOL

Standard set-theoretic semantics:

Types denote certain non-empty sets.

[[bool]] = {>,⊥}
[[σ1 → σ2]] = [[σ2]][[σ1]]

Terms denote elements of these sets.

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Higher-Order Logic
Translation to Propositional Logic
Extensions and Optimizations
Case Studies

The Semantics of HOL

Standard set-theoretic semantics:

Types denote certain non-empty finite sets.

[[bool]] = {>,⊥}
[[σ1 → σ2]] = [[σ2]][[σ1]]

Terms denote elements of these sets.

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Higher-Order Logic
Translation to Propositional Logic
Extensions and Optimizations
Case Studies

Translation to Propositional Logic

Terms of base type: e.g., xα, with [[α]] = {a0, a1, a2, a3, a4}

x=a 0 x=a 1 x=a 2 x=a 4x=a 3

Functions: e.g., fβ→α, with [[β]] = {b0, b1, b2}

Application, lambda abstraction

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Higher-Order Logic
Translation to Propositional Logic
Extensions and Optimizations
Case Studies

Translation to Propositional Logic

Terms of base type: e.g., xα, with [[α]] = {a0, a1, a2, a3, a4}

x=a 0 x=a 1 x=a 2 x=a 4x=a 3

Functions: e.g., fβ→α, with [[β]] = {b0, b1, b2}

Application, lambda abstraction

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Higher-Order Logic
Translation to Propositional Logic
Extensions and Optimizations
Case Studies

Translation to Propositional Logic

Terms of base type: e.g., xα, with [[α]] = {a0, a1, a2, a3, a4}

x=a 0 x=a 1 x=a 2 x=a 4x=a 3

Functions: e.g., fβ→α, with [[β]] = {b0, b1, b2}

Application, lambda abstraction

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Higher-Order Logic
Translation to Propositional Logic
Extensions and Optimizations
Case Studies

Soundness, Completeness

Theorem

The resulting propositional formula is satisfiable if and only if the
HOL input formula has a standard model of the given size.

Algorithm:

satisfiable?Input
formula each base type Translation HOL

model

Increase the
model’s size

yes

Assignment

no

Fix a size for

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Higher-Order Logic
Translation to Propositional Logic
Extensions and Optimizations
Case Studies

Extensions and Optimizations

Integrated with Isabelle/HOL (refute)

Various optimizations

Propositional simplification
Term abbreviations
Specialization for certain functions
Undefined values, 3-valued logic

Various extensions

Type definitions, constant definitions, overloading
Axiomatic type classes
Data types, recursive functions
Sets, records
HOLCF

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Higher-Order Logic
Translation to Propositional Logic
Extensions and Optimizations
Case Studies

Case Studies

The RSA-PSS security protocol

– security of an abstract formalization of the protocol

Probabilistic programs

– an abstract model of probabilistic programs

A SAT-based Sudoku solver

– a highly efficient solver with very little implementation effort

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Higher-Order Logic
Translation to Propositional Logic
Extensions and Optimizations
Case Studies

Case Studies

The RSA-PSS security protocol

– security of an abstract formalization of the protocol

Probabilistic programs

– an abstract model of probabilistic programs

A SAT-based Sudoku solver

– a highly efficient solver with very little implementation effort

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Higher-Order Logic
Translation to Propositional Logic
Extensions and Optimizations
Case Studies

Case Studies

The RSA-PSS security protocol

– security of an abstract formalization of the protocol

Probabilistic programs

– an abstract model of probabilistic programs

A SAT-based Sudoku solver

– a highly efficient solver with very little implementation effort

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Higher-Order Logic
Translation to Propositional Logic
Extensions and Optimizations
Case Studies

Case Studies

The RSA-PSS security protocol

– security of an abstract formalization of the protocol

Probabilistic programs

– an abstract model of probabilistic programs

A SAT-based Sudoku solver

– a highly efficient solver with very little implementation effort

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Propositional Logic, Resolution
System Overview
Representation of SAT Problems
Performance

An LCF-Style Integration of

Proof-Producing SAT Solvers

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Propositional Logic, Resolution
System Overview
Representation of SAT Problems
Performance

Propositional Logic

Propositional logic:

Boolean variables: p, q, . . .

Formulae: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

Conjunctive normal form (CNF): a conjunction of clauses, where
each clause is a disjunction of literals (i.e., possibly negated
variables)

Abstraction from higher-order to propositional logic: replace
subterms by Boolean variables, e.g.,

(∀x .P x) ∨ ¬(∀x .P x) 7→ p ∨ ¬p

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Propositional Logic, Resolution
System Overview
Representation of SAT Problems
Performance

Propositional Logic

Propositional logic:

Boolean variables: p, q, . . .

Formulae: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

Conjunctive normal form (CNF): a conjunction of clauses, where
each clause is a disjunction of literals (i.e., possibly negated
variables)

Abstraction from higher-order to propositional logic: replace
subterms by Boolean variables, e.g.,

(∀x .P x) ∨ ¬(∀x .P x) 7→ p ∨ ¬p

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Propositional Logic, Resolution
System Overview
Representation of SAT Problems
Performance

Propositional Logic

Propositional logic:

Boolean variables: p, q, . . .

Formulae: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

Conjunctive normal form (CNF): a conjunction of clauses, where
each clause is a disjunction of literals (i.e., possibly negated
variables)

Abstraction from higher-order to propositional logic: replace
subterms by Boolean variables, e.g.,

(∀x .P x) ∨ ¬(∀x .P x) 7→ p ∨ ¬p

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Propositional Logic, Resolution
System Overview
Representation of SAT Problems
Performance

Propositional Resolution

P ∪ {x} Q ∪ {¬x}
P ∪ Q

Theorem

Propositional resolution is sound and refutation complete.

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Propositional Logic, Resolution
System Overview
Representation of SAT Problems
Performance

System Overview

Input
formula

Model

satisfiable?

SAT solver

yes no

Theorem

Proof trace

Counterexample

Proof
reconstruction

DIMACS CNF

Preprocessing

Theorem prover

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Propositional Logic, Resolution
System Overview
Representation of SAT Problems
Performance

Representation of SAT Problems

Bad: use HOL connectives ∧, ∨

Good: use sets of clauses and literals

1 The whole CNF problem is assumed: {
∧k

i=1 Ci} `
∧k

i=1 Ci .

2 Each clause is derived: {
∧k

i=1 Ci} ` C1, . . . , {
∧k

i=1 Ci} ` Ck .

3 Then a sequent representation is used:

{
∧k

i=1 Ci , p1, . . . , pn} ` False.

The problem is an array of clauses. Clauses are sets of literals.

Resolution is fast.

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Propositional Logic, Resolution
System Overview
Representation of SAT Problems
Performance

Representation of SAT Problems

Bad: use HOL connectives ∧, ∨

Good: use sets of clauses and literals

1 The whole CNF problem is assumed: {
∧k

i=1 Ci} `
∧k

i=1 Ci .

2 Each clause is derived: {
∧k

i=1 Ci} ` C1, . . . , {
∧k

i=1 Ci} ` Ck .

3 Then a sequent representation is used:

{
∧k

i=1 Ci , p1, . . . , pn} ` False.

The problem is an array of clauses. Clauses are sets of literals.

Resolution is fast.

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Propositional Logic, Resolution
System Overview
Representation of SAT Problems
Performance

Representation of SAT Problems

Bad: use HOL connectives ∧, ∨

Good: use sets of clauses and literals

1 The whole CNF problem is assumed: {
∧k

i=1 Ci} `
∧k

i=1 Ci .

2 Each clause is derived: {
∧k

i=1 Ci} ` C1, . . . , {
∧k

i=1 Ci} ` Ck .

3 Then a sequent representation is used:

{
∧k

i=1 Ci , p1, . . . , pn} ` False.

The problem is an array of clauses. Clauses are sets of literals.

Resolution is fast.

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

λ →

∀
=Is

ab
el
le

β
α

HOL

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Propositional Logic, Resolution
System Overview
Representation of SAT Problems
Performance

Performance

Evaluation on SATLIB problems:

Problem Variables Clauses Resolutions zChaff (s) Isabelle (s)

c7552mul.miter 11282 69529 242509 45 69
6pipe 15800 394739 310813 134 192
6pipe 6 ooo 17064 545612 782903 263 421
7pipe 23910 751118 497019 440 609

Evaluation on pigeonhole instances:

Problem Variables Clauses Resolutions zChaff (s) Isabelle (s)

pigeon-9 90 415 73472 1 3
pigeon-10 110 561 215718 6 10
pigeon-11 132 738 601745 24 36
pigeon-12 156 949 3186775 247 315

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Overview
Algorithms
Community
Future Work

Satisfiability Modulo Theories

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Overview
Algorithms
Community
Future Work

Satisfiability Modulo Theories

Goal: To decide the satisfiability of (quantifier-free) first-order
formulae with respect to combinations of (decidable) background
theories.

ϕ ::= A | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

Applications:

Formal verification

Scheduling

Compiler optimization

. . .

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Overview
Algorithms
Community
Future Work

Example

Theories:

R: theory of rationals
ΣR = {≤, +, −, 0, 1}
L: theory of lists
ΣL = {=, hd, tl, nil, cons}
E : theory of equality
Σ: free function and predicate symbols

Problem: Is

x ≤ y ∧ y ≤ x + hd (cons 0 nil) ∧ P (f x − f y) ∧ ¬P 0

satisfiable in R∪ L ∪ E?

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Overview
Algorithms
Community
Future Work

Algorithms

SMT solvers typically use a combination of SAT solving and
theory-specific decision procedures.

DPLL: standard decision procedure for SAT (based on
splitting and unit propagation)

Nelson-Oppen: a decision procedure for the union of decidable
theories (using variable abstraction and equality propagation)

DPLL(T): tight integration of a theory-specific decision
procedure with the DPLL algorithm

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Overview
Algorithms
Community
Future Work

SMT-LIB

Collection of SMT benchmark problems

Standard syntax

Various theories (arrays, bit vectors, integers, reals)

Many logics (difference logic, linear arithmetic, . . .)

http://goedel.cs.uiowa.edu/smtlib/

Greatly helped to unify the field!

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

http://goedel.cs.uiowa.edu/smtlib/

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Overview
Algorithms
Community
Future Work

SMT-COMP

Satisfiability Modulo Theories Competition

Annual satellite event of CAV (since 2005)

Many different categories

Many participating solvers: Barcelogic, clsat, CVC3,
MathSAT, Yices, Z3, . . .

http://www.smtcomp.org/

Stimulates further solver improvement!

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

http://www.smtcomp.org/

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Overview
Algorithms
Community
Future Work

Future Work

3-year EPSRC research project “Expressive Multi-theory Reasoning
for Interactive Verification” (until Dec. 2011)

LCF-style integration of SMT solvers

Improved quantifier support

Performance enhancements

Validation case studies

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

Introduction
Finite Model Generation

Proof-Producing SAT Solvers
Satisfiability Modulo Theories

Overview
Algorithms
Community
Future Work

Questions?

Thank you for your attention.

Tjark Weber Finite Model Generation, Proof-Producing SAT Solvers, and SMT

	Introduction
	Motivation
	Questions

	Finite Model Generation
	Higher-Order Logic
	Translation to Propositional Logic
	Extensions and Optimizations
	Case Studies

	Proof-Producing SAT Solvers
	Propositional Logic, Resolution
	System Overview
	Representation of SAT Problems
	Performance

	Satisfiability Modulo Theories
	Overview
	Algorithms
	Community
	Future Work

