Finite Model Generation for
| sabelle/HOL

Using a SAT Solver

Tjark Weber

webert) @n.tum de

TUT

Technische Universitat Minchen
Winterhitte, Marz 2004

Finite Model Generation for Isabelle/HOL —

| sabelle
-

Isabelle is a generic proof assistant:
Highly flexible

Interactive

Automatic proof procedures
Advanced user interface
Readable proofs

© o o o 0

Large theories of formal mathematics

\

B

Finite Model Generation for Isabelle/HOL — p.2/21

Finite M odel Generation

-

Theorem proving: from formulae to proofs
Finite model generation: from formulae to models

Applications:

Showing the consistency of a specification

Finding counterexamples to false conjectures
Solving open mathematical problems

Guiding resolution-based provers

% .

Finite Model Generation for Isabelle/HOL — p.3/21

-

| sabelle/HOL
-

HOL.: higher-order logic on top of polymorphic simply-typed
A-calculus

| sabelle/HOL

o N

HOL.: higher-order logic on top of polymorphic simply-typed
A-calculus

Simply-typed \-calculus:

® Types:7:=B|a|f|...|T=71
® Terms: Ax=ax|y|...] \e. A (AA)

. o rmFAT A:mi=m Ao
Typing rules: Ax.\:m1 =79 (A1 Ao):mo

% .

Finite Model Generation for Isabelle/HOL — p.4/21

| sabelle/HOL

o N

HOL.: higher-order logic on top of polymorphic simply-typed
A-calculus

Simply-typed \-calculus:

® Types:7:=B|a|f|...|T=71
® Terms: Ax=ax|y|...] \e. A (AA)

. o rmFAT A:mi=m Ao
Typing rules: Ax.\:m1 =79 (A1 Ao):mo

The logical constants
True|False|—=|A|V]—=]|=|V]|d]|d
are definable.

% .

Finite Model Generation for Isabelle/HOL — p.4/21

The Semantics of HOL
-

A (finite) model for a HOL formula is given by
(finite) sets of (first-order) individuals, and
an interpretation of the formula’s variables.

Finite model generation is a generalization of satisfiability
checking, where the search tree is not necessarily binary
(as in the case of SAT).

% .

Finite Model Generation for Isabelle/HOL — p.5/21

Overview

-

Input: HOL formula ¢

Output: either a model for ¢, or “no model found”

eH
e\ 0L

a%'

Finite Model Generation for Isabelle/HOL — p.6/21

Overview

o N

Input: HOL formula ¢

1. Fix the size of the model.

2. Translate ¢ into a boolean formula that is satisfiable iff ¢
has a model of the given size.

3. Use a SAT solver to search for a satisfying assignment.
4. If no assignment was found, increase the size of the

model and repeat.
Output: either a model for ¢, or “no model found”

% .

Finite Model Generation for Isabelle/HOL — p.6/21

1. Fixing the Size of the M odel

-

-

Fix a positive integer for every type variable that occurs in
the typing of ¢.

Every type then has a finite size:
o Bl =2
® |al, |3], ... Is given by the model

® |0=1T|= |T\|"|

|

Finite Model Generation for Isabelle/HOL — p.7/21

2. Trandation into a Boolean Formula

-

B

Boolean formulae:
p:=True|False|p|lq|...|vo|loeVeol|lpAp

Finite Model Generation for Isabelle/HOL — p.8/21

2. Trandation into a Boolean Formula

o N

Boolean formulae:
pr=True|False|p|lqgl|l...| " ¢oleVelpAyp

ldea: Translate a HOL term A into a tree of lists of boolean
formulae. The interpretation of the boolean variables in the
tree determines the interpretation of A.

% .

Finite Model Generation for Isabelle/HOL — p.8/21

2. Trandation into a Boolean Formula

-

Boolean formulae: T
pr=True|False|p|lqgl|l...| " ¢oleVelpAyp

ldea: Translate a HOL term A into a tree of lists of boolean

formulae. The interpretation of the boolean variables in the
tree determines the interpretation of A.

1. A variable = of type o becomes a list of boolean
variables |rq,... x|, of length |a].

ldea: z; Is true iff x Is to be interpreted as the :-th
element of «.

Add clauses to make sure that exactly one variable z;
(1 << |a|)istrue.

% .

Finite Model Generation for Isabelle/HOL — p.8/21

2. Trandation into a Boolean Formula

-

B

2. A variable of type ¢ = 7 becomes a tree whose root
has |o| children, each one being a (fresh) tree for a
variable of type .

|

Finite Model Generation for Isabelle/HOL — p.9/21

2. Trandation into a Boolean Formula

-

B

2. A variable of type ¢ = 7 becomes a tree whose root
has |o| children, each one being a (fresh) tree for a
variable of type .

3. A M-abstraction \z.A of type o = 7 becomes a tree
whose root has |o| children, each one being a tree for A
with = bound to a tree for the corresponding (first,
second, ..., |o|-th) constant in o.

|

Finite Model Generation for Isabelle/HOL — p.9/21

2. Trandation into a Boolean Formula

-

4. An application (ST Is translated as follows: T
(a) Pick the first formula from every leaf in the tree for 7.
(b) Compute the conjunction of these formulae.

(c) Compute the “conjunction” with the first child in S.

(d) Repeat for every child in S (with the corresponding
choice of formulae from 7).

(e) Compute the “disjunction” of all children.

|

Finite Model Generation for Isabelle/HOL — p.10/21

2. Trandation into a Boolean Formula

-

4. An application (ST Is translated as follows: T
(a) Pick the first formula from every leaf in the tree for 7.
(b) Compute the conjunction of these formulae.

(c) Compute the “conjunction” with the first child in S.

(d) Repeat for every child in S (with the corresponding
choice of formulae from 7).

(e) Compute the “disjunction” of all children.

Example: S a= 5,7 a, |a|=2,|8| =3

S = [[5%7357357 [5%78%7‘9%“
T = [t1,to]

|

Finite Model Generation for Isabelle/HOL — p.10/21

2. Trandation into a Boolean Formula

o N

4. An application (ST Is translated as follows:
(a) Pick the first formula from every leaf in the tree for 7.
(b) Compute the conjunction of these formulae.
(c) Compute the “conjunction” with the first child in S.

(d) Repeat for every child in S (with the corresponding
choice of formulae from 7).

(e) Compute the “disjunction” of all children.

Example: S a= 5,7 a, |a|=2,|8| =3

S = HS%,S%;S%,]; [S%S%vsgﬂ
T = [t1, 2]

|

Finite Model Generation for Isabelle/HOL — p.10/21

2. Trandation into a Boolean Formula

o N

4. An application (ST Is translated as follows:
(a) Pick the first formula from every leaf in the tree for 7.
(b) Compute the conjunction of these formulae.
(c) Compute the “conjunction” with the first child in S.

(d) Repeat for every child in S (with the corresponding
choice of formulae from 7).

(e) Compute the “disjunction” of all children.

Example: S a= 5,7 a, |a|=2,|8| =3

S = HS%;S%;S%L [5%75%783]]
T = [t1,]

(ST) = [st Aty V s Ata,s5 Aty V s5 Ata,ss AtV s35 A Lo

|

Finite Model Generation for Isabelle/HOL — p.10/21

-

3. The SAT Solver
-

Both internal and external SAT solvers are supported.

3. The SAT Solver

o N

Both internal and external SAT solvers are supported.
Pros of an internal solver:

Easy installation

#» Compatibility

Fast enough for simple examples

% .

Finite Model Generation for Isabelle/HOL — p.11/21

3. The SAT Solver

o N

Both internal and external SAT solvers are supported.
Pros of an internal solver:

Easy installation

#» Compatibility

Fast enough for simple examples

Pros of an external solver:
o Efficiency
#® Advances in SAT solver technology are “for free”

eH
e\ OL

e

Finite Model Generation for Isabelle/HOL — p.11/21

Thelnternal Solver

o N

Based on the DPLL procedure (Davis-Putnam-Logemann-
Loveland, 1962)

dpl I (0: partial assignnent, ¢:formula) {
(0',¢) = sinplify and deduce(¥, ¢),;
| f ¢'=True then return ¢
el se if ¢'=Fal se then return UNSATI SFI ABLE
el se {
r .= pick fresh variabl e(¢, ¢);
result .= dpl | (0'[x —Fal se], ¢);
| T result=UNSATI SFI ABLE t hen
return dpll (¢'[x —True], ¢
el se return result

|

Finite Model Generation for Isabelle/HOL — p.12/21

External Solvers

-

Interface:
Input/output: via text files
EXxecution: via a system call

Supported input formats:
#» DIMACS SAT
#» DIMACS CNF

% .

Finite Model Generation for Isabelle/HOL — p.13/21

DIMACS SAT

-

-

Arbitrary boolean formulae allowed

c Exanmple SAT format file in D MACS f or mat
C

p sat 4

(*(+C 2 3- ((4)))

+H -4)

+(23 4)))

DIMACS CNF

-

Formula must be in CNF (A \/(—)p) T

c Exanple CNF format file i n D MACS format
C

p cnf 4 3

2 3 -40

-4 0

2340

DIMACS CNF

f #® Formula must be in CNF (A \/(—)p) T

c Exanmple CNF format file in D MACS f or mat
C

p cnf 4 3

2 3 -40

-4 0

2340

Most SAT solvers only support CNF format!

Trandation into CNF
f 1. Translate into NNF T
®» (PANQ)=-PV-Q
®» (PVQ)=-PAN—Q
®» —P=P
2. Translate into CNF
®» (PNQ)VR=(PVR)AN(QV R)

|

Finite Model Generation for Isabelle/HOL — p.16/21

Translation into CNF
o . -

1. Translate into NNF
®» (PANQ)=-PV-Q
®» (PVQ)=-PAN—Q
®» —P=P
2. Translate into CNF
®» (PNQ)VR=(PVR)AN(QV R)

This translation can cause an exponential blow-up of the
formula.

&& Finite Model Generation for Isabelle/HOL — p.16/21

Translation into CNF
-

1. Translate into NNF
» (PANQ)=-PV-Q
®» (PVQ)=-PAN—Q
®» —P=P
2. Translate into CNF
®» (PNQ)VR=(PVR)AN(QVR)

This translation can cause an exponential blow-up of the
formula.

Solution: Definitional CNF

(PAQ)VRZE (PVp)AQVp)A(RY -p)

% |

Finite Model Generation for Isabelle/HOL — p.16/21

Some Optimizations

o N

Hard-coded translation for logical constants

Only one boolean variable is used for variables of
type B

On-the-fly simplification of the boolean formula (e.g.
closed HOL formulae simply become Tr ue/Fal se)

& Finite Model Generation for Isabelle/HOL — p.17/21

A Simple Extension: Sets

-

-

Sets are interpreted as characteristic functions.
®» o set Z2a=0D0B

®» reP=Px

® {r.Px}=P

Soundness and Completeness

fIf the SAT solver is sound/complete, we have ... T

Soundness: If the algorithm returns “model found”, the
given formula has a finite model.

#® Completeness: If the given formula has a finite model,
the algorithm will find it (given enough time).

|

Finite Model Generation for Isabelle/HOL — p.19/21

refute
-

Parameters:

® 1 nsi ze: minimal size of the model

® nmaxsi ze: maximal size of the model

& maxvar s: max. number of boolean variables

#® sat sol ver: name of the SAT solver to be used

All parameters can be set globally with r ef ut e _par ans.

% .

Finite Model Generation for Isabelle/HOL — p.20/21

-

Future Work

® A better translation:

s polynomial-time
s logarithmic number of boolean variables

o

types encoded as terms

#® Support for other HOL constructs:

-

»

o
o
»
»

axioms

typedefs

Inductive datatypes
iInductively defined sets
recursive functions

|

Finite Model Generation for Isabelle/HOL — p.21/21

	Isabelle
	Finite Model Generation
	Isabelle/HOL
	The Semantics of HOL
	Overview
	1. Fixing the Size of the Model
	2. Translation into a Boolean Formula
	2. Translation into a Boolean Formula
	2. Translation into a Boolean Formula
	3. The SAT Solver
	The Internal Solver
	External Solvers
	DIMACS SAT
	DIMACS CNF
	Translation into CNF
	Some Optimizations
	A Simple Extension: Sets
	Soundness and Completeness
	refute
	Future Work

