
λ →

∀
=Isa

be
lle

β
α

HOL

Finite Model Generation for
Isabelle/HOL

Using a SAT Solver

Tjark Weber

webertj@in.tum.de

Technische Universität München

Winterhütte, März 2004

Finite Model Generation for Isabelle/HOL – p.1/21

λ →

∀
=Isa

be
lle

β
α

HOL

Isabelle

Isabelle is a generic proof assistant:

Highly flexible

Interactive

Automatic proof procedures

Advanced user interface

Readable proofs

Large theories of formal mathematics

Finite Model Generation for Isabelle/HOL – p.2/21

λ →

∀
=Isa

be
lle

β
α

HOL

Finite Model Generation

Theorem proving: from formulae to proofs

Finite model generation: from formulae to models

Applications:

Showing the consistency of a specification

Finding counterexamples to false conjectures

Solving open mathematical problems

Guiding resolution-based provers

Finite Model Generation for Isabelle/HOL – p.3/21

λ →

∀
=Isa

be
lle

β
α

HOL

Isabelle/HOL

HOL: higher-order logic on top of polymorphic simply-typed
λ-calculus

Simply-typed λ-calculus:

Types: τ ::= B | α | β | . . . | τ ⇒ τ

Terms: Λ ::= x | y | . . . | λx.Λ | (Λ Λ)

Typing rules:
x:τ1`Λ:τ2

λx.Λ:τ1⇒τ2

Λ1:τ1⇒τ2 Λ2:τ1
(Λ1 Λ2):τ2

The logical constants
True | False | ¬ | ∧ | ∨ | → | = | ∀ | ∃ | ∃!

are definable.

Finite Model Generation for Isabelle/HOL – p.4/21

λ →

∀
=Isa

be
lle

β
α

HOL

Isabelle/HOL

HOL: higher-order logic on top of polymorphic simply-typed
λ-calculus

Simply-typed λ-calculus:

Types: τ ::= B | α | β | . . . | τ ⇒ τ

Terms: Λ ::= x | y | . . . | λx.Λ | (Λ Λ)

Typing rules:
x:τ1`Λ:τ2

λx.Λ:τ1⇒τ2

Λ1:τ1⇒τ2 Λ2:τ1
(Λ1 Λ2):τ2

The logical constants
True | False | ¬ | ∧ | ∨ | → | = | ∀ | ∃ | ∃!

are definable.

Finite Model Generation for Isabelle/HOL – p.4/21

λ →

∀
=Isa

be
lle

β
α

HOL

Isabelle/HOL

HOL: higher-order logic on top of polymorphic simply-typed
λ-calculus

Simply-typed λ-calculus:

Types: τ ::= B | α | β | . . . | τ ⇒ τ

Terms: Λ ::= x | y | . . . | λx.Λ | (Λ Λ)

Typing rules:
x:τ1`Λ:τ2

λx.Λ:τ1⇒τ2

Λ1:τ1⇒τ2 Λ2:τ1
(Λ1 Λ2):τ2

The logical constants
True | False | ¬ | ∧ | ∨ | → | = | ∀ | ∃ | ∃!

are definable.

Finite Model Generation for Isabelle/HOL – p.4/21

λ →

∀
=Isa

be
lle

β
α

HOL

The Semantics of HOL

A (finite) model for a HOL formula is given by

(finite) sets of (first-order) individuals, and

an interpretation of the formula’s variables.

Finite model generation is a generalization of satisfiability
checking, where the search tree is not necessarily binary
(as in the case of SAT).

Finite Model Generation for Isabelle/HOL – p.5/21

λ →

∀
=Isa

be
lle

β
α

HOL

Overview

Input: HOL formula φ

1. Fix the size of the model.

2. Translate φ into a boolean formula that is satisfiable iff φ

has a model of the given size.

3. Use a SAT solver to search for a satisfying assignment.

4. If no assignment was found, increase the size of the
model and repeat.

Output: either a model for φ, or “no model found”

Finite Model Generation for Isabelle/HOL – p.6/21

λ →

∀
=Isa

be
lle

β
α

HOL

Overview

Input: HOL formula φ

1. Fix the size of the model.

2. Translate φ into a boolean formula that is satisfiable iff φ

has a model of the given size.

3. Use a SAT solver to search for a satisfying assignment.

4. If no assignment was found, increase the size of the
model and repeat.

Output: either a model for φ, or “no model found”

Finite Model Generation for Isabelle/HOL – p.6/21

λ →

∀
=Isa

be
lle

β
α

HOL

1. Fixing the Size of the Model

Fix a positive integer for every type variable that occurs in
the typing of φ.

Every type then has a finite size:

|B| = 2

|α|, |β|, . . . is given by the model

|σ ⇒ τ | = |τ ||σ|

Finite Model Generation for Isabelle/HOL – p.7/21

λ →

∀
=Isa

be
lle

β
α

HOL

2. Translation into a Boolean Formula

Boolean formulae:
ϕ ::= True | False | p | q | . . . | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

Idea: Translate a HOL term Λ into a tree of lists of boolean
formulae. The interpretation of the boolean variables in the
tree determines the interpretation of Λ.

1. A variable x of type α becomes a list of boolean
variables [x1, . . . , x|α|] of length |α|.

Idea: xi is true iff x is to be interpreted as the i-th
element of α.

Add clauses to make sure that exactly one variable xi

(1 ≤ i ≤ |α|) is true.

Finite Model Generation for Isabelle/HOL – p.8/21

λ →

∀
=Isa

be
lle

β
α

HOL

2. Translation into a Boolean Formula

Boolean formulae:
ϕ ::= True | False | p | q | . . . | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

Idea: Translate a HOL term Λ into a tree of lists of boolean
formulae. The interpretation of the boolean variables in the
tree determines the interpretation of Λ.

1. A variable x of type α becomes a list of boolean
variables [x1, . . . , x|α|] of length |α|.

Idea: xi is true iff x is to be interpreted as the i-th
element of α.

Add clauses to make sure that exactly one variable xi

(1 ≤ i ≤ |α|) is true.

Finite Model Generation for Isabelle/HOL – p.8/21

λ →

∀
=Isa

be
lle

β
α

HOL

2. Translation into a Boolean Formula

Boolean formulae:
ϕ ::= True | False | p | q | . . . | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

Idea: Translate a HOL term Λ into a tree of lists of boolean
formulae. The interpretation of the boolean variables in the
tree determines the interpretation of Λ.

1. A variable x of type α becomes a list of boolean
variables [x1, . . . , x|α|] of length |α|.

Idea: xi is true iff x is to be interpreted as the i-th
element of α.

Add clauses to make sure that exactly one variable xi

(1 ≤ i ≤ |α|) is true.

Finite Model Generation for Isabelle/HOL – p.8/21

λ →

∀
=Isa

be
lle

β
α

HOL

2. Translation into a Boolean Formula

2. A variable of type σ ⇒ τ becomes a tree whose root
has |σ| children, each one being a (fresh) tree for a
variable of type τ .

2. A variable of type σ ⇒ τ becomes a tree whose root
has |σ| children, each one being a (fresh) tree for a
variable of type τ .

3. A λ-abstraction λx.Λ of type σ ⇒ τ becomes a tree
whose root has |σ| children, each one being a tree for Λ
with x bound to a tree for the corresponding (first,
second, . . . , |σ|-th) constant in σ.

Finite Model Generation for Isabelle/HOL – p.9/21

λ →

∀
=Isa

be
lle

β
α

HOL

2. Translation into a Boolean Formula

2. A variable of type σ ⇒ τ becomes a tree whose root
has |σ| children, each one being a (fresh) tree for a
variable of type τ .

3. A λ-abstraction λx.Λ of type σ ⇒ τ becomes a tree
whose root has |σ| children, each one being a tree for Λ
with x bound to a tree for the corresponding (first,
second, . . . , |σ|-th) constant in σ.

Finite Model Generation for Isabelle/HOL – p.9/21

λ →

∀
=Isa

be
lle

β
α

HOL

2. Translation into a Boolean Formula

4. An application (S T) is translated as follows:
(a) Pick the first formula from every leaf in the tree for T .
(b) Compute the conjunction of these formulae.
(c) Compute the “conjunction” with the first child in S.
(d) Repeat for every child in S (with the corresponding

choice of formulae from T).
(e) Compute the “disjunction” of all children.

Example: S :: α ⇒ β, T :: α, |α| = 2, |β| = 3

Finite Model Generation for Isabelle/HOL – p.10/21

λ →

∀
=Isa

be
lle

β
α

HOL

2. Translation into a Boolean Formula

4. An application (S T) is translated as follows:
(a) Pick the first formula from every leaf in the tree for T .
(b) Compute the conjunction of these formulae.
(c) Compute the “conjunction” with the first child in S.
(d) Repeat for every child in S (with the corresponding

choice of formulae from T).
(e) Compute the “disjunction” of all children.

Example: S :: α ⇒ β, T :: α, |α| = 2, |β| = 3

S = [[s1
1
, s1

2
, s1

3
], [s2

1
, s2

2
, s2

3
]]

T = [t1, t2]

Finite Model Generation for Isabelle/HOL – p.10/21

λ →

∀
=Isa

be
lle

β
α

HOL

2. Translation into a Boolean Formula

4. An application (S T) is translated as follows:
(a) Pick the first formula from every leaf in the tree for T .
(b) Compute the conjunction of these formulae.
(c) Compute the “conjunction” with the first child in S.
(d) Repeat for every child in S (with the corresponding

choice of formulae from T).
(e) Compute the “disjunction” of all children.

Example: S :: α ⇒ β, T :: α, |α| = 2, |β| = 3

S = [[s1
1
, s1

2
, s1

3
], [s2

1
, s2

2
, s2

3
]]

T = [t1, t2]

(S T) = [s1
1
∧ t1 , s1

2
∧ t1 , s1

3
∧ t1]

Finite Model Generation for Isabelle/HOL – p.10/21

λ →

∀
=Isa

be
lle

β
α

HOL

2. Translation into a Boolean Formula

4. An application (S T) is translated as follows:
(a) Pick the first formula from every leaf in the tree for T .
(b) Compute the conjunction of these formulae.
(c) Compute the “conjunction” with the first child in S.
(d) Repeat for every child in S (with the corresponding

choice of formulae from T).
(e) Compute the “disjunction” of all children.

Example: S :: α ⇒ β, T :: α, |α| = 2, |β| = 3

S = [[s1
1
, s1

2
, s1

3
], [s2

1
, s2

2
, s2

3
]]

T = [t1, t2]

(S T) = [s1
1
∧ t1 ∨ s2

1
∧ t2, s

1
2
∧ t1 ∨ s2

2
∧ t2, s

1
3
∧ t1 ∨ s2

3
∧ t2]

Finite Model Generation for Isabelle/HOL – p.10/21

λ →

∀
=Isa

be
lle

β
α

HOL

3. The SAT Solver

Both internal and external SAT solvers are supported.

Pros of an internal solver:

Easy installation

Compatibility

Fast enough for simple examples

Pros of an external solver:

Efficiency

Advances in SAT solver technology are “for free”

Finite Model Generation for Isabelle/HOL – p.11/21

λ →

∀
=Isa

be
lle

β
α

HOL

3. The SAT Solver

Both internal and external SAT solvers are supported.

Pros of an internal solver:

Easy installation

Compatibility

Fast enough for simple examples

Pros of an external solver:

Efficiency

Advances in SAT solver technology are “for free”

Finite Model Generation for Isabelle/HOL – p.11/21

λ →

∀
=Isa

be
lle

β
α

HOL

3. The SAT Solver

Both internal and external SAT solvers are supported.

Pros of an internal solver:

Easy installation

Compatibility

Fast enough for simple examples

Pros of an external solver:

Efficiency

Advances in SAT solver technology are “for free”

Finite Model Generation for Isabelle/HOL – p.11/21

λ →

∀
=Isa

be
lle

β
α

HOL

The Internal Solver

Based on the DPLL procedure (Davis-Putnam-Logemann-
Loveland, 1962)

dpll(θ:partial assignment, φ:formula) {
(θ′,φ′) := simplify_and_deduce(θ,φ);
if φ′=True then return θ′

else if φ′=False then return UNSATISFIABLE
else {

x := pick_fresh_variable(θ′,φ′);
result := dpll(θ′[x 7→False], φ′);
if result=UNSATISFIABLE then
return dpll(θ′[x 7→True], φ′)

else return result

}
}

Finite Model Generation for Isabelle/HOL – p.12/21

λ →

∀
=Isa

be
lle

β
α

HOL

External Solvers

Interface:

Input/output: via text files

Execution: via a system call

Supported input formats:

DIMACS SAT

DIMACS CNF

Finite Model Generation for Isabelle/HOL – p.13/21

λ →

∀
=Isa

be
lle

β
α

HOL

DIMACS SAT

Arbitrary boolean formulae allowed

c Example SAT format file in DIMACS format
c
p sat 4
(*(+(2 3- ((4)))
+(-4)
+(2 3 4)))

Finite Model Generation for Isabelle/HOL – p.14/21

λ →

∀
=Isa

be
lle

β
α

HOL

DIMACS CNF

Formula must be in CNF (
∧ ∨

(¬)p)

c Example CNF format file in DIMACS format
c
p cnf 4 3
2 3 -4 0
-4 0
2 3 4 0

Most SAT solvers only support CNF format!

Finite Model Generation for Isabelle/HOL – p.15/21

λ →

∀
=Isa

be
lle

β
α

HOL

DIMACS CNF

Formula must be in CNF (
∧ ∨

(¬)p)

c Example CNF format file in DIMACS format
c
p cnf 4 3
2 3 -4 0
-4 0
2 3 4 0

Most SAT solvers only support CNF format!

Finite Model Generation for Isabelle/HOL – p.15/21

λ →

∀
=Isa

be
lle

β
α

HOL

Translation into CNF

1. Translate into NNF
¬(P ∧ Q) ≡ ¬P ∨ ¬Q

¬(P ∨ Q) ≡ ¬P ∧ ¬Q

¬¬P ≡ P

2. Translate into CNF
(P ∧ Q) ∨ R ≡ (P ∨ R) ∧ (Q ∨ R)

This translation can cause an exponential blow-up of the
formula.

Solution: Definitional CNF

(P ∧ Q) ∨ R
sat

≡ (P ∨ p) ∧ (Q ∨ p) ∧ (R ∨ ¬p)

Finite Model Generation for Isabelle/HOL – p.16/21

λ →

∀
=Isa

be
lle

β
α

HOL

Translation into CNF

1. Translate into NNF
¬(P ∧ Q) ≡ ¬P ∨ ¬Q

¬(P ∨ Q) ≡ ¬P ∧ ¬Q

¬¬P ≡ P

2. Translate into CNF
(P ∧ Q) ∨ R ≡ (P ∨ R) ∧ (Q ∨ R)

This translation can cause an exponential blow-up of the
formula.

This translation can cause an exponential blow-up of the
formula.

Solution: Definitional CNF

(P ∧ Q) ∨ R
sat

≡ (P ∨ p) ∧ (Q ∨ p) ∧ (R ∨ ¬p)

Finite Model Generation for Isabelle/HOL – p.16/21

λ →

∀
=Isa

be
lle

β
α

HOL

Translation into CNF

1. Translate into NNF
¬(P ∧ Q) ≡ ¬P ∨ ¬Q

¬(P ∨ Q) ≡ ¬P ∧ ¬Q

¬¬P ≡ P

2. Translate into CNF
(P ∧ Q) ∨ R ≡ (P ∨ R) ∧ (Q ∨ R)

This translation can cause an exponential blow-up of the
formula.

Solution: Definitional CNF

(P ∧ Q) ∨ R
sat

≡ (P ∨ p) ∧ (Q ∨ p) ∧ (R ∨ ¬p)

Finite Model Generation for Isabelle/HOL – p.16/21

λ →

∀
=Isa

be
lle

β
α

HOL

Some Optimizations

Hard-coded translation for logical constants

Only one boolean variable is used for variables of
type B

On-the-fly simplification of the boolean formula (e.g.
closed HOL formulae simply become True/False)

Finite Model Generation for Isabelle/HOL – p.17/21

λ →

∀
=Isa

be
lle

β
α

HOL

A Simple Extension: Sets

Sets are interpreted as characteristic functions.

α set ∼= α ⇒ B

x ∈ P ∼= P x

{x. P x} ∼= P

Finite Model Generation for Isabelle/HOL – p.18/21

λ →

∀
=Isa

be
lle

β
α

HOL

Soundness and Completeness

If the SAT solver is sound/complete, we have ...

Soundness: If the algorithm returns “model found”, the
given formula has a finite model.

Completeness: If the given formula has a finite model,
the algorithm will find it (given enough time).

Finite Model Generation for Isabelle/HOL – p.19/21

λ →

∀
=Isa

be
lle

β
α

HOL

refute

Parameters:

minsize: minimal size of the model

maxsize: maximal size of the model

maxvars: max. number of boolean variables

satsolver: name of the SAT solver to be used

All parameters can be set globally with refute_params.

Finite Model Generation for Isabelle/HOL – p.20/21

λ →

∀
=Isa

be
lle

β
α

HOL

Future Work

A better translation:
polynomial-time
logarithmic number of boolean variables
types encoded as terms

Support for other HOL constructs:
axioms
typedefs
inductive datatypes
inductively defined sets
recursive functions

Finite Model Generation for Isabelle/HOL – p.21/21

	Isabelle
	Finite Model Generation
	Isabelle/HOL
	The Semantics of HOL
	Overview
	1. Fixing the Size of the Model
	2. Translation into a Boolean Formula
	2. Translation into a Boolean Formula
	2. Translation into a Boolean Formula
	3. The SAT Solver
	The Internal Solver
	External Solvers
	DIMACS SAT
	DIMACS CNF
	Translation into CNF
	Some Optimizations
	A Simple Extension: Sets
	Soundness and Completeness
	refute
	Future Work

