Finite Model Generation for Isabelle/HOL

Using a SAT Solver

Tjark Weber

webertj@in.tum.de

Technische Universität München

Winterhütte, März 2004

Finite Model Generation for Isabelle/HOL - p.1/21

Isabelle

Isabelle is a generic proof assistant:

- Highly flexible
- Interactive
- Automatic proof procedures
- Advanced user interface
- Readable proofs
- Large theories of formal mathematics

Finite Model Generation

Theorem proving: from formulae to proofs Finite model generation: *from formulae to models*

Applications:

- Showing the consistency of a specification
- *Finding counterexamples to false conjectures*
- Solving open mathematical problems
- Guiding resolution-based provers

Isabelle/HOL

HOL: higher-order logic on top of polymorphic simply-typed λ -calculus

Isabelle/HOL

HOL: higher-order logic on top of polymorphic simply-typed λ -calculus

Simply-typed λ -calculus:

- **•** Types: $\tau ::= \mathbb{B} \mid \alpha \mid \beta \mid \ldots \mid \tau \Rightarrow \tau$
- Terms: $\Lambda ::= x \mid y \mid \ldots \mid \lambda x . \Lambda \mid (\Lambda \Lambda)$

• Typing rules:
$$\frac{x:\tau_1 \vdash \Lambda:\tau_2}{\lambda x.\Lambda:\tau_1 \Rightarrow \tau_2}$$
 $\frac{\Lambda_1:\tau_1 \Rightarrow \tau_2 \quad \Lambda_2:\tau_1}{(\Lambda_1 \Lambda_2):\tau_2}$

Isabelle/HOL

HOL: higher-order logic on top of polymorphic simply-typed λ -calculus

Simply-typed λ -calculus:

- **•** Types: $\tau ::= \mathbb{B} \mid \alpha \mid \beta \mid \ldots \mid \tau \Rightarrow \tau$
- Terms: $\Lambda ::= x \mid y \mid \ldots \mid \lambda x . \Lambda \mid (\Lambda \Lambda)$

• Typing rules:
$$\frac{x:\tau_1 \vdash \Lambda:\tau_2}{\lambda x.\Lambda:\tau_1 \Rightarrow \tau_2}$$
 $\frac{\Lambda_1:\tau_1 \Rightarrow \tau_2 \quad \Lambda_2:\tau_1}{(\Lambda_1 \Lambda_2):\tau_2}$

The logical constants True | False | ¬ | ∧ | ∨ | → | = | ∀ | ∃ | ∃! are definable.

The Semantics of HOL

A (finite) model for a HOL formula is given by

- (finite) sets of (first-order) individuals, and
- an interpretation of the formula's variables.

Finite model generation is a generalization of satisfiability checking, where the search tree is not necessarily binary (as in the case of SAT).

Overview

Input: HOL formula ϕ

Output: either a model for ϕ , or "no model found"

Finite Model Generation for Isabelle/HOL - p.6/21

Overview

Input: HOL formula ϕ

- 1. Fix the size of the model.
- 2. Translate ϕ into a boolean formula that is satisfiable iff ϕ has a model of the given size.
- 3. Use a SAT solver to search for a satisfying assignment.
- 4. If no assignment was found, increase the size of the model and repeat.

Output: either a model for ϕ , or "no model found"

1. Fixing the Size of the Model

Fix a positive integer for every type variable that occurs in the typing of ϕ .

Every type then has a finite size:

- $|\mathbb{B}| = 2$
- \square $|\alpha|, |\beta|, \dots$ is given by the model

Boolean formulae:

 $\varphi ::= \texttt{True} \mid \texttt{False} \mid p \mid q \mid \ldots \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi$

Boolean formulae:

 $\varphi ::= \texttt{True} \mid \texttt{False} \mid p \mid q \mid \ldots \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi$

Idea: Translate a HOL term Λ into a *tree of lists of boolean formulae*. The interpretation of the boolean variables in the tree determines the interpretation of Λ .

Boolean formulae:

 $\varphi ::= \texttt{True} \mid \texttt{False} \mid p \mid q \mid \ldots \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi$

Idea: Translate a HOL term Λ into a *tree of lists of boolean formulae*. The interpretation of the boolean variables in the tree determines the interpretation of Λ .

1. A variable *x* of type α becomes a list of boolean variables $[x_1, \ldots, x_{|\alpha|}]$ of length $|\alpha|$.

Idea: x_i is true iff x is to be interpreted as the *i*-th element of α .

Add clauses to make sure that exactly one variable x_i $(1 \le i \le |\alpha|)$ is true.

2. A variable of type $\sigma \Rightarrow \tau$ becomes a tree whose root has $|\sigma|$ children, each one being a (fresh) tree for a variable of type τ .

- 2. A variable of type $\sigma \Rightarrow \tau$ becomes a tree whose root has $|\sigma|$ children, each one being a (fresh) tree for a variable of type τ .
- 3. A λ -abstraction λx . Λ of type $\sigma \Rightarrow \tau$ becomes a tree whose root has $|\sigma|$ children, each one being a tree for Λ with x bound to a tree for the corresponding (first, second, ..., $|\sigma|$ -th) constant in σ .

- 4. An application (ST) is translated as follows:
 - (a) Pick the first formula from every leaf in the tree for T.
 - (b) Compute the conjunction of these formulae.
 - (c) Compute the "conjunction" with the first child in S.
 - (d) Repeat for every child in S (with the *corresponding* choice of formulae from T).
 - (e) Compute the "disjunction" of all children.

- 4. An application (ST) is translated as follows:
 - (a) Pick the first formula from every leaf in the tree for T.
 - (b) Compute the conjunction of these formulae.
 - (c) Compute the "conjunction" with the first child in S.
 - (d) Repeat for every child in S (with the *corresponding* choice of formulae from T).
 - (e) Compute the "disjunction" of all children.

Example: $S :: \alpha \Rightarrow \beta$, $T :: \alpha$, $|\alpha| = 2$, $|\beta| = 3$

 $S = [[s_1^1, s_2^1, s_3^1], [s_1^2, s_2^2, s_3^2]]$ $T = [t_1, t_2]$

- 4. An application (ST) is translated as follows:
 - (a) Pick the first formula from every leaf in the tree for T.
 - (b) Compute the conjunction of these formulae.
 - (c) Compute the "conjunction" with the first child in S.
 - (d) Repeat for every child in S (with the *corresponding* choice of formulae from T).
 - (e) Compute the "disjunction" of all children.

Example: $S :: \alpha \Rightarrow \beta, T :: \alpha, |\alpha| = 2, |\beta| = 3$ $S = [[s_1^1, s_2^1, s_3^1], [s_1^2, s_2^2, s_3^2]]$ $T = [t_1, t_2]$

 $, s_2^1 \wedge t_1$

 $, s_3^1 \wedge t1$

- 4. An application (ST) is translated as follows:
 - (a) Pick the first formula from every leaf in the tree for T.
 - (b) Compute the conjunction of these formulae.
 - (c) Compute the "conjunction" with the first child in S.
 - (d) Repeat for every child in S (with the *corresponding* choice of formulae from T).
 - (e) Compute the "disjunction" of all children.

Example: $S :: \alpha \Rightarrow \beta, T :: \alpha, |\alpha| = 2, |\beta| = 3$ $S = [[s_1^1, s_2^1, s_3^1], [s_1^2, s_2^2, s_3^2]]$ $T = [t_1, t_2]$ $(ST) = [s_1^1 \land t_1 \lor s_1^2 \land t_2, s_2^1 \land t_1 \lor s_2^2 \land t_2, s_3^1 \land t_1 \lor s_3^2 \land t_2]$

3. The SAT Solver

Both *internal* and *external* SAT solvers are supported.

3. The SAT Solver

Both *internal* and *external* SAT solvers are supported.

Pros of an internal solver:

- Easy installation
- Compatibility
- Fast enough for simple examples

3. The SAT Solver

Both *internal* and *external* SAT solvers are supported.

Pros of an internal solver:

- Easy installation
- Compatibility
- Fast enough for simple examples

Pros of an external solver:

- Efficiency
- Advances in SAT solver technology are "for free"

The Internal Solver

Based on the *DPLL* procedure (Davis-Putnam-Logemann-Loveland, 1962)

dpll(θ :partial assignment, ϕ :formula) { (θ', ϕ') := simplify_and_deduce (θ, ϕ) ; if ϕ' =True then return θ' else if ϕ' =False then return UNSATISFIABLE else { $x := pick_fresh_variable(\theta', \phi');$ result := dpll($\theta'[x \mapsto \texttt{False}], \phi'$); if *result*=UNSATISFIABLE then return dpll($\theta'[x \mapsto \text{True}], \phi'$) else return result

External Solvers

Interface:

- Input/output: via text files
- Execution: via a system call

Supported input formats:

- DIMACS SAT
- DIMACS CNF

DIMACS SAT

Arbitrary boolean formulae allowed

```
c Example SAT format file in DIMACS format
c
p sat 4
(*(+( 2 3- (( 4 ) ) )
+( -4 )
+( 2 3 4 ) ))
```


DIMACS CNF

● Formula must be in CNF ($\land \lor (\neg)p$)

```
c Example CNF format file in DIMACS format
c
p cnf 4 3
2 3 -4 0
-4 0
2 3 4 0
```


DIMACS CNF

• Formula must be in CNF ($\land \lor (\neg)p$)

```
c Example CNF format file in DIMACS format
c
p cnf 4 3
2 3 -4 0
-4 0
2 3 4 0
```

Most SAT solvers *only* support CNF format!

Translation into CNF

- 1. Translate into NNF
- 2. Translate into CNF

 $(P \land Q) \lor R \equiv (P \lor R) \land (Q \lor R)$

Translation into CNF

- 1. Translate into NNF
 - $\ \, {} {\scriptstyle \bigcirc} \ \, {\scriptstyle \frown} (P \wedge Q) \equiv {\scriptstyle \neg} P \vee {\scriptstyle \neg} Q$
- 2. Translate into CNF
 - $(P \land Q) \lor R \equiv (P \lor R) \land (Q \lor R)$

This translation can cause an *exponential blow-up* of the formula.

Translation into CNF

- 1. Translate into NNF
- 2. Translate into CNF
 - $(P \land Q) \lor R \equiv (P \lor R) \land (Q \lor R)$

This translation can cause an exponential blow-up of the formula.

Solution: Definitional CNF

 $(P \land Q) \lor R \stackrel{sat}{\equiv} (P \lor p) \land (Q \lor p) \land (R \lor \neg p)$

Some Optimizations

- Hard-coded translation for logical constants
- Only one boolean variable is used for variables of type \mathbb{B}
- On-the-fly simplification of the boolean formula (e.g. closed HOL formulae simply become True/False)

A Simple Extension: Sets

Sets are interpreted as characteristic functions.

- $\bullet \ \alpha \ \mathtt{set} \cong \alpha \Rightarrow \mathbb{B}$
- $x \in P \cong P x$
- $I \{x. P x\} \cong P$

Soundness and Completeness

If the SAT solver is sound/complete, we have ...

- Soundness: If the algorithm returns "model found", the given formula has a finite model.
- Completeness: If the given formula has a finite model, the algorithm will find it (given enough time).

refute

Parameters:

- minsize: minimal size of the model
- maxsize: maximal size of the model
- maxvars: max. number of boolean variables
- satsolver: name of the SAT solver to be used

All parameters can be set globally with refute_params.

Future Work

- A better translation:
 - polynomial-time
 - Iogarithmic number of boolean variables
 - types encoded as terms
- Support for other HOL constructs:
 - axioms
 - typedefs
 - inductive datatypes
 - inductively defined sets
 - recursive functions

