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Finite Model Generation

Theorem proving: from formulae to proofs

Finite model generation: from formulae to models

Applications:

Showing the consistency of a specification

Finding counterexamples to false conjectures

Solving open mathematical problems

Guiding resolution-based provers
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The Semantics of HOL

A finite model for a HOL formula is given by

a finite set of (first-order) individuals and

an interpretation of the formula’s logical constants and
variables.

Finite model generation is a generalization of satisfiability
checking, where the search tree is not necessarily binary
(as in the case of SAT).
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Overview

Input: HOL formula φ

1. Fix the size of the model.

2. Translate φ into a boolean formula that is satisfiable iff φ

has a model of the given size.

3. Use a SAT solver to search for a satisfying assignment.

4. If no assignment was found, increase the size of the
model and repeat.

Output: either a model for φ, or “no model found”
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Input: A Fragment of HOL

Simply-typed λ-calculus:

Types: τ ::= B | α | β | . . . | τ ⇒ τ

Terms: Λ ::= x | y | . . . | λx.Λ | (Λ Λ)

The logical constants
True | False | ¬ | ∧ | ∨ | → | = | ∀ | ∃ | ∃!

are definable (see file “HOL.thy”).

Not allowed (yet):

Other type constructors

Other constants
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1. Fixing the Size of the Model

A typing may contain several type variables.

HOL types are assumed to be non-empty (e.g.
(∀x. P x) → (∃x. P x) is a theorem).

Fix a positive integer k. Consider all possible partitions of k

into n parts, where n is the number of type variables that
occur in the typing of φ.

Example: k = 3, type variables α and β (i.e. n = 2)

1. |α| = 1, |β| = 2

2. |α| = 2, |β| = 1
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1. Fixing the Size of the Model

Every type now has a finite size:

|B| = 2

|α|, |β|, . . . is given by the model

|σ ⇒ τ | = |τ ||σ|
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2. Translation into a Boolean Formula

Boolean formulae:
ϕ ::= True | False | p | q | . . . | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

Idea: Translate a HOL term Λ into a tree of (lists of) boolean
formulae. The interpretation of the boolean variables in the
tree determines the interpretation of Λ.

1. A variable x of type α becomes a list of boolean
variables [x1, . . . , x|α|] of length |α|.

Idea: xi is true iff x is to be interpreted as the i-th
element of α.

Add clauses to make sure that exactly one variable xi

(1 ≤ i ≤ |α|) is true.
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2. Translation into a Boolean Formula

2. A variable of type σ ⇒ τ becomes a tree whose root
has |σ| children, each one being a (fresh) tree for τ .

2. A variable of type σ ⇒ τ becomes a tree whose root
has |σ| children, each one being a (fresh) tree for τ .

3. A λ-abstraction λx.Λ of type σ ⇒ τ becomes a tree
whose root has |σ| children, each one being a tree for Λ
with x replaced by a tree for the corresponding (first,
second, . . . , |σ|-th) constant in σ.
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2. Translation into a Boolean Formula

4. An application (S T ) is translated as follows:
(a) Pick the first formula from every leaf in the tree for T .
(b) Compute the conjunction of these formulae.
(c) Compute the “conjunction” with the first child in S.
(d) Repeat for every child in S (with the corresponding

choice of formulae from T ).
(e) Compute the “disjunction” of all children.

Example: S :: α ⇒ β, T :: α, |α| = 2, |β| = 3
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3. Using an External SAT Solver

Pros of an external tool:

Greatly reduces development time

Advances in SAT solver technology are “for free”

Pros and cons of an external tool:

Greatly reduces development time

Advances in SAT solver technology are “for free”

Legal issues (copyright)

Installation

Compatibility
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3. Using an External SAT Solver

Interface:

Input/output: via text files

Execution: via a system call

Supported input formats:

DIMACS SAT

DIMACS CNF
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DIMACS SAT

Arbitrary boolean formulae allowed

c Example SAT format file in DIMACS format
c
p sat 4
(*(+( 2 3- (( 4 ) ) )
+( -4 )
+( 2 3 4 ) ))
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DIMACS CNF

Formula must be in CNF (
∧ ∨

(¬)p)

c Example CNF format file in DIMACS format
c
p cnf 4 3
2 3 -4 0
-4 0
2 3 4 0

Most SAT solvers only support CNF format!
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Translation into CNF

1. Translate into NNF
¬(P ∧ Q) ≡ ¬P ∨ ¬Q

¬(P ∨ Q) ≡ ¬P ∧ ¬Q

¬¬P ≡ P

2. Translate into CNF
(P ∧ Q) ∨ R ≡ (P ∨ R) ∧ (Q ∨ R)

This translation can cause an exponential blow-up of the
formula.

Solution: Definitional CNF

(P ∧ Q) ∨ R
sat
≡ (P ∨ p) ∧ (Q ∨ p) ∧ (R ∨ ¬p)
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3. Using an External SAT Solver

Supported output format:

A line containing a message of success (e.g.
“Instance satisfiable”), followed by

the satisfying assignment , given by a list of integers:
i means “variable i is true”
-i means “variable i is false”

Example:
Z-Chaff Version: ZChaff 2003.11.04

Solving sample.cnf ......

3 Clauses are true, Verify Solution successful. Instance satisfiable

1 2 3 -4

Max Decision Level 0

...
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Some Optimizations

Hard-coded translation for logical constants

Only one boolean variable is used for variables of
type B

On-the-fly simplification of the boolean formula (e.g.
closed HOL formulae simply become True/False)
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Soundness and Completeness

Soundness: If the algorithm returns “model found”, the
given formula has a finite model.

Completeness: If the given formula has a finite model,
the algorithm will find it (given enough time).

Caveat : We have soundness/completeness only if the SAT
solver is sound/complete!
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A Simple Extension: Sets

Sets are interpreted as characteristic functions.

α set ∼= α ⇒ B

x ∈ P ∼= P x

{x. P x} ∼= P
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Inductive Datatypes

Problem: IDTs may require an infinite model

Problem:
IDTs may require an infinite model

Idea: restrict the constructor depth to obtain finite
approximations of an IDT

E.g. nati = Zero | Suc Zero | ... | Suci−1 Zero

Models may be spurious . . . unless IDTs only occur
positively

How to interpret IDT constructors of type τ ⇒ τ?

As partial functions τ i p
=⇒ τ i?

Or as (total) functions τ i−1 ⇒ τ i?

Non-recursive DTs (e.g. α option) could be treated
separately.
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refute

Parameters:

minsize: minimal size of the model

maxsize: maximal size of the model (0 ∼= ∞)

minsize: minimal size of the model

maxsize: maximal size of the model (0 ∼= ∞)

maxvars: max. number of boolean variables (0 ∼= ∞)

satfile: name of the SAT solver’s input file

satformat: “sat”, “cnf”, or “defcnf”

resultfile: name of the SAT solver’s output file

success: success message returned by the SAT solver

command: system command to execute the SAT solver

All parameters can be set globally with refute_params.
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Future Work

Theory signatures – to allow user-defined constants
and types

Lazy data structures – to reduce memory requirements

Types as terms – to have the SAT solver partition the
universe

Binary arithmetic – to reduce the number of boolean
variables

A (simple) built-in SAT solver – to simplify installation

An external model generator – better performance?
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