
Finite Model Generation for
Isabelle/HOL

Using a SAT Solver

Tjark Weber

webertj@in.tum.de

Technische Universität München

Club2, 16.1.2004

Finite Model Generation for Isabelle/HOL–Club2 – p.1/22

Finite Model Generation

Theorem proving: from formulae to proofs

Finite model generation: from formulae to models

Applications:

Showing the consistency of a specification

Finding counterexamples to false conjectures

Solving open mathematical problems

Guiding resolution-based provers

Finite Model Generation for Isabelle/HOL–Club2 – p.2/22

The Semantics of HOL

A finite model for a HOL formula is given by

a finite set of (first-order) individuals and

an interpretation of the formula’s logical constants and
variables.

Finite model generation is a generalization of satisfiability
checking, where the search tree is not necessarily binary
(as in the case of SAT).

Finite Model Generation for Isabelle/HOL–Club2 – p.3/22

Overview

Input: HOL formula φ

1. Fix the size of the model.

2. Translate φ into a boolean formula that is satisfiable iff φ

has a model of the given size.

3. Use a SAT solver to search for a satisfying assignment.

4. If no assignment was found, increase the size of the
model and repeat.

Output: either a model for φ, or “no model found”

Finite Model Generation for Isabelle/HOL–Club2 – p.4/22

Overview

Input: HOL formula φ

1. Fix the size of the model.

2. Translate φ into a boolean formula that is satisfiable iff φ

has a model of the given size.

3. Use a SAT solver to search for a satisfying assignment.

4. If no assignment was found, increase the size of the
model and repeat.

Output: either a model for φ, or “no model found”

Finite Model Generation for Isabelle/HOL–Club2 – p.4/22

Input: A Fragment of HOL

Simply-typed λ-calculus:

Types: τ ::= B | α | β | . . . | τ ⇒ τ

Terms: Λ ::= x | y | . . . | λx.Λ | (Λ Λ)

The logical constants
True | False | ¬ | ∧ | ∨ | → | = | ∀ | ∃ | ∃!

are definable (see file “HOL.thy”).

Not allowed (yet):

Other type constructors

Other constants

Finite Model Generation for Isabelle/HOL–Club2 – p.5/22

Input: A Fragment of HOL

Simply-typed λ-calculus:

Types: τ ::= B | α | β | . . . | τ ⇒ τ

Terms: Λ ::= x | y | . . . | λx.Λ | (Λ Λ)

The logical constants
True | False | ¬ | ∧ | ∨ | → | = | ∀ | ∃ | ∃!

are definable (see file “HOL.thy”).

Not allowed (yet):

Other type constructors

Other constants

Finite Model Generation for Isabelle/HOL–Club2 – p.5/22

Input: A Fragment of HOL

Simply-typed λ-calculus:

Types: τ ::= B | α | β | . . . | τ ⇒ τ

Terms: Λ ::= x | y | . . . | λx.Λ | (Λ Λ)

The logical constants
True | False | ¬ | ∧ | ∨ | → | = | ∀ | ∃ | ∃!

are definable (see file “HOL.thy”).

Not allowed (yet):

Other type constructors

Other constants

Finite Model Generation for Isabelle/HOL–Club2 – p.5/22

1. Fixing the Size of the Model

A typing may contain several type variables.

HOL types are assumed to be non-empty (e.g.
(∀x. P x) → (∃x. P x) is a theorem).

Fix a positive integer k. Consider all possible partitions of k

into n parts, where n is the number of type variables that
occur in the typing of φ.

Example: k = 3, type variables α and β (i.e. n = 2)

1. |α| = 1, |β| = 2

2. |α| = 2, |β| = 1

Finite Model Generation for Isabelle/HOL–Club2 – p.6/22

1. Fixing the Size of the Model

A typing may contain several type variables.

HOL types are assumed to be non-empty (e.g.
(∀x. P x) → (∃x. P x) is a theorem).

Fix a positive integer k. Consider all possible partitions of k

into n parts, where n is the number of type variables that
occur in the typing of φ.

Example: k = 3, type variables α and β (i.e. n = 2)

1. |α| = 1, |β| = 2

2. |α| = 2, |β| = 1

Finite Model Generation for Isabelle/HOL–Club2 – p.6/22

1. Fixing the Size of the Model

Every type now has a finite size:

|B| = 2

|α|, |β|, . . . is given by the model

|σ ⇒ τ | = |τ ||σ|

Finite Model Generation for Isabelle/HOL–Club2 – p.7/22

2. Translation into a Boolean Formula

Boolean formulae:
ϕ ::= True | False | p | q | . . . | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

Idea: Translate a HOL term Λ into a tree of (lists of) boolean
formulae. The interpretation of the boolean variables in the
tree determines the interpretation of Λ.

1. A variable x of type α becomes a list of boolean
variables [x1, . . . , x|α|] of length |α|.

Idea: xi is true iff x is to be interpreted as the i-th
element of α.

Add clauses to make sure that exactly one variable xi

(1 ≤ i ≤ |α|) is true.

Finite Model Generation for Isabelle/HOL–Club2 – p.8/22

2. Translation into a Boolean Formula

Boolean formulae:
ϕ ::= True | False | p | q | . . . | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

Idea: Translate a HOL term Λ into a tree of (lists of) boolean
formulae. The interpretation of the boolean variables in the
tree determines the interpretation of Λ.

1. A variable x of type α becomes a list of boolean
variables [x1, . . . , x|α|] of length |α|.

Idea: xi is true iff x is to be interpreted as the i-th
element of α.

Add clauses to make sure that exactly one variable xi

(1 ≤ i ≤ |α|) is true.

Finite Model Generation for Isabelle/HOL–Club2 – p.8/22

2. Translation into a Boolean Formula

Boolean formulae:
ϕ ::= True | False | p | q | . . . | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

Idea: Translate a HOL term Λ into a tree of (lists of) boolean
formulae. The interpretation of the boolean variables in the
tree determines the interpretation of Λ.

1. A variable x of type α becomes a list of boolean
variables [x1, . . . , x|α|] of length |α|.

Idea: xi is true iff x is to be interpreted as the i-th
element of α.

Add clauses to make sure that exactly one variable xi

(1 ≤ i ≤ |α|) is true.

Finite Model Generation for Isabelle/HOL–Club2 – p.8/22

2. Translation into a Boolean Formula

2. A variable of type σ ⇒ τ becomes a tree whose root
has |σ| children, each one being a (fresh) tree for τ .

2. A variable of type σ ⇒ τ becomes a tree whose root
has |σ| children, each one being a (fresh) tree for τ .

3. A λ-abstraction λx.Λ of type σ ⇒ τ becomes a tree
whose root has |σ| children, each one being a tree for Λ
with x replaced by a tree for the corresponding (first,
second, . . . , |σ|-th) constant in σ.

Finite Model Generation for Isabelle/HOL–Club2 – p.9/22

2. Translation into a Boolean Formula

2. A variable of type σ ⇒ τ becomes a tree whose root
has |σ| children, each one being a (fresh) tree for τ .

3. A λ-abstraction λx.Λ of type σ ⇒ τ becomes a tree
whose root has |σ| children, each one being a tree for Λ
with x replaced by a tree for the corresponding (first,
second, . . . , |σ|-th) constant in σ.

Finite Model Generation for Isabelle/HOL–Club2 – p.9/22

2. Translation into a Boolean Formula

4. An application (S T) is translated as follows:
(a) Pick the first formula from every leaf in the tree for T .
(b) Compute the conjunction of these formulae.
(c) Compute the “conjunction” with the first child in S.
(d) Repeat for every child in S (with the corresponding

choice of formulae from T).
(e) Compute the “disjunction” of all children.

Example: S :: α ⇒ β, T :: α, |α| = 2, |β| = 3

Finite Model Generation for Isabelle/HOL–Club2 – p.10/22

2. Translation into a Boolean Formula

4. An application (S T) is translated as follows:
(a) Pick the first formula from every leaf in the tree for T .
(b) Compute the conjunction of these formulae.
(c) Compute the “conjunction” with the first child in S.
(d) Repeat for every child in S (with the corresponding

choice of formulae from T).
(e) Compute the “disjunction” of all children.

Example: S :: α ⇒ β, T :: α, |α| = 2, |β| = 3

S = [[s1
1
, s1

2
, s1

3
], [s2

1
, s2

2
, s2

3
]]

T = [t1, t2]

Finite Model Generation for Isabelle/HOL–Club2 – p.10/22

2. Translation into a Boolean Formula

4. An application (S T) is translated as follows:
(a) Pick the first formula from every leaf in the tree for T .
(b) Compute the conjunction of these formulae.
(c) Compute the “conjunction” with the first child in S.
(d) Repeat for every child in S (with the corresponding

choice of formulae from T).
(e) Compute the “disjunction” of all children.

Example: S :: α ⇒ β, T :: α, |α| = 2, |β| = 3

S = [[s1
1
, s1

2
, s1

3
], [s2

1
, s2

2
, s2

3
]]

T = [t1, t2]

(S T) = [s1
1
∧ t1 , s1

2
∧ t1 , s1

3
∧ t1]

Finite Model Generation for Isabelle/HOL–Club2 – p.10/22

2. Translation into a Boolean Formula

4. An application (S T) is translated as follows:
(a) Pick the first formula from every leaf in the tree for T .
(b) Compute the conjunction of these formulae.
(c) Compute the “conjunction” with the first child in S.
(d) Repeat for every child in S (with the corresponding

choice of formulae from T).
(e) Compute the “disjunction” of all children.

Example: S :: α ⇒ β, T :: α, |α| = 2, |β| = 3

S = [[s1
1
, s1

2
, s1

3
], [s2

1
, s2

2
, s2

3
]]

T = [t1, t2]

(S T) = [s1
1
∧ t1 ∨ s2

1
∧ t2, s

1
2
∧ t1 ∨ s2

2
∧ t2, s

1
3
∧ t1 ∨ s2

3
∧ t2]

Finite Model Generation for Isabelle/HOL–Club2 – p.10/22

3. Using an External SAT Solver

Pros of an external tool:

Greatly reduces development time

Advances in SAT solver technology are “for free”

Pros and cons of an external tool:

Greatly reduces development time

Advances in SAT solver technology are “for free”

Legal issues (copyright)

Installation

Compatibility

Finite Model Generation for Isabelle/HOL–Club2 – p.11/22

3. Using an External SAT Solver

Pros and cons of an external tool:

Greatly reduces development time

Advances in SAT solver technology are “for free”

Legal issues (copyright)

Installation

Compatibility

Finite Model Generation for Isabelle/HOL–Club2 – p.11/22

3. Using an External SAT Solver

Interface:

Input/output: via text files

Execution: via a system call

Supported input formats:

DIMACS SAT

DIMACS CNF

Finite Model Generation for Isabelle/HOL–Club2 – p.12/22

DIMACS SAT

Arbitrary boolean formulae allowed

c Example SAT format file in DIMACS format
c
p sat 4
(*(+(2 3- ((4)))
+(-4)
+(2 3 4)))

Finite Model Generation for Isabelle/HOL–Club2 – p.13/22

DIMACS CNF

Formula must be in CNF (
∧ ∨

(¬)p)

c Example CNF format file in DIMACS format
c
p cnf 4 3
2 3 -4 0
-4 0
2 3 4 0

Most SAT solvers only support CNF format!

Finite Model Generation for Isabelle/HOL–Club2 – p.14/22

DIMACS CNF

Formula must be in CNF (
∧ ∨

(¬)p)

c Example CNF format file in DIMACS format
c
p cnf 4 3
2 3 -4 0
-4 0
2 3 4 0

Most SAT solvers only support CNF format!

Finite Model Generation for Isabelle/HOL–Club2 – p.14/22

Translation into CNF

1. Translate into NNF
¬(P ∧ Q) ≡ ¬P ∨ ¬Q

¬(P ∨ Q) ≡ ¬P ∧ ¬Q

¬¬P ≡ P

2. Translate into CNF
(P ∧ Q) ∨ R ≡ (P ∨ R) ∧ (Q ∨ R)

This translation can cause an exponential blow-up of the
formula.

Solution: Definitional CNF

(P ∧ Q) ∨ R
sat
≡ (P ∨ p) ∧ (Q ∨ p) ∧ (R ∨ ¬p)

Finite Model Generation for Isabelle/HOL–Club2 – p.15/22

Translation into CNF

1. Translate into NNF
¬(P ∧ Q) ≡ ¬P ∨ ¬Q

¬(P ∨ Q) ≡ ¬P ∧ ¬Q

¬¬P ≡ P

2. Translate into CNF
(P ∧ Q) ∨ R ≡ (P ∨ R) ∧ (Q ∨ R)

This translation can cause an exponential blow-up of the
formula.

This translation can cause an exponential blow-up of the
formula.

Solution: Definitional CNF

(P ∧ Q) ∨ R
sat
≡ (P ∨ p) ∧ (Q ∨ p) ∧ (R ∨ ¬p)

Finite Model Generation for Isabelle/HOL–Club2 – p.15/22

Translation into CNF

1. Translate into NNF
¬(P ∧ Q) ≡ ¬P ∨ ¬Q

¬(P ∨ Q) ≡ ¬P ∧ ¬Q

¬¬P ≡ P

2. Translate into CNF
(P ∧ Q) ∨ R ≡ (P ∨ R) ∧ (Q ∨ R)

This translation can cause an exponential blow-up of the
formula.

Solution: Definitional CNF

(P ∧ Q) ∨ R
sat
≡ (P ∨ p) ∧ (Q ∨ p) ∧ (R ∨ ¬p)

Finite Model Generation for Isabelle/HOL–Club2 – p.15/22

3. Using an External SAT Solver

Supported output format:

A line containing a message of success (e.g.
“Instance satisfiable”), followed by

the satisfying assignment , given by a list of integers:
i means “variable i is true”
-i means “variable i is false”

Example:
Z-Chaff Version: ZChaff 2003.11.04

Solving sample.cnf

3 Clauses are true, Verify Solution successful. Instance satisfiable

1 2 3 -4

Max Decision Level 0

...

Finite Model Generation for Isabelle/HOL–Club2 – p.16/22

3. Using an External SAT Solver

Supported output format:

A line containing a message of success (e.g.
“Instance satisfiable”), followed by

the satisfying assignment , given by a list of integers:
i means “variable i is true”
-i means “variable i is false”

Example:
Z-Chaff Version: ZChaff 2003.11.04

Solving sample.cnf

3 Clauses are true, Verify Solution successful. Instance satisfiable

1 2 3 -4

Max Decision Level 0

...

Finite Model Generation for Isabelle/HOL–Club2 – p.16/22

Some Optimizations

Hard-coded translation for logical constants

Only one boolean variable is used for variables of
type B

On-the-fly simplification of the boolean formula (e.g.
closed HOL formulae simply become True/False)

Finite Model Generation for Isabelle/HOL–Club2 – p.17/22

Soundness and Completeness

Soundness: If the algorithm returns “model found”, the
given formula has a finite model.

Completeness: If the given formula has a finite model,
the algorithm will find it (given enough time).

Caveat : We have soundness/completeness only if the SAT
solver is sound/complete!

Finite Model Generation for Isabelle/HOL–Club2 – p.18/22

Soundness and Completeness

Soundness: If the algorithm returns “model found”, the
given formula has a finite model.

Completeness: If the given formula has a finite model,
the algorithm will find it (given enough time).

Caveat : We have soundness/completeness only if the SAT
solver is sound/complete!

Finite Model Generation for Isabelle/HOL–Club2 – p.18/22

A Simple Extension: Sets

Sets are interpreted as characteristic functions.

α set ∼= α ⇒ B

x ∈ P ∼= P x

{x. P x} ∼= P

Finite Model Generation for Isabelle/HOL–Club2 – p.19/22

Inductive Datatypes

Problem: IDTs may require an infinite model

Problem:
IDTs may require an infinite model

Idea: restrict the constructor depth to obtain finite
approximations of an IDT

E.g. nati = Zero | Suc Zero | ... | Suci−1 Zero

Models may be spurious . . . unless IDTs only occur
positively

How to interpret IDT constructors of type τ ⇒ τ?

As partial functions τ i p
=⇒ τ i?

Or as (total) functions τ i−1 ⇒ τ i?

Non-recursive DTs (e.g. α option) could be treated
separately.

Finite Model Generation for Isabelle/HOL–Club2 – p.20/22

Inductive Datatypes

Problem: IDTs may require an infinite model

Idea: restrict the constructor depth to obtain finite
approximations of an IDT

E.g. nati = Zero | Suc Zero | ... | Suci−1 Zero

Models may be spurious . . . unless IDTs only occur
positively

How to interpret IDT constructors of type τ ⇒ τ?

As partial functions τ i p
=⇒ τ i?

Or as (total) functions τ i−1 ⇒ τ i?

Non-recursive DTs (e.g. α option) could be treated
separately.

Finite Model Generation for Isabelle/HOL–Club2 – p.20/22

Inductive Datatypes

Problem: IDTs may require an infinite model

Idea: restrict the constructor depth to obtain finite
approximations of an IDT

E.g. nati = Zero | Suc Zero | ... | Suci−1 Zero

Models may be spurious

Models may be spurious . . . unless IDTs only occur
positively

How to interpret IDT constructors of type τ ⇒ τ?

As partial functions τ i p
=⇒ τ i?

Or as (total) functions τ i−1 ⇒ τ i?

Non-recursive DTs (e.g. α option) could be treated
separately.

Finite Model Generation for Isabelle/HOL–Club2 – p.20/22

Inductive Datatypes

Problem: IDTs may require an infinite model

Idea: restrict the constructor depth to obtain finite
approximations of an IDT

E.g. nati = Zero | Suc Zero | ... | Suci−1 Zero

Models may be spurious . . . unless IDTs only occur
positively

Models may be spurious . . . unless IDTs only occur
positively

How to interpret IDT constructors of type τ ⇒ τ?

As partial functions τ i p
=⇒ τ i?

Or as (total) functions τ i−1 ⇒ τ i?

Non-recursive DTs (e.g. α option) could be treated
separately.

Finite Model Generation for Isabelle/HOL–Club2 – p.20/22

Inductive Datatypes

Problem: IDTs may require an infinite model

Idea: restrict the constructor depth to obtain finite
approximations of an IDT

E.g. nati = Zero | Suc Zero | ... | Suci−1 Zero

Models may be spurious . . . unless IDTs only occur
positively

How to interpret IDT constructors of type τ ⇒ τ?

Models may be spurious . . . unless IDTs only occur
positively

How to interpret IDT constructors of type τ ⇒ τ?

As partial functions τ i p
=⇒ τ i?

Or as (total) functions τ i−1 ⇒ τ i?

Non-recursive DTs (e.g. α option) could be treated
separately.

Finite Model Generation for Isabelle/HOL–Club2 – p.20/22

Inductive Datatypes

Problem: IDTs may require an infinite model

Idea: restrict the constructor depth to obtain finite
approximations of an IDT

E.g. nati = Zero | Suc Zero | ... | Suci−1 Zero

Models may be spurious . . . unless IDTs only occur
positively

How to interpret IDT constructors of type τ ⇒ τ?

As partial functions τ i p
=⇒ τ i?

Models may be spurious . . . unless IDTs only occur
positively

How to interpret IDT constructors of type τ ⇒ τ?

As partial functions τ i p
=⇒ τ i?

Or as (total) functions τ i−1 ⇒ τ i?

Non-recursive DTs (e.g. α option) could be treated
separately.

Finite Model Generation for Isabelle/HOL–Club2 – p.20/22

Inductive Datatypes

Problem: IDTs may require an infinite model

Idea: restrict the constructor depth to obtain finite
approximations of an IDT

E.g. nati = Zero | Suc Zero | ... | Suci−1 Zero

Models may be spurious . . . unless IDTs only occur
positively

How to interpret IDT constructors of type τ ⇒ τ?

As partial functions τ i p
=⇒ τ i?

Or as (total) functions τ i−1 ⇒ τ i?

Models may be spurious . . . unless IDTs only occur
positively

How to interpret IDT constructors of type τ ⇒ τ?

As partial functions τ i p
=⇒ τ i?

Or as (total) functions τ i−1 ⇒ τ i?

Non-recursive DTs (e.g. α option) could be treated
separately.

Finite Model Generation for Isabelle/HOL–Club2 – p.20/22

Inductive Datatypes

Problem: IDTs may require an infinite model

Idea: restrict the constructor depth to obtain finite
approximations of an IDT

E.g. nati = Zero | Suc Zero | ... | Suci−1 Zero

Models may be spurious . . . unless IDTs only occur
positively

How to interpret IDT constructors of type τ ⇒ τ?

As partial functions τ i p
=⇒ τ i?

Or as (total) functions τ i−1 ⇒ τ i?

Non-recursive DTs (e.g. α option) could be treated
separately.

Finite Model Generation for Isabelle/HOL–Club2 – p.20/22

refute

Parameters:

minsize: minimal size of the model

maxsize: maximal size of the model (0 ∼= ∞)

minsize: minimal size of the model

maxsize: maximal size of the model (0 ∼= ∞)

maxvars: max. number of boolean variables (0 ∼= ∞)

satfile: name of the SAT solver’s input file

satformat: “sat”, “cnf”, or “defcnf”

resultfile: name of the SAT solver’s output file

success: success message returned by the SAT solver

command: system command to execute the SAT solver

All parameters can be set globally with refute_params.

Finite Model Generation for Isabelle/HOL–Club2 – p.21/22

refute

Parameters:

minsize: minimal size of the model

maxsize: maximal size of the model (0 ∼= ∞)

maxvars: max. number of boolean variables (0 ∼= ∞)

minsize: minimal size of the model

maxsize: maximal size of the model (0 ∼= ∞)

maxvars: max. number of boolean variables (0 ∼= ∞)

satfile: name of the SAT solver’s input file

satformat: “sat”, “cnf”, or “defcnf”

resultfile: name of the SAT solver’s output file

success: success message returned by the SAT solver

command: system command to execute the SAT solver

All parameters can be set globally with refute_params.

Finite Model Generation for Isabelle/HOL–Club2 – p.21/22

refute

Parameters:

minsize: minimal size of the model

maxsize: maximal size of the model (0 ∼= ∞)

maxvars: max. number of boolean variables (0 ∼= ∞)

satfile: name of the SAT solver’s input file

satformat: “sat”, “cnf”, or “defcnf”

minsize: minimal size of the model

maxsize: maximal size of the model (0 ∼= ∞)

maxvars: max. number of boolean variables (0 ∼= ∞)

satfile: name of the SAT solver’s input file

satformat: “sat”, “cnf”, or “defcnf”

resultfile: name of the SAT solver’s output file

success: success message returned by the SAT solver

command: system command to execute the SAT solver

All parameters can be set globally with refute_params.

Finite Model Generation for Isabelle/HOL–Club2 – p.21/22

refute

Parameters:

minsize: minimal size of the model

maxsize: maximal size of the model (0 ∼= ∞)

maxvars: max. number of boolean variables (0 ∼= ∞)

satfile: name of the SAT solver’s input file

satformat: “sat”, “cnf”, or “defcnf”

resultfile: name of the SAT solver’s output file

success: success message returned by the SAT solver

minsize: minimal size of the model

maxsize: maximal size of the model (0 ∼= ∞)

maxvars: max. number of boolean variables (0 ∼= ∞)

satfile: name of the SAT solver’s input file

satformat: “sat”, “cnf”, or “defcnf”

resultfile: name of the SAT solver’s output file

success: success message returned by the SAT solver

command: system command to execute the SAT solver

All parameters can be set globally with refute_params.

Finite Model Generation for Isabelle/HOL–Club2 – p.21/22

refute

Parameters:

minsize: minimal size of the model

maxsize: maximal size of the model (0 ∼= ∞)

maxvars: max. number of boolean variables (0 ∼= ∞)

satfile: name of the SAT solver’s input file

satformat: “sat”, “cnf”, or “defcnf”

resultfile: name of the SAT solver’s output file

success: success message returned by the SAT solver

command: system command to execute the SAT solver

All parameters can be set globally with refute_params.

Finite Model Generation for Isabelle/HOL–Club2 – p.21/22

refute

Parameters:

minsize: minimal size of the model

maxsize: maximal size of the model (0 ∼= ∞)

maxvars: max. number of boolean variables (0 ∼= ∞)

satfile: name of the SAT solver’s input file

satformat: “sat”, “cnf”, or “defcnf”

resultfile: name of the SAT solver’s output file

success: success message returned by the SAT solver

command: system command to execute the SAT solver

All parameters can be set globally with refute_params.

Finite Model Generation for Isabelle/HOL–Club2 – p.21/22

Future Work

Theory signatures – to allow user-defined constants
and types

Lazy data structures – to reduce memory requirements

Types as terms – to have the SAT solver partition the
universe

Binary arithmetic – to reduce the number of boolean
variables

A (simple) built-in SAT solver – to simplify installation

An external model generator – better performance?

Finite Model Generation for Isabelle/HOL–Club2 – p.22/22

	Finite Model Generation
	The Semantics of HOL
	Overview
	Input: A Fragment of HOL
	1. Fixing the Size of the Model
	1. Fixing the Size of the Model
	2. Translation into a Boolean Formula
	2. Translation into a Boolean Formula
	2. Translation into a Boolean Formula
	3. Using an External SAT Solver
	3. Using an External SAT Solver
	DIMACS SAT
	DIMACS CNF
	Translation into CNF
	3. Using an External SAT Solver
	Some Optimizations
	Soundness and Completeness
	A Simple Extension: Sets
	Inductive Datatypes
	refute
	Future Work

