
λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
System Description

Evaluation
Conclusions, Future Work

Efficiently Checking
Propositional Resolution Proofs

in Isabelle/HOL

Tjark Weber
webertj@in.tum.de

6th International Workshop on the
Implementation of Logics

November 12, 2006

Tjark Weber Propositional Resolution Proofs in Isabelle/HOL



λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
System Description

Evaluation
Conclusions, Future Work

1 Introduction

2 System Description

3 Evaluation

4 Conclusions, Future Work

Tjark Weber Propositional Resolution Proofs in Isabelle/HOL



λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
System Description

Evaluation
Conclusions, Future Work

Isabelle/HOL
Motivation
In Tools We Trust?

Isabelle/HOL

Isabelle is a generic theorem prover.

Isabelle/HOL provides a rich specification language.

Isabelle/HOL offers a reasonable degree of automation.

Isabelle/HOL is used for hardware and software verification.
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Motivation

Verification problems can often be reduced to Boolean
satisfiability.

Recent SAT solver advances have made this approach feasible
in practice.

Can an LCF-style theorem prover benefit from these advances?

Can we increase the degree of automation in Isabelle/HOL while
keeping the trusted code base small?
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In Tools We Trust?

The Oracle Approach

A formula is accepted as a theorem if the external tool claims it to
be provable.

The LCF-style Approach

The external tool provides a certificate of its answer that is
translated into an Isabelle proof.
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Preprocessing

The input formula is negated.

The negated input formula is transformed into CNF.

Naive CNF transformation
Definitional CNF

The CNF transformation must be proof-producing. The result
is not just a CNF formula φ∗, but a theorem ` φ = φ∗.
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SAT Solvers

zChaff, MiniSat

leading SAT solvers (winner of recent SAT competitions in
several categories)

zChaff: developed by Sharad Malik and Zhaohui Fu, Princeton
University

MiniSat: developed by Niklas Eén and Niklas Sörensson,
Chalmers University

return a satisfying assignment, or . . .

. . . a proof of unsatisfiability (since 2003 (zChaff)/2006
(MiniSat))
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Proof Formats

The proofs generated by zChaff and MiniSat differ in detail, but
both are based on the propositional resolution rule.

Propositional Resolution

P ∨ x Q ∨ ¬x

P ∨ Q

Proofs: Internal Representation

type proof = int list Inttab.table * int

“Clause n is the result of resolving clauses n1, . . . , nk .”

“Clause m is the empty clause.”
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Isabelle’s Previous Automation (on TPTP)
Problem Status auto blast fast
MSC007-1.008 unsat. x x x
NUM285-1 sat. x x x
PUZ013-1 unsat. 0.5 x 5.0
PUZ014-1 unsat. 1.4 x 6.1
PUZ015-2.006 unsat. x x x
PUZ016-2.004 sat. x x x
PUZ016-2.005 unsat. x x x
PUZ030-2 unsat. x x x
PUZ033-1 unsat. 0.2 6.4 0.1
SYN001-1.005 unsat. x x x
SYN003-1.006 unsat. 0.9 x 1.6
SYN004-1.007 unsat. 0.3 822.2 2.8
SYN010-1.005.005 unsat. x x x
SYN086-1.003 sat. x x x
SYN087-1.003 sat. x x x
SYN090-1.008 unsat. 13.8 x x
SYN091-1.003 sat. x x x
SYN092-1.003 sat. x x x
SYN093-1.002 unsat. 1290.8 16.2 1126.6
SYN094-1.005 unsat. x x x
SYN097-1.002 unsat. x 19.2 x
SYN098-1.002 unsat. x x x
SYN302-1.003 sat. x x x
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A Naive Approach (Weber, 2005)

Start from ` (φ⇒ False) ⇒ (φ⇒ False).

Reduce the premise φ⇒ False to True.

Tjark Weber Propositional Resolution Proofs in Isabelle/HOL



λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
System Description

Evaluation
Conclusions, Future Work

System Overview
Preprocessing
Proof Reconstruction
Clause Representations

A Naive Approach (Weber, 2005)

Start from ` (φ⇒ False) ⇒ (φ⇒ False).

Reduce the premise φ⇒ False to True.

Tjark Weber Propositional Resolution Proofs in Isabelle/HOL



λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
System Description

Evaluation
Conclusions, Future Work

System Overview
Preprocessing
Proof Reconstruction
Clause Representations

A Naive Approach (Weber, 2005)
Problem Status auto blast fast zChaff
MSC007-1.008 unsat. x x x 726.5
NUM285-1 sat. x x x 0.2
PUZ013-1 unsat. 0.5 x 5.0 0.1
PUZ014-1 unsat. 1.4 x 6.1 0.1
PUZ015-2.006 unsat. x x x 10.5
PUZ016-2.004 sat. x x x 0.3
PUZ016-2.005 unsat. x x x 1.6
PUZ030-2 unsat. x x x 0.7
PUZ033-1 unsat. 0.2 6.4 0.1 0.1
SYN001-1.005 unsat. x x x 0.4
SYN003-1.006 unsat. 0.9 x 1.6 0.1
SYN004-1.007 unsat. 0.3 822.2 2.8 0.1
SYN010-1.005.005 unsat. x x x 0.4
SYN086-1.003 sat. x x x 0.1
SYN087-1.003 sat. x x x 0.1
SYN090-1.008 unsat. 13.8 x x 0.5
SYN091-1.003 sat. x x x 0.1
SYN092-1.003 sat. x x x 0.1
SYN093-1.002 unsat. 1290.8 16.2 1126.6 0.1
SYN094-1.005 unsat. x x x 0.8
SYN097-1.002 unsat. x 19.2 x 0.2
SYN098-1.002 unsat. x x x 0.4
SYN302-1.003 sat. x x x 0.4
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A Naive Approach (Weber, 2005)

Start from ` (φ⇒ False) ⇒ (φ⇒ False).

Reduce the premise φ⇒ False to True.

A huge improvement over Isabelle’s previous automation . . .

. . . but still not satisfactory:

Problem Status auto blast fast zChaff
MSC007-1.008 unsat. x x x 726.5

Explicit treatment of associativity and commutativity for ∨, ∧
required.
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The Main Question

How to check propositional resolution proofs in Isabelle/HOL
efficiently?

Theorems in Isabelle/HOL

A theorem is a sequent Γ ` φ, where Γ is a finite set of hypotheses.

{φ} ` φ
Assume

Γ ` ψ
Γ \ φ ` φ =⇒ ψ

impI
Γ ` φ =⇒ ψ Γ′ ` φ

Γ ∪ Γ′ ` ψ
impE
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Separate Clauses (Alwen Tiu et al., 2006)

Each clause p1 ∨ . . . ∨ pn is encoded as a single theorem

{p1 ∨ . . . ∨ pn} ` p1 ⇒ . . .⇒ pn ⇒ False

Resolution is based on a derived Isabelle tactic which performs
cuts.

Proof reconstruction for MSC007-1.008: 7.8 s

The problem is a set of clauses.

Clauses are not viewed as sets of literals.
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Sequent Representation

Each clause p1 ∨ . . . ∨ pn is encoded as a single theorem

{p1 ∨ . . . ∨ pn, p1, . . . , pn} ` False

Resolution:

1 impI: Γ1 := {p1 ∨ . . . ∨ pn, p1, . . . , pn} \ {p} ` p ⇒ False
2 impI: Γ2 := {q1 ∨ . . . ∨ qm, q1, . . . , qm} \ {¬p} ` ¬p ⇒ False
3 instantiate: ` (p ⇒ False) ⇒ (¬p ⇒ False) ⇒ False
4 impE: Γ1 ` (¬p ⇒ False) ⇒ False
5 impE: Γ1 ∪ Γ2 ` False

Tjark Weber Propositional Resolution Proofs in Isabelle/HOL
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Sequent Representation

Each clause p1 ∨ . . . ∨ pn is encoded as a single theorem

{p1 ∨ . . . ∨ pn, p1, . . . , pn} ` False

Proof reconstruction for MSC007-1.008: 1.2 s

The problem is a set of clauses.

Clauses are sets of literals.

Clause hypotheses accumulate during resolution, until the set
of hypotheses eventually contains every clause used in the
proof.
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CNF Sequent Representation

1 The whole CNF problem is assumed: {
∧k

i=1 Ci} `
∧k

i=1 Ci .

2 Each clause is derived: {
∧k

i=1 Ci} ` C1, . . . , {
∧k

i=1 Ci} ` Ck .

3 Then the (modified) sequent representation is used:
{
∧k

i=1 Ci , p1, . . . , pn} ` False.

Proof reconstruction for MSC007-1.008: 0.5 s

The right way to do things.
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Further Optimizations

Pivot search: Instead of searching the hypotheses of clauses
to determine the pivot literal for resolutions, we associate our
own data structure (an ordered tree of integers) with each
clause.

Backwards proof: Instead of chronologically replaying the
proof trace, we perform “backwards” proof reconstruction,
starting from the empty clause’s identifier.

Lemmas: Instead of proving the same intermediate clause
multiple times, we store proven clauses in an array and simply
retrieve them from there if they are needed again.
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Evaluation on SATLIB Problems

Individual SATLIB problems typically contain several ten thousand
variables and several hundred thousand clauses.
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SATLIB: Pushing Isabelle to its Limits

Parser: very general, but unable to parse very large terms in
reasonable time.

Solution: we implemented our own little parser for DIMACS
files, which turns them directly into ML term values.

User interface: nice features (e.g. syntax highlighting), but
unable to display very large terms in reasonable time.

Solution: we worked at the system’s ML level, thereby
avoiding the additional user interface layer.

Inference kernel: minor inefficiencies, which became significant
when the kernel had to deal with very large terms.

Solution: small fixes to the kernel.
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Evaluation on SATLIB Problems

Problem Variables Clauses

c7552mul.miter 11282 69529
6pipe 15800 394739
6pipe 6 ooo 17064 545612
7pipe 23910 751118

Problem zChaff (s) Proof (s) Resolutions Total (s)

c7552mul.miter 73 70 252200 145
6pipe 167 321 268808 512
6pipe 6 ooo 308 2575 870345 3179
7pipe 495 1132 357136 1768

Tjark Weber Propositional Resolution Proofs in Isabelle/HOL



λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
System Description

Evaluation
Conclusions, Future Work

Evaluation on SATLIB Problems
SATLIB: Pushing Isabelle to its Limits
Evaluation on SATLIB Problems

Evaluation on SATLIB Problems

Problem Variables Clauses

c7552mul.miter 11282 69529
6pipe 15800 394739
6pipe 6 ooo 17064 545612
7pipe 23910 751118

Problem zChaff (s) Proof (s) Resolutions Total (s)

c7552mul.miter 73 70 252200 145
6pipe 167 321 268808 512
6pipe 6 ooo 308 2575 870345 3179
7pipe 495 1132 357136 1768

Tjark Weber Propositional Resolution Proofs in Isabelle/HOL



λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
System Description

Evaluation
Conclusions, Future Work

Conclusions
Future Work

Conclusions

Isabelle’s automation for propositional logic has been greatly
enhanced.

Efficient proof checking for propositional logic is possible in a
general LCF-style system.

Our implementation scales well to proofs with hundreds of
thousands of resolution steps.

Our techniques are applicable to other interactive provers, e.g.
to HOL 4 and HOL-Light.

Tjark Weber Propositional Resolution Proofs in Isabelle/HOL



λ →

∀
=Isa

be
lle

β
α

HOL

Introduction
System Description

Evaluation
Conclusions, Future Work

Conclusions
Future Work

Future Work

Analysis and optimization of resolution proofs

SAT-based decision procedures beyond propositional logic
(e.g. SMT)

Standard proof formats (for propositional logic and beyond)
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