
Designing Proof Formats
A User’s Perspective

Sascha Böhme and Tjark Weber

First Workshop on Proof Exchange for Theorem Proving (PxTP)
Wroc law, Poland

1 August, 2011

1



Why Do Proofs Matter?

Correctness is paramount: automatic provers are used, e.g., to
verify safety-critical applications.

Bugs are inevitable: state-of-the-art provers are complex
tools.

Verification of automatic provers may not be feasible in practice.

Certificates for individual results are relatively easy to generate.
Ideally, they can be checked independently by a
simple (possibly verified) proof checker.

2



Why Do Proofs Matter?

Correctness is paramount: automatic provers are used, e.g., to
verify safety-critical applications.

Bugs are inevitable: state-of-the-art provers are complex
tools.

Verification of automatic provers may not be feasible in practice.

Certificates for individual results are relatively easy to generate.
Ideally, they can be checked independently by a
simple (possibly verified) proof checker.

2



Classes of Automatic Provers

SAT prove unsatisfiability of CNF formulas

QBF prove satisfiability and invalidity of quantified
Boolean formulae

SMT prove unsatisfiability of formulas from (fragments of)
first-order logic with theories

ATP prove validity of formulas from first-order logic with
equality

3



Proof Formats of Automatic Provers

SAT

I conceptually simple: sequence of resolution steps

I no proof standard: provers have their own proof syntax

QBF

I proofs of invalidity: based on Q-resolution

I proofs of satisfiability: diverse techniques

I proof standard proposed for competitions

4



Proof Formats of Automatic Provers

SMT

I various distinct proof formats

I based on natural deduction, LF, . . .

I proof standard proposed for competitions

ATP

I TSTP proof standard due to annual CASC

I very general: fixed syntax, flexible inferences

5



LCF-style Proof Assistants

LCF-syle proof assistants are based on a small inference kernel.
Theorems are implemented as an abstract data type.

As a framework for the implementation of proof checkers,
LCF-style proof assistants are . . .

I generic (e.g., based on higher-order logic)

I sound (provided their kernel is correct)

I powerful (term rewriting, arithmetic, . . . )

6



Proof Certificates

Certificates should be:

for provers easy (and fast) to generate

for users easy and fast to check and

easy to store

Conflict!

7



Proof Certificates

Certificates should be:

for provers easy (and fast) to generate

for users easy and fast to check and

easy to store

Conflict!

7



Guidelines for Proof Formats

I Use an existing format

I Provide a human-readable, lightweight representation

I Take theoretical considerations into account

I Use simple, canonical semantics

I Add declarative information

I Provide exhaustive documentation

8



Guidelines for Proof Formats

I Use an existing format

I Provide a human-readable, lightweight representation

I Take theoretical considerations into account

I Use simple, canonical semantics

I Add declarative information

I Provide exhaustive documentation

8



Use an Existing Format

Good:

I “Let’s add some printf statements.”

Much better:

I Use an existing proof format!

I Alternatively: be compatible with widespread provers.

9



Guidelines for Proof Formats

I Use an existing format

I Provide a human-readable, lightweight representation

I Take theoretical considerations into account

I Use simple, canonical semantics

I Add declarative information

I Provide exhaustive documentation

10



Provide a Human-Readable, Lightweight Representation

Good:

I “Let’s provide an in-memory API.”

I “And a binary file format.”

Much better:

I Provide a human-readable representation!

I Use a standardized data format language!

11



Guidelines for Proof Formats

I Use an existing format

I Provide a human-readable, lightweight representation

I Take theoretical considerations into account

I Use simple, canonical semantics

I Add declarative information

I Provide exhaustive documentation

12



Take Theoretical Considerations into Account

Good:

I “Here’s a function call, let’s print that.”

I “And this data structure too.”

Much better:

I Consider complexity of proof checking!

I Proof checking ought to be easier than proof search.

13



Guidelines for Proof Formats

I Use an existing format

I Provide a human-readable, lightweight representation

I Take theoretical considerations into account

I Use simple, canonical semantics

I Add declarative information

I Provide exhaustive documentation

14



Use Simple, Canonical Semantics

Bad:

I “Let’s use one really powerful proof rule, with numerous flags
for odd cases.”

I “And some rules for particular optimizations in the prover.”

Much better:

I Use small, focused inference rules with clear semantics!

I Do not expose low-level optimizations!

15



Guidelines for Proof Formats

I Use an existing format

I Provide a human-readable, lightweight representation

I Take theoretical considerations into account

I Use simple, canonical semantics

I Add declarative information

I Provide exhaustive documentation

16



Add Declarative Information

Bad:

I Implicit invariants about formulas.

I Non-obvious assumptions.

Much better:

I Explicitly provide inferred formulas!

I Add “superfluous” information for checking!

17



Guidelines for Proof Formats

I Use an existing format

I Provide a human-readable, lightweight representation

I Take theoretical considerations into account

I Use simple, canonical semantics

I Add declarative information

I Provide exhaustive documentation

18



Provide Exhaustive Documentation

Bad:

I

Much better:

I Describe the (abstract and concrete) syntax and semantics of
the proof format, including preprocessing and normalization!

I Ideally provide an independent checker or some (semi-)formal
documentation!

19



Conclusion

I Use an existing format

I Provide a human-readable, lightweight representation

I Take theoretical considerations into account

I Use simple, canonical semantics

I Add declarative information

I Provide exhaustive documentation

20


	Introduction
	Guidelines for Proof Formats
	Conclusion

