
C/C++ Concurrency:
Formalization and Model Finding

Mark Batty Jasmin Blanchette Scott Owens
Susmit Sarkar Peter Sewell Tjark Weber

7th International Workshop on Reachability Problems (RP’2013)

Informal Presentation

Concurrency in C/C++ (Before 2011)

I Pthreads

I Hardware model

C11 /C++11

New versions of the ISO standards for C and C++ were ratified in
2011.

These standards define a memory model for C/C++ that allows
programmers to write portable, yet highly efficient concurrent code.

Support for this model has recently become available in popular
compilers (GCC 4.4, Intel C++ 13.0, MSVC 11.0, Clang 3.1).

Memory Models

A memory model describes the interaction of threads through
shared data.

Sequential Consistency

“The result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in
the order specified by its program.”

C11/C++11 Concurrency

Simple concurrency:

I Sequential consistency for data-race free code (→ locks).

I Data races cause undefined behavior.

Expert concurrency:

I Atomic memory locations

Data Races

I Two (or more) threads concurrently1 access the same memory
location.

I At least one of the threads writes.

Example (Dekker’s algorithm)

int x(0); int y(0);

x = 1; y = 1;
r1 = y; r2 = x;

1I.e., not ordered by happens-before.

Data Races

I Two (or more) threads concurrently1 access the same memory
location.

I At least one of the threads writes.

Example (Dekker’s algorithm)

int x(0); int y(0);

x = 1; y = 1;
r1 = y; r2 = x;

1I.e., not ordered by happens-before.

Data Races

I Two (or more) threads concurrently1 access the same memory
location.

I At least one of the threads writes.

Example (Dekker’s algorithm)

int x(0); int y(0);

x = 1; y = 1;
r1 = y; r2 = x;

1I.e., not ordered by happens-before.

Data Races

I Two (or more) threads concurrently1 access the same memory
location.

I At least one of the threads writes.

1I.e., not ordered by happens-before.

std :: atomic<T>

Operations:

I x. load(memory order)

I x. store (T, memory order)

Concurrent accesses on atomic locations do not race.1

The memory order argument specifies ordering constraints between
atomic and non-atomic memory accesses in different threads.

1Except during initialization.

std :: memory order

strict

relaxed

seq cst total order (SC for DRF code)

release /acquire }
message passing

release /consume

relaxed no synchronization

The Formal Model (1)

Program executions consist of memory actions. The program
source determines several relations over these actions.

Example

i n t x = 0 ;
i n t y = (x == x) ;

W x = 0
sb

||

sb

""
R x = 0

sb

!!

R x = 0
sb

}}
W y = 1

The Formal Model (2)

A candidate execution is specified by three relations:

I sc is a total order over all seq cst actions.

I reads-from (rf) relates write actions to read actions at the
same location that read the written value.

I For each atomic location, the modification order (mo) is a
total order over all writes at this location.

From these, various other relations (e.g., happens-before) are
derived.

Consistent Executions

The memory model imposes constraints on these relations.

consistent

program︷ ︸︸ ︷
acts thrs lk sb asw dd cd rf mo sc︸ ︷︷ ︸

execution

≡

...

Program Semantics

Consider all consistent candidate executions.

If at least one of them has a data race,2 the program has
undefined behavior.

Otherwise, its semantics is the set of consistent candidate
executions.

2There are actually several kinds.

Exploring Program Behavior

source code

static semantics


consistent executions

Cppmem

We have generated an executable (OCaml) version of the
consistent predicate from the formal memory model.

Cppmem exhaustively enumerates all candidate executions (for a
given program) and tests for consistency.

Nitpick

Nitpick is a generic model finder for higher-order logic.

Nitpick translates the formal memory model—together with the
constraints imposed by a given program—into first-order relational
logic (→ Kodkod) and then into SAT.

Example: Write-to-Read Causality

a t o m i c i n t x = 0 , y = 0 ;

{{{
x . s t o r e (1 , r l x) ;

| | |
x . l o a d (r l x) ; // = 1
y . s t o r e (1 , r l x) ;

| | |
y . l o a d (r l x) ; // = 1
x . l o a d (r l x) ; // = 0

}}}

Write-to-Read Causality: Performance

Locations Actions States Cppmem Nitpick
(n) (3n + 1)

(
23(3n+1)2

)
relaxed SC relaxed SC

2 7 2147 0.0 s 0.5 s 4 s 4 s
3 10 2300 0.0 s 90.5 s 11 s 11 s
4 13 2507 0.1 s >104 s 41 s 40 s
5 16 2768 0.2 s 132 s 127 s
6 19 21083 0.7 s 384 s 376 s
7 22 21452 2.5 s 982 s 977 s

Conclusion

Since 2011, C and C++ have a memory model.

We have

I a formal (machine-readable, executable) version of this
memory model and

I automatic tools to explore the behavior of small programs.

Future Challenges

Use the model!

I Compiler correctness

I Program transformations

I Static analysis

I Dynamic analysis

I Program logics

I Formal verification

I Equivalent models

I . . .

	The C/C++ Memory Model
	Concurrency in C/C++ (Before 2011)
	C11/C++11
	Memory Models
	Sequential Consistency
	C11/C++11 Concurrency
	Data Races
	std::atomic<T>
	std::memory_order
	The Formal Model (1)
	The Formal Model (2)
	Consistent Executions
	Program Semantics
	Exploring Program Behavior
	Cppmem
	Nitpick
	Example: Write-to-Read Causality
	Write-to-Read Causality: Performance
	Conclusion
	Future Challenges

