Constructively Characterizing Fold and Unfold

Tjark Weber and James Caldwell

webertj@in.tum.de, jlc@uwyo.edu

Technische Universität München
University of Wyoming

Motivation

Do all elements in a list xs satisfy some predicate p?

- all p xs = and (map p xs)

Motivation

Do all elements in a list xs satisfy some predicate p ?

- all p xs = and (map p xs)
- all p xs = foldr ($\lambda \mathrm{x}, \mathrm{y} . \mathrm{p} \mathrm{x} \wedge \mathrm{y}$) True xs, where

```
foldr f e [] = e,
foldr \(f\) e (x:xs) \(=f x(f o l d r f e x s)\)
```

The second version is more efficient.

A little category theory

An algebra for a functor \mathcal{F} is a pair (A, f) with

$$
f: \mathcal{F} A \rightarrow A .
$$

An initial algebra $(\mu \mathcal{F}$, in $)$ for a functor \mathcal{F} has a unique homomorphism to any other such algebra:

Lists as initial algebra

For instance, with $\mathcal{F} X=\{\cdot\}+(\mathbb{N} \times X)$, an initial algebra is $\mu \mathcal{F}=$ (finite) lists of naturals, and in $=$ nil + cons.

Examples of folds are sum, length, max, ...

When is a function a fold?

Given a function h, when is $h=$ fold g for some function g ?

When is a function a fold?

Given a function h, when is $h=$ fold g for some function g ?
The kernel of a function $f: A \rightarrow B$ is the set

$$
\operatorname{ker} f=\left\{\left(a, a^{\prime}\right) \in A \times A \mid f(a)=f\left(a^{\prime}\right)\right\} .
$$

[GHA01]: Suppose $\mathcal{F}: S E T \rightarrow S E T$ is a functor with an initial algebra ($\mu \mathcal{F}$, in), and $h: \mu \mathcal{F} \rightarrow A$. Then

$$
\exists g: \mathcal{F} A \rightarrow A . h=\text { fold } g \Longleftrightarrow \operatorname{ker} \mathcal{F} h \subseteq \operatorname{ker}(h \cdot \text { in }) .
$$

How to compute fold ${ }^{-1}$?

Given a function h, when (and how) can we compute a function g such that $h=$ fold g ?

How to compute fold ${ }^{-1}$?

Given a function h, when (and how) can we compute a function g such that $h=$ fold g ?

$$
\exists g: \mathcal{F} A \rightarrow A . h=\text { fold } g \Longleftrightarrow \operatorname{ker} \mathcal{F} h \subseteq \operatorname{ker}(h \cdot \text { in })
$$

- " \Rightarrow " is constructively valid.
- " \Leftarrow " however is not: There are computable functions h with $\operatorname{ker} \mathcal{F} h \subseteq \operatorname{ker}(h \cdot$ in $)$ such that no computable function g satisfies $h=$ fold g.

Nuprl

- A Computational Type Theory (based on Martin-Löf 1980)
- An LCF style interactive tactic based prover
- Tools to extract "correct-by-construction" programs from formal proofs
- http://www.nuprl.org/

Abstraction category

```
* ABS category
Cat{i} ==
    Obj: U
    x Arr:U
    X dom:(Arr }->\mathrm{ Obj)
    x cod:(Arr }->\mathrm{ Obj)
    × O:{o:(g:Arr }->\textrm{f}:{\textrm{f}:Arr|\operatorname{cod f = dom g} }
        {h:Arr| dom h = dom f ^ cod h = cod g}) |
            f,g,h:Arr. cod f = dom g ^ cod g = dom h \Longrightarrow
            (h ○ g) ○f = h ○ (g ○ f)}
    < {id:(p:Obj -> {f:Arr| dom f = p ^ cod f = p})
        \forallf:Arr. (id (cod f)) o f = f ^
            f O (id (dom f)) = f}
```


A constructive result

Suppose $\mathcal{F}: T Y P \rightarrow T Y P$ is a functor with an initial algebra $(\mu \mathcal{F}$, in $), h: \mu \mathcal{F} \rightarrow A$, we can decide whether A is empty, and for each $b \in \mathcal{F} A$ we can decide whether there exists some $a \in \mathcal{F}(\mu \mathcal{F})$ with $b=(\mathcal{F} h)(a)$. Then

$$
\exists g: \mathcal{F} A \rightarrow A . h=\text { fold } g \Longleftarrow \operatorname{ker} \mathcal{F} h \subseteq \operatorname{ker}(h \cdot \mathrm{in}) .
$$

A constructive result

Suppose $\mathcal{F}: T Y P \rightarrow T Y P$ is a functor with an initial algebra $(\mu \mathcal{F}$, in $), h: \mu \mathcal{F} \rightarrow A$, we can decide whether A is empty, and for each $b \in \mathcal{F} A$ we can decide whether there exists some $a \in \mathcal{F}(\mu \mathcal{F})$ with $b=(\mathcal{F} h)(a)$. Then

$$
\exists g: \mathcal{F} A \rightarrow A . h=\text { fold } g \Longleftarrow \operatorname{ker} \mathcal{F} h \subseteq \operatorname{ker}(h \cdot \mathrm{in}) .
$$

- Replaced classical reasoning
- Sets as types: extensional vs. intensional equality
- Case splits justified by the additional premises

A result for right-invertible functions

Suppose $\mathcal{F}: T Y P \rightarrow T Y P$ is a functor with an initial algebra $(\mu \mathcal{F}$, in $), h: \mu \mathcal{F} \rightarrow A$, we can decide whether A is empty, and for each $b \in \mathcal{F} A$ we can decide whether there exists some $a \in \mathcal{F}(\mu \mathcal{F})$ with $b=(\mathcal{F} h)(a)$. Then

$$
\exists g: \mathcal{F} A \rightarrow A . h=\text { fold } g \Longleftarrow \operatorname{ker} \mathcal{F} h \subseteq \operatorname{ker}(h \cdot \mathrm{in}) .
$$

A result for right-invertible functions

Suppose $\mathcal{F}: T Y P \rightarrow T Y P$ is a functor with an initial algebra ($\mu \mathcal{F}$, in), $h: \mu \mathcal{F} \rightarrow A$, we can decide whether A is empty, and for each $b \in \mathcal{F} A$ we can decide whether there exists some $a \in \mathcal{F}(\mu \mathcal{F})$ with $b=(\mathcal{F} h)(a)$. Then

$$
\exists g: \mathcal{F} A \rightarrow A . h=\text { fold } g \Longleftarrow \operatorname{ker} \mathcal{F} h \subseteq \operatorname{ker}(h \cdot \mathrm{in}) .
$$

A result for right-invertible functions

Suppose $\mathcal{F}: T Y P \rightarrow$ TYP is a functor with an initial algebra ($\mu \mathcal{F}$, in), $h: \mu \mathcal{F} \rightarrow A$, and for each $b \in \mathcal{F} A$ there exists some $a \in \mathcal{F}(\mu \mathcal{F})$ with $b=(\mathcal{F} h)(a)$. Then

$$
\exists g: \mathcal{F} A \rightarrow A . h=\text { fold } g \Longleftarrow \operatorname{ker} \mathcal{F} h \subseteq \operatorname{ker}(h \cdot \text { in }) .
$$

Examples

Embedded in the proofs are algorithms to compute g from h (accompanied by the evidence that h satisfies the required conditions).

- sum, length, max, ... are right-invertible, and thus can be written as a fold.
- all p can be written as a fold if we can decide whether there exists an x with $\mathrm{p} \mathrm{x}=\mathrm{False}$.

Transforming all into a fold

$$
g:\{\cdot\}+(\mathbb{N} \times \mathbb{B}) \rightarrow \mathbb{B}
$$

λx.if

$$
\begin{aligned}
& \text { case } x \text { of inl } \quad=>\text { True } \\
& \begin{array}{l}
\text { inr <_rb> }=>\text { if b then True } \\
\text { else case } \phi \text { of inl } \quad=>\text { True } \\
\\
\mid \text { inr_ => False }
\end{array}
\end{aligned}
$$

then

$$
\begin{aligned}
& \text { (} \lambda \mathrm{xs} . \text { and (map } \mathrm{p} x \mathrm{~s}) \text {) } \circ \text { (nil+cons) } \\
& \text { (case } x \text { of inl _ => inl. } \\
& \text { | inr <n,b> => if b then inr <n, []> } \\
& \text { else case } \phi \text { of inl <t,_> => inr <n,t:[]> } \\
& \text { | inr _ => arbitrary) }
\end{aligned}
$$

else
True

unfold

A coalgebra for a functor \mathcal{F} is a pair (A, f) with

$$
f: A \rightarrow \mathcal{F} A .
$$

A terminal coalgebra ($\nu \mathcal{F}$, out) for a functor \mathcal{F} has a unique cohomomorphism from any other such coalgebra:

Classical theorem for unfolds

[GHA01]: Suppose $\mathcal{F}: S E T \rightarrow S E T$ is a functor with a terminal coalgebra ($\nu \mathcal{F}$, out), and $h: A \rightarrow \nu \mathcal{F}$. Then

$$
\exists g: A \rightarrow \mathcal{F} A . h=\operatorname{unfold} g \Longleftrightarrow \operatorname{img}(\text { out } \cdot h) \subseteq \operatorname{img} \mathcal{F} h .
$$

- Simply dual to the classical theorem for folds
- Again, " \Rightarrow " is constructively valid

Constructive theorem for unfolds

Suppose $\mathcal{F}: T Y P \rightarrow T Y P$ is a functor with a terminal coalgebra ($\nu \mathcal{F}$, out), and $h: A \rightarrow \nu \mathcal{F}$. Then

$$
\begin{aligned}
\exists g: & A \rightarrow \mathcal{F} A \cdot h=\text { unfold } g \Longleftarrow \\
& \forall c \in \operatorname{img}(\text { out } \cdot h) . \exists b \in \mathcal{F} A \cdot c=(\mathcal{F} h)(b) .
\end{aligned}
$$

- Not just dual to the constructive theorem for folds
- Very similar to the classical theorem for unfolds (but different proof)

Conclusions

- Constructive characterization of fold and unfold
- Simplification of the classical proofs
- Complete formalization in Nuprl
- Extraction of "correct-by-construction" program transformations from the proofs
- Other program transformations can be incorporated into the same framework

