Constructively Characterizing Fold and Unfold

Tjark Weber and James Caldwell

webertj@in.tum.de, jlc@uwyo.edu

Technische Universität München

University of Wyoming

Motivation

Do all elements in a list xs satisfy some predicate p?

all p xs = and (map p xs)

Motivation

Do all elements in a list xs satisfy some predicate p?

- all p xs = and (map p xs)
- all p xs = foldr (λ x,y.p x \wedge y) True xs, where

foldr f e [] = e,
foldr f e (x:xs) = f x (foldr f e xs)

The second version is more efficient.

A little category theory

An *algebra* for a functor \mathcal{F} is a pair (A, f) with

 $f: \mathcal{F}A \to A.$

An *initial* algebra $(\mu \mathcal{F}, in)$ for a functor \mathcal{F} has a unique homomorphism to any other such algebra:

Lists as initial algebra

For instance, with $\mathcal{F}X = \{\cdot\} + (\mathbb{N} \times X)$, an initial algebra is $\mu \mathcal{F} = (\text{finite})$ lists of naturals, and in = nil + cons.

Examples of folds are sum, length, max, ...

When is a function a fold?

Given a function *h*, when is h = fold g for some function g?

When is a function a fold?

Given a function *h*, when is h = fold g for some function g?

The *kernel* of a function $f : A \rightarrow B$ is the set

 $\ker f = \{ (a, a') \in A \times A \mid f(a) = f(a') \}.$

[GHA01]: Suppose $\mathcal{F} : SET \to SET$ is a functor with an initial algebra $(\mu \mathcal{F}, in)$, and $h : \mu \mathcal{F} \to A$. Then

 $\exists g: \mathcal{F}A \to A. \ h = \operatorname{fold} g \iff \ker \mathcal{F}h \subseteq \ker(h \cdot \operatorname{in}).$

How to compute fold $^{-1}$?

Given a function *h*, when (and how) can we *compute* a function *g* such that $h = \operatorname{fold} g$?

How to compute fold $^{-1}$?

Given a function *h*, when (and how) can we compute a function *g* such that $h = \operatorname{fold} g$?

 $\exists g: \mathcal{F}A \to A. \ h = \operatorname{fold} g \iff \ker \mathcal{F}h \subseteq \ker(h \cdot \operatorname{in})$

• " \Rightarrow " is constructively valid.

• " \Leftarrow " however is *not*: There are computable functions *h* with ker $\mathcal{F}h \subseteq \text{ker}(h \cdot \text{in})$ such that no *computable* function *g* satisfies h = fold g.

Nuprl

- A Computational Type Theory (based on Martin-Löf 1980)
- An LCF style interactive tactic based prover
- Tools to extract "correct-by-construction" programs from formal proofs
- http://www.nuprl.org/

Abstraction category

* ABS category $Cat{i} ==$ $Obj: \mathbb{U}_i$ \times Arr: \mathbb{U}_i \times dom: (Arr \rightarrow Obj) \times cod: (Arr \rightarrow Obj) \times o:{o:(g:Arr \rightarrow f:{f:Arr| cod f = dom g} \rightarrow $\{h:Arr \mid dom h = dom f \land cod h = cod g\})$ $\forall f,g,h:Arr. cod f = dom g \land cod g = dom h \implies$ $(h \circ g) \circ f = h \circ (g \circ f)$ × {id:(p:Obj \rightarrow {f:Arr | dom f = p \land cod f = p}) | $\forall f:Arr. (id (cod f)) o f = f \land$ $f \circ (id (dom f)) = f$

A constructive result

Suppose $\mathcal{F} : TYP \to TYP$ is a functor with an initial algebra $(\mu \mathcal{F}, in), h : \mu \mathcal{F} \to A$, we can decide whether *A* is empty, and for each $b \in \mathcal{F}A$ we can decide whether there exists some $a \in \mathcal{F}(\mu \mathcal{F})$ with $b = (\mathcal{F}h)(a)$. Then

 $\exists g: \mathcal{F}A \to A. \ h = \operatorname{fold} g \longleftrightarrow \ker \mathcal{F}h \subseteq \ker(h \cdot \operatorname{in}).$

A constructive result

Suppose $\mathcal{F} : TYP \to TYP$ is a functor with an initial algebra $(\mu \mathcal{F}, in), h : \mu \mathcal{F} \to A$, we can decide whether *A* is empty, and for each $b \in \mathcal{F}A$ we can decide whether there exists some $a \in \mathcal{F}(\mu \mathcal{F})$ with $b = (\mathcal{F}h)(a)$. Then

 $\exists g: \mathcal{F}A \to A. \ h = \operatorname{fold} g \iff \ker \mathcal{F}h \subseteq \ker(h \cdot \operatorname{in}).$

- Replaced classical reasoning
- Sets as types: extensional vs. intensional equality
- Case splits justified by the additional premises

A result for right-invertible functions

Suppose $\mathcal{F} : TYP \to TYP$ is a functor with an initial algebra $(\mu \mathcal{F}, in), h : \mu \mathcal{F} \to A$, we can decide whether *A* is empty, and for each $b \in \mathcal{F}A$ we can decide whether there exists some $a \in \mathcal{F}(\mu \mathcal{F})$ with $b = (\mathcal{F}h)(a)$. Then

 $\exists g: \mathcal{F}A \to A. \ h = \operatorname{fold} g \iff \ker \mathcal{F}h \subseteq \ker(h \cdot \operatorname{in}).$

A result for right-invertible functions

Suppose $\mathcal{F} : TYP \to TYP$ is a functor with an initial algebra $(\mu \mathcal{F}, in), h : \mu \mathcal{F} \to A$, we can decide whether *A* is empty, and for each $b \in \mathcal{F}A$ we can decide whether there exists some $a \in \mathcal{F}(\mu \mathcal{F})$ with $b = (\mathcal{F}h)(a)$. Then

 $\exists g: \mathcal{F}A \to A. \ h = \operatorname{fold} g \longleftrightarrow \ker \mathcal{F}h \subseteq \ker(h \cdot \operatorname{in}).$

A result for right-invertible functions

Suppose $\mathcal{F} : TYP \to TYP$ is a functor with an initial algebra $(\mu \mathcal{F}, in), h : \mu \mathcal{F} \to A$, and for each $b \in \mathcal{F}A$ there exists some $a \in \mathcal{F}(\mu \mathcal{F})$ with $b = (\mathcal{F}h)(a)$. Then

 $\exists g: \mathcal{F}A \to A. \ h = \operatorname{fold} g \iff \ker \mathcal{F}h \subseteq \ker(h \cdot \operatorname{in}).$

Examples

Embedded in the proofs are algorithms to compute g from h (accompanied by the evidence that h satisfies the required conditions).

- sum, length, max, ... are right-invertible, and thus can be written as a fold.
- Image all p can be written as a fold if we can decide whether there exists an x with p x = False.

Transforming all into a fold

$$\begin{split} g: \{\cdot\} + (\mathbb{N} \times \mathbb{B}) &\to \mathbb{B} \\ \lambda \text{x.if} \\ \text{case x of inl } _ => \text{True} \\ \mid \text{inr } <_, b> => \text{if b then True} \\ \quad \text{else case } \phi \text{ of inl } _ => \text{True} \\ \quad \mid \text{inr } _ => \text{False} \\ \text{then} \\ (\lambda \text{xs.and (map p xs)) o (nil+cons)} \\ (\text{case x of inl } _ => \text{ inl } \cdot \\ \mid \text{ inr } => \text{ if b then inr } \\ \quad \text{else case } \phi \text{ of inl } => \text{ inr } } \\ \quad \mid \text{ inr } _ => \text{ arbitrary}) \end{split}$$

else

True

unfold

A *coalgebra* for a functor \mathcal{F} is a pair (A, f) with

 $f: A \to \mathcal{F}A.$

A *terminal* coalgebra ($\nu \mathcal{F}$, out) for a functor \mathcal{F} has a unique cohomomorphism from any other such coalgebra:

Classical theorem for unfolds

[GHA01]: Suppose $\mathcal{F} : SET \to SET$ is a functor with a terminal coalgebra ($\nu \mathcal{F}$, out), and $h : A \to \nu \mathcal{F}$. Then

 $\exists g: A \to \mathcal{F}A. \ h = \mathsf{unfold} \ g \iff \mathsf{img}(\mathsf{out} \cdot h) \subseteq \mathsf{img} \ \mathcal{F}h.$

- Simply dual to the classical theorem for folds
- Again, " \Rightarrow " is constructively valid

Constructive theorem for unfolds

Suppose $\mathcal{F} : TYP \to TYP$ is a functor with a terminal coalgebra ($\nu \mathcal{F}$, out), and $h : A \to \nu \mathcal{F}$. Then

 $\exists g : A \to \mathcal{F}A. \ h = \text{unfold } g \Leftarrow \\ \forall c \in \text{img}(\text{out} \cdot h). \ \exists b \in \mathcal{F}A. \ c = (\mathcal{F}h)(b). \end{cases}$

Not just dual to the constructive theorem for folds

Very similar to the classical theorem for unfolds (but different proof)

Conclusions

- Constructive characterization of fold and unfold
- Simplification of the classical proofs
- Complete formalization in Nuprl
- Extraction of "correct-by-construction" program transformations from the proofs
- Other program transformations can be incorporated into the same framework