o N

Constructively Characterizing Fold
and Unfold

Tjark Weber and James Caldwell

webertj @n.tumde, jlc@wo. edu

Technische Universitat Minchen

University of Wyoming

o |

Constructively Characterizing Fold and Unfold—-LOPSTR 2003 — p.1/16

M otivation

o N

Do all elements in a list xs satisfy some predicate p?

#» all p xs = and (map p xs)

o |

Constructively Characterizing Fold and Unfold—-LOPSTR 2003 — p.2/16

M otivation

o N

Do all elements in a list xs satisfy some predicate p?

#» all p xs = and (map p xs)
all p xs =foldr (X,y.p X A Yy) True Xs,
where

foldr f e [] = e,
foldr f e (x:xs) =f x (foldr f e xs)

The second version Is more efficient.

o |

Constructively Characterizing Fold and Unfold—-LOPSTR 2003 — p.2/16

A little category theory
-

An algebra for a functor F is a pair (A, f) with
f:FA— A

An initial algebra (n.F,in) for a functor F has a unique
homomorphism to any other such algebra:

-
o |

Constructively Characterizing Fold and Unfold—-LOPSTR 2003 — p.3/16

Listsasinitial algebra

o N

For instance, with 7X = {-} + (N x X), an initial algebra is
uF = (finite) lists of naturals, and in = nil + cons.

d . +1dn X fo
{1+ N x List(N) TPy w4
nil+cons F=fo+f1
Lzst(N) fo|df >A

Examples of folds are sum, length, max, ...

o |

Constructively Characterizing Fold and Unfold—-LOPSTR 2003 — p.4/16

When isa function a fold?

o N

Given a function h, when is h = fold g for some function ¢?

When isa function a fold?

o N

Given a function h, when is h = fold g for some function ¢?

The kernel of a function f : A — B IS the set
ker f = {(a,d') € A x A| f(a) = f(d)}.

|[GHAO1]: Suppose F : SET — SET i1s a functor with an
initial algebra (©F,in), and h : unF — A. Then

dg: FA— A h=foldg <= ker Fh C ker(h - in).

o |

Constructively Characterizing Fold and Unfold—-LOPSTR 2003 — p.5/16

How to compute fold—1?

o N

Given a function h, when (and how) can we compute a
function ¢ such that /7 = fold g7

Constructively Characterizing Fold and Unfol d—-LOPSTR 2003 - p.6/16

How to compute fold—1?

o N

Given a function h, when (and how) can we compute a
function ¢ such that /7 = fold g7

dg: FA— A h=foldg <= ker Fh C ker(h - in)

#® “="|s constructively valid.

#® “<”" however is not: There are computable functions £/
with ker 7h C ker(h - in) such that no computable
function ¢ satisfies h = fold g.

o |

Constructively Characterizing Fold and Unfold—-LOPSTR 2003 — p.6/16

°

Nupr|
-

A Computational Type Theory (based on Martin-Lof
1980)

An LCF style interactive tactic based prover

Tools to extract “correct-by-construction” programs from
formal proofs

http://www.nuprl.org/

|

Constructively Characterizing Fold and Unfold—-LOPSTR 2003 — p.7/16

Abstraction cat egory
T__* ABS cat egory __W

Cat{i} ==
o) : U,
Arr: U,
dom (Arr — Qbj)
cod: (Arr — bj)
o:{o:(g:Arr — f:{f:Arr| cod f = domg} —
{h:Arr| domh = domf A cod h = cod g}) |
vi,g,h:Arr. cod f = domg A cod g = domh —
(hog) of =ho(gof)}
x {id:(p:w] — {f:Arr| domf =p A cod f = p}) |
Vi:Arr. (id (cod f)) of =1 A
f o (id (domf)) = f}

o |

Constructively Characterizing Fold and Unfold—-LOPSTR 2003 — p.8/16

X X X X

A constructive result

o -

Suppose F : TYP — TYP is a functor with an initial algebra
(uF,in), h : nF — A, we can decide whether A is empty,
and for each b € F A we can decide whether there exists
some a € F(uF) with b = (Fh)(a). Then

dg: FA — A.h =fold g <= ker Fh C ker(h - in).

o |

Constructively Characterizing Fold and Unfold—-LOPSTR 2003 — p.9/16

A constructive result

o -

Suppose F : TYP — TYP is a functor with an initial algebra
(uF,in), h : nF — A, we can decide whether A is empty,
and for each b € F A we can decide whether there exists
some a € F(uF) with b = (Fh)(a). Then

dg: FA — A.h =fold g <= ker Fh C ker(h - in).

#® Replaced classical reasoning
#® Sets as types: extensional vs. intensional equality
Case splits justified by the additional premises

o |

Constructively Characterizing Fold and Unfold—-LOPSTR 2003 — p.9/16

A result for right-invertible functions

o -

Suppose F : TYP — TYP is a functor with an initial algebra
(uF,in), h : nF — A, we can decide whether A is empty,
and for each b € F A we can decide whether there exists
some a € F(uF) with b = (Fh)(a). Then

dg: FA — A.h =fold g <= ker Fh C ker(h - in).

o |

Constructively Characterizing Fold and Unfold-LOPSTR 2003 — p.10/16

A result for right-invertible functions

o -

Suppose F : TYP — TYP is a functor with an initial algebra
(uF,in), h : nF — A, we can decide whether A is empty,
and for each b € FA there exists
some a € F(uF) with b = (Fh)(a). Then

dg: FA — A.h =fold g <= ker Fh C ker(h - in).

o |

Constructively Characterizing Fold and Unfold-LOPSTR 2003 — p.10/16

A result for right-invertible functions

o -

Suppose F : TYP — TYP is a functor with an initial algebra
(uF,in), h : uF — A, and for each b € F A there exists some
a € F(uF)with b = (Fh)(a). Then

dg: FA — A.h =foldg <= ker Fh C ker(h - in).

o |

Constructively Characterizing Fold and Unfold—-LOPSTR 2003 — p.10/16

-

Examples

-

Embedded in the proofs are algorithms to compute ¢ from h
(accompanied by the evidence that / satisfies the required
conditions).

sum, length, max, ... are right-invertible, and thus can
be written as a fold.

al |l p can be written as a fold if we can decide whether
there exists an x with p x = Fal se.

|

Constructively Characterizing Fold and Unfold-LOPSTR 2003 — p.11/16

Transforming al | into afold

o N

g:{}+(NxB)—B

AX. I f
case x of inl _ => True
| inr <,b>=>1if b then True
el se case ¢ of inl _ => True
| inr _ => Fal se
t hen
(MAxs. and (map p xs)) o (nil +cons)
(case x of inl _ =>inl
| inr <n,b>=>1if b then inr <n,[]>
el se case ¢ of inl <t, >=>1inr <n,t:[]>
| inr _ => arbitrary)
el se

L___ True __J

Constructively Characterizing Fold and Unfold—-LOPSTR 2003 — p.12/16

unfold

o N

A coalgebra for a functor F is a pair (A, f) with
f:A— FA.

A terminal coalgebra (v, out) for a functor 7 has a unique
cohomomorphism from any other such coalgebra:

F (unfo
g TN oo
f out
A R - F

o |

Constructively Characterizing Fold and Unfold-LOPSTR 2003 — p.13/16

Classical theorem for unfolds

o N

[GHAOL]: Suppose F : SET — SET is a functor with a
terminal coalgebra (vF,out), and h : A — vF. Then

dg: A— FA. h=unfoldg <= img(out- h) C img Fh.

Simply dual to the classical theorem for folds
Again, “="Is constructively valid

o |

Constructively Characterizing Fold and Unfold-LOPSTR 2003 — p.14/16

Constructivetheorem for unfolds

o N

Suppose F : TYP — TYP is a functor with a terminal
coalgebra (vF,out), and h : A — vF. Then

dg: A — FA.h = unfold g <=
Ve € img(out- h).db € FA.c = (Fh)(b).

Not just dual to the constructive theorem for folds

Very similar to the classical theorem for unfolds (but
different proof)

o |

Constructively Characterizing Fold and Unfold-LOPSTR 2003 — p.15/16

© o o o

°

Conclusions

-

Constructive characterization of fold and unfold
Simplification of the classical proofs
Complete formalization in Nuprl

Extraction of “correct-by-construction” program
transformations from the proofs

Other program transformations can be incorporated into
the same framework

|

Constructively Characterizing Fold and Unfold-LOPSTR 2003 — p.16/16

	Motivation
	A little category theory
	Lists as initial algebra
	When is a function a fold?
	How to compute fold$^{-1}$?
	Nuprl
	Abstraction 	exttt {category}
	A constructive result
	A result for right-invertible functions
	Examples
	Transforming 	exttt {all} into a fold
	unfold
	Classical theorem for unfolds
	Constructive theorem for unfolds
	Conclusions

