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Motivation

Do all elements in a list xs satisfy some predicate p?

all p xs = and (map p xs)

all p xs = and (map p xs)

all p xs = foldr (λx,y.p x ∧ y) True xs,

where

foldr f e [] = e,
foldr f e (x:xs) = f x (foldr f e xs)

The second version is more efficient.
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A little category theory

An algebra for a functor F is a pair (A, f) with

f : FA → A.

An initial algebra (µF , in) for a functor F has a unique
homomorphism to any other such algebra:

F(µF)

in

��

F(fold f)
// FA

f

��
µF

fold f
// A
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Lists as initial algebra

For instance, with FX = {·} + (N × X), an initial algebra is
µF = (finite) lists of naturals, and in = nil + cons.

{·} + N × List(N)

nil+cons

��

id{·}+id �×fold f
// {·} + N × A

f=f0+f1

��
List(N)

fold f
// A

Examples of folds are sum, length, max, . . .
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When is a function a fold?

Given a function h, when is h = fold g for some function g?

The kernel of a function f : A → B is the set

ker f = {(a, a′) ∈ A × A | f(a) = f(a′)}.

[GHA01]: Suppose F : SET → SET is a functor with an
initial algebra (µF , in), and h : µF → A. Then

∃g : FA → A. h = fold g ⇐⇒ kerFh ⊆ ker(h · in).
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How to compute fold−1?

Given a function h, when (and how) can we compute a
function g such that h = fold g?

∃g : FA → A. h = fold g ⇐⇒ kerFh ⊆ ker(h · in)

“⇒” is constructively valid.

“⇐” however is not : There are computable functions h

with kerFh ⊆ ker(h · in) such that no computable
function g satisfies h = fold g.
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Nuprl

A Computational Type Theory (based on Martin-Löf
1980)

An LCF style interactive tactic based prover

Tools to extract “correct-by-construction” programs from
formal proofs

http://www.nuprl.org/
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Abstraction category

* ABS category

Cat{i} ==

Obj:Ui

× Arr:Ui

× dom:(Arr → Obj)

× cod:(Arr → Obj)

× o:{o:(g:Arr → f:{f:Arr| cod f = dom g} →

{h:Arr| dom h = dom f ∧ cod h = cod g}) |

∀f,g,h:Arr. cod f = dom g ∧ cod g = dom h =⇒

(h o g) o f = h o (g o f)}

× {id:(p:Obj → {f:Arr| dom f = p ∧ cod f = p}) |

∀f:Arr. (id (cod f)) o f = f ∧

f o (id (dom f)) = f}
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A constructive result

Suppose F : TYP → TYP is a functor with an initial algebra
(µF , in), h : µF → A, we can decide whether A is empty,
and for each b ∈ FA we can decide whether there exists
some a ∈ F(µF) with b = (Fh)(a). Then

∃g : FA → A. h = fold g ⇐= kerFh ⊆ ker(h · in).

Replaced classical reasoning

Sets as types: extensional vs. intensional equality

Case splits justified by the additional premises
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A result for right-invertible functions
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Examples

Embedded in the proofs are algorithms to compute g from h

(accompanied by the evidence that h satisfies the required
conditions).

sum, length, max, . . . are right-invertible, and thus can
be written as a fold.

all p can be written as a fold if we can decide whether
there exists an x with p x = False.
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Transforming all into a fold

g : {·} + (N × B) → B

λx.if

case x of inl _ => True

| inr <_,b> => if b then True

else case φ of inl _ => True

| inr _ => False

then

(λxs.and (map p xs)) o (nil+cons)

(case x of inl _ => inl ·

| inr <n,b> => if b then inr <n,[]>

else case φ of inl <t,_> => inr <n,t:[]>

| inr _ => arbitrary)

else

True
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unfold

A coalgebra for a functor F is a pair (A, f) with

f : A → FA.

A terminal coalgebra (νF , out) for a functor F has a unique
cohomomorphism from any other such coalgebra:

FA
F(unfold f)

// F(νF)

A

f

OO

unfold f
// νF

out

OO
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Classical theorem for unfolds

[GHA01]: Suppose F : SET → SET is a functor with a
terminal coalgebra (νF , out), and h : A → νF . Then

∃g : A → FA. h = unfold g ⇐⇒ img(out · h) ⊆ imgFh.

Simply dual to the classical theorem for folds

Again, “⇒” is constructively valid
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Constructive theorem for unfolds

Suppose F : TYP → TYP is a functor with a terminal
coalgebra (νF , out), and h : A → νF . Then

∃g : A → FA. h = unfold g ⇐=

∀c ∈ img(out · h).∃b ∈ FA. c = (Fh)(b).

Not just dual to the constructive theorem for folds

Very similar to the classical theorem for unfolds (but
different proof)
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Conclusions

Constructive characterization of fold and unfold

Simplification of the classical proofs

Complete formalization in Nuprl

Extraction of “correct-by-construction” program
transformations from the proofs

Other program transformations can be incorporated into
the same framework
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