Bounded Model Generation for Isabelle/HOL

Using a SAT Solver

Tjark Weber

webertj@in.tum.de

IJCAR – Workshop on Disproving

Cork, July 5th, 2004

Bounded Model Generation for Isabelle/HOL - p.1/18

Isabelle

Isabelle is a generic proof assistant:

- Highly flexible
- Interactive
- Automatic proof procedures
- Advanced user interface
- Readable proofs
- Large theories of formal mathematics

Bounded Model Generation

Theorem proving: from formulae to proofs Bounded model generation: *from formulae to models*

Applications:

- *Finding counterexamples to false conjectures*
- Showing the consistency of a specification
- Solving open mathematical problems
- Guiding resolution-based provers

Isabelle/HOL

HOL: higher-order logic based on Church's simple theory of types (1940)

Simply-typed λ -calculus:

- **•** Types: $\sigma ::= \mathbb{B} \mid \alpha \mid \sigma \to \sigma$
- Terms: $t_{\sigma} ::= x_{\sigma} \mid (t_{\sigma' \to \sigma} t_{\sigma'})_{\sigma} \mid (\lambda x_{\sigma_1} \cdot t_{\sigma_2})_{\sigma_1 \to \sigma_2}$

Two logical constants:

 $\implies_{\mathbb{B}\to\mathbb{B}\to\mathbb{B}}, =_{\sigma\to\sigma\to\mathbb{B}}$

Isabelle/HOL

HOL: higher-order logic based on Church's simple theory of types (1940)

Simply-typed λ -calculus:

- **•** Types: $\sigma ::= \mathbb{B} \mid \alpha \mid \sigma \to \sigma$

Two logical constants:

 $\implies_{\mathbb{B} \to \mathbb{B} \to \mathbb{B}}, =_{\sigma \to \sigma \to \mathbb{B}}$

Other constants, e.g.

True | False | \neg | \land | \lor | \forall | \exists | \exists !

are definable.

The Semantics of HOL

Set-theoretic semantics:

- Types denote certain sets.
- Terms denote elements of these sets.

The Semantics of HOL

Set-theoretic semantics:

- Types denote certain sets.
- Terms denote elements of these sets.

An *environment* D assigns to each type variable α a non-empty set D_{α} .

Semantics of types:

- $D(\mathbb{B}) = \{\top, \bot\}$
- $D(\alpha) = D_{\alpha}$

$$D(\sigma_1 \to \sigma_2) = D(\sigma_2)^{D(\sigma_1)}$$

The Semantics of HOL (2)

A *variable assignment* A maps each variable x_{σ} to an element $A(x_{\sigma})$ in $D(\sigma)$.

Semantics of terms:

- $\ \ \, \bullet \ \ \, \left[(t_{\sigma' \to \sigma} t_{\sigma'})_{\sigma} \right]_D^A = \left[t_{\sigma' \to \sigma} \right]_D^A (\left[t_{\sigma'} \right]_D^A)$
- $[(\lambda x_{\sigma_1}, t_{\sigma_2})_{\sigma_1 \to \sigma_2}]_D^A$ is the function that sends each d in $D(\sigma_1)$ to $[t_{\sigma_2}]_D^{A[x_{\sigma_1} \mapsto d]}$
- $\implies_{\mathbb{B}\to\mathbb{B}\to\mathbb{B}}, =_{\sigma\to\sigma\to\mathbb{B}}: \text{ implication, equality}$

Hence the semantics of a term is an element of the set denoted by the term's type.

Overview

Input: HOL formula ϕ

Output: either a model for ϕ , or "no model found"

Bounded Model Generation for Isabelle/HOL - p.7/18

Overview

Input: HOL formula ϕ

- 1. Fix a finite environment D.
- 2. Translate ϕ into a Boolean formula that is satisfiable iff $\llbracket \phi \rrbracket_D^A = \top$ for some variable assignment *A*.
- 3. Use a SAT solver to search for a satisfying assignment.
- 4. If a satisfying assignment was found, compute from it the variable assignment *A*. Otherwise repeat for a larger environment.

Output: either a model for ϕ , or "no model found"

Fixing a Finite Environment

Fix a positive integer for every type variable that occurs in the typing of ϕ .

Every type then has a finite size:

- $|\alpha|$ is given by the environment
- $|\sigma_1 \to \sigma_2| = |\sigma_2|^{|\sigma_1|}$

Finite model generation is a generalization of satisfiability checking, where the search tree is not necessarily binary.

Translation into a Boolean Formula

Boolean formulae:

```
\varphi ::= \texttt{True} \mid \texttt{False} \mid p \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi
```

Idea: Translate a HOL term t_{σ} into a *tree of Boolean formulae*. The interpretation of the Boolean variables in the tree determines the interpretation of t_{σ} .

Translation into a Boolean Formula

Boolean formulae:

```
\varphi ::= \texttt{True} \mid \texttt{False} \mid p \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi
```

Idea: Translate a HOL term t_{σ} into a *tree of Boolean formulae*. The interpretation of the Boolean variables in the tree determines the interpretation of t_{σ} .

 $|\sigma_1|$

- create(\mathbb{B}) = [p_1, p_2]
- create(α) = [$p_1, \ldots, p_{|\alpha|}$]
- create $(\sigma_1 \to \sigma_2) = [$ create $(\sigma_2), \dots,$ create (σ_2)]

Translation into a Boolean Formula (2)

- treemap(f, t) applies f to every node of the tree t
- $merge(f, t_1, t_2)$ applies f to corresponding nodes of t_1 and t_2
- apply([t], [φ]) = treemap(($\lambda \varphi' \cdot \varphi' \wedge \varphi$), t)
- apply($[t_1, t_2, \dots, t_n], [\varphi_1, \varphi_2, \dots, \varphi_n]$) = merge(\lor , apply($[t_1], [\varphi_1]$), apply($[t_2, \dots, t_n], [\varphi_2, \dots, \varphi_n]$))
- enum($[\varphi_1, \ldots, \varphi_n]$) = $[\varphi_1, \ldots, \varphi_n]$
- $\operatorname{enum}([t_1, \dots, t_n]) = \max(\operatorname{all}, \operatorname{pick}([\operatorname{enum}(t_1), \dots, \operatorname{enum}(t_n)]))$

Translation into a Boolean Formula (3)

•
$$T_D^B(x_\sigma) = \begin{cases} B(x_\sigma) & \text{if } x_\sigma \in \text{dom } B\\ \text{create}(\sigma) & \text{otherwise} \end{cases}$$

• $T_D^B((t_{\sigma' \to \sigma} t'_{\sigma'})_{\sigma}) = \text{apply}(T_D^B(t_{\sigma' \to \sigma}), \text{enum}(T_D^B(t'_{\sigma'})))$
• $T_D^B((\lambda x_{\sigma_1}. t_{\sigma_2})_{\sigma_1 \to \sigma_2}) = [T_D^{B[x_{\sigma_1} \mapsto d_1]}(t_{\sigma_2}), \dots, T_D^{B[x_{\sigma_1} \mapsto d_{|\sigma_1|}]}(t_{\sigma_2})],$
where $[d_1, \dots, d_{|\sigma_1|}] = \text{consts}(\sigma_1)$

 $S: \alpha \rightarrow \beta$, $T: \alpha$, $|\alpha| = 2$, $|\beta| = 3$

Bounded Model Generation for Isabelle/HOL - p.12/18

$$S: \alpha \to \beta, T: \alpha, |\alpha| = 2, |\beta| = 3$$
$$S = [[s_1^1, s_2^1, s_3^1], [s_1^2, s_2^2, s_3^2]]$$
$$T = [t_1, t_2]$$

Bounded Model Generation for Isabelle/HOL - p.12/18

$$S: \alpha \to \beta, T: \alpha, |\alpha| = 2, |\beta| = 3$$

$$S = [[s_1^1, s_2^1, s_3^1], [s_1^2, s_2^2, s_3^2]]$$

$$T = [t_1, t_2]$$

$$(ST) = [s_1^1 \wedge t_1, s_2^1 \wedge t_1, s_3^1 \wedge t_1]$$

$$S : \alpha \to \beta, T : \alpha, |\alpha| = 2, |\beta| = 3$$

$$S = [[s_1^1, s_2^1, s_3^1], [s_1^2, s_2^2, s_3^2]]$$

$$T = [t_1, t_2]$$

$$(ST) = [s_1^1 \land t_1 \lor s_1^2 \land t_2, s_2^1 \land t_1 \lor s_2^2 \land t_2, s_3^1 \land t_1 \lor s_3^2 \land t_2]$$

The SAT Solver

Several *external* SAT solvers (zChaff, BerkMin, Jerusat, ...) are supported.

- Efficiency
- Advances in SAT solver technology are "for free"

The SAT Solver

Several *external* SAT solvers (zChaff, BerkMin, Jerusat, ...) are supported.

- Efficiency
- Advances in SAT solver technology are "for free"
- Simple *internal* solvers are available as well.
- Easy installation
- Compatibility
- Fast enough for small examples

Some Extensions

Sets are interpreted as characteristic functions.

- $\textbf{\textit{s} et} \cong \sigma \to \mathbb{B}$
- $x \in P \cong P x$
- $I \{x. P x\} \cong P$

Non-recursive *datatypes* can be interpreted in a finite model.

$$(\alpha_1, \ldots, \alpha_n) \sigma ::= C_1 \sigma_1^1 \ldots \sigma_{m_1}^1 | \ldots | C_k \sigma_1^k \ldots \sigma_{m_k}^k$$

$$|(\alpha_1, \dots, \alpha_n)\sigma| = \sum_{i=1}^k \prod_{j=1}^{m_i} |\sigma_j^i|$$

Examples: option, sum, product types

Some Optimizations

- At most one Boolean variable is used for types σ with $|\sigma| \leq 2$
- On-the-fly simplification of the Boolean formula (e.g. closed HOL formulae simply become True/False)
- Hard-coded translation for logical constants
- Specialization of the rule for function application

Soundness and Completeness

If the SAT solver is sound/complete, we have ...

- Soundness: The algorithm returns "model found" only if the given formula has a finite model.
- Completeness: If the given formula has a finite model, the algorithm will find it (given enough time).
- Minimality: The model found is a smallest model for the given formula.

Implementation

- Seamless integration with Isabelle/HOL
- Roughly 2,800 lines of ML code
- Several user-definable parameters (e.g. a runtime limit)

Future Work

- Serious applications:
 - Benchmarks
 - Cryptographic protocols
- Support for other HOL constructs:
 - Inductive datatypes
 - Recursive functions
 - **9** ...
- A better translation:
 - Fewer Boolean variables
 - Shorter Boolean formulae

