
λ →

∀
=Isa

be
lle

β
α

HOL

Bounded Model Generation for
Isabelle/HOL

Using a SAT Solver

Tjark Weber

webertj@in.tum.de

IJCAR – Workshop on Disproving

Cork, July 5th, 2004

Bounded Model Generation for Isabelle/HOL – p.1/18

λ →

∀
=Isa

be
lle

β
α

HOL

Isabelle

Isabelle is a generic proof assistant:

Highly flexible

Interactive

Automatic proof procedures

Advanced user interface

Readable proofs

Large theories of formal mathematics

Bounded Model Generation for Isabelle/HOL – p.2/18

λ →

∀
=Isa

be
lle

β
α

HOL

Bounded Model Generation

Theorem proving: from formulae to proofs

Bounded model generation: from formulae to models

Applications:

Finding counterexamples to false conjectures

Showing the consistency of a specification

Solving open mathematical problems

Guiding resolution-based provers

Bounded Model Generation for Isabelle/HOL – p.3/18

λ →

∀
=Isa

be
lle

β
α

HOL

Isabelle/HOL

HOL: higher-order logic based on Church’s simple theory of
types (1940)

Simply-typed λ-calculus:

Types: σ ::= B | α | σ → σ

Terms: tσ ::= xσ | (tσ′→σ tσ′)σ | (λxσ1
. tσ2

)σ1→σ2

Two logical constants:

=⇒ �

→

�

→

� , =σ→σ→

�

Other constants, e.g.
True | False | ¬ | ∧ | ∨ | ∀ | ∃ | ∃!

are definable.

Bounded Model Generation for Isabelle/HOL – p.4/18

λ →

∀
=Isa

be
lle

β
α

HOL

Isabelle/HOL

HOL: higher-order logic based on Church’s simple theory of
types (1940)

Simply-typed λ-calculus:

Types: σ ::= B | α | σ → σ

Terms: tσ ::= xσ | (tσ′→σ tσ′)σ | (λxσ1
. tσ2

)σ1→σ2

Two logical constants:

=⇒ �

→

�

→

� , =σ→σ→

�

Other constants, e.g.
True | False | ¬ | ∧ | ∨ | ∀ | ∃ | ∃!

are definable.

Bounded Model Generation for Isabelle/HOL – p.4/18

λ →

∀
=Isa

be
lle

β
α

HOL

The Semantics of HOL

Set-theoretic semantics:

Types denote certain sets.

Terms denote elements of these sets.

An environment D assigns to each type variable α a
non-empty set Dα.

Semantics of types:

D(B) = {>,⊥}

D(α) = Dα

D(σ1 → σ2) = D(σ2)
D(σ1)

Bounded Model Generation for Isabelle/HOL – p.5/18

λ →

∀
=Isa

be
lle

β
α

HOL

The Semantics of HOL

Set-theoretic semantics:

Types denote certain sets.

Terms denote elements of these sets.

An environment D assigns to each type variable α a
non-empty set Dα.

Semantics of types:

D(B) = {>,⊥}

D(α) = Dα

D(σ1 → σ2) = D(σ2)
D(σ1)

Bounded Model Generation for Isabelle/HOL – p.5/18

λ →

∀
=Isa

be
lle

β
α

HOL

The Semantics of HOL (2)

A variable assignment A maps each variable xσ to an
element A(xσ) in D(σ).

Semantics of terms:

[[xσ]]AD = A(xσ)

[[(tσ′→σ tσ′)σ]]AD = [[tσ′→σ]]AD([[tσ′]]AD)

[[(λxσ1
. tσ2

)σ1→σ2
]]AD is the function that sends each d in

D(σ1) to [[tσ2
]]
A[xσ1

7→d]
D

=⇒ �

→

�

→

� ,=σ→σ→

� : implication, equality

Hence the semantics of a term is an element of the set
denoted by the term’s type.

Bounded Model Generation for Isabelle/HOL – p.6/18

λ →

∀
=Isa

be
lle

β
α

HOL

Overview

Input: HOL formula φ

1. Fix a finite environment D.

2. Translate φ into a Boolean formula that is satisfiable iff
[[φ]]AD = > for some variable assignment A.

3. Use a SAT solver to search for a satisfying assignment.

4. If a satisfying assignment was found, compute from it
the variable assignment A. Otherwise repeat for a
larger environment.

Output: either a model for φ, or “no model found”

Bounded Model Generation for Isabelle/HOL – p.7/18

λ →

∀
=Isa

be
lle

β
α

HOL

Overview

Input: HOL formula φ

1. Fix a finite environment D.

2. Translate φ into a Boolean formula that is satisfiable iff
[[φ]]AD = > for some variable assignment A.

3. Use a SAT solver to search for a satisfying assignment.

4. If a satisfying assignment was found, compute from it
the variable assignment A. Otherwise repeat for a
larger environment.

Output: either a model for φ, or “no model found”

Bounded Model Generation for Isabelle/HOL – p.7/18

λ →

∀
=Isa

be
lle

β
α

HOL

Fixing a Finite Environment

Fix a positive integer for every type variable that occurs in
the typing of φ.

Every type then has a finite size:

|B| = 2

|α| is given by the environment

|σ1 → σ2| = |σ2|
|σ1|

Finite model generation is a generalization of satisfiability
checking, where the search tree is not necessarily binary.

Bounded Model Generation for Isabelle/HOL – p.8/18

λ →

∀
=Isa

be
lle

β
α

HOL

Translation into a Boolean Formula

Boolean formulae:
ϕ ::= True | False | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

Idea: Translate a HOL term tσ into a tree of Boolean
formulae. The interpretation of the Boolean variables in the
tree determines the interpretation of tσ.

create(B) = [p1, p2]

create(α) = [p1, . . . , p|α|]

create(σ1 → σ2) = [create(σ2), . . . , create(σ2)
︸ ︷︷ ︸

|σ1|

]

Bounded Model Generation for Isabelle/HOL – p.9/18

λ →

∀
=Isa

be
lle

β
α

HOL

Translation into a Boolean Formula

Boolean formulae:
ϕ ::= True | False | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

Idea: Translate a HOL term tσ into a tree of Boolean
formulae. The interpretation of the Boolean variables in the
tree determines the interpretation of tσ.

create(B) = [p1, p2]

create(α) = [p1, . . . , p|α|]

create(σ1 → σ2) = [create(σ2), . . . , create(σ2)
︸ ︷︷ ︸

|σ1|

]

Bounded Model Generation for Isabelle/HOL – p.9/18

λ →

∀
=Isa

be
lle

β
α

HOL

Translation into a Boolean Formula (2)

treemap(f, t) applies f to every node of the tree t

merge(f, t1, t2) applies f to corresponding nodes of t1
and t2

apply([t], [ϕ]) = treemap((λϕ′.ϕ′ ∧ ϕ), t)

apply([t1, t2, . . . , tn], [ϕ1, ϕ2, . . . , ϕn]) =
merge(∨, apply([t1], [ϕ1]), apply([t2, . . . , tn], [ϕ2, . . . , ϕn]))

enum([ϕ1, . . . , ϕn]) = [ϕ1, . . . , ϕn]

enum([t1, . . . , tn]) =
map(all, pick([enum(t1), . . . , enum(tn)]))

Bounded Model Generation for Isabelle/HOL – p.10/18

λ →

∀
=Isa

be
lle

β
α

HOL

Translation into a Boolean Formula (3)

T B
D (xσ) =

{

B(xσ) if xσ ∈ domB

create(σ) otherwise

T B
D ((tσ′→σ t′σ′)σ) = apply(T B

D (tσ′→σ), enum(T B
D (t′σ′)))

T B
D ((λxσ1

. tσ2
)σ1→σ2

) =

[T
B[xσ1

7→d1]
D (tσ2

), . . . , T
B[xσ1

7→d|σ1|
]

D (tσ2
)],

where [d1, . . . , d|σ1|] = consts(σ1)

Bounded Model Generation for Isabelle/HOL – p.11/18

λ →

∀
=Isa

be
lle

β
α

HOL

Example Translation

S : α → β, T : α, |α| = 2, |β| = 3

Bounded Model Generation for Isabelle/HOL – p.12/18

λ →

∀
=Isa

be
lle

β
α

HOL

Example Translation

S : α → β, T : α, |α| = 2, |β| = 3

S = [[s1
1, s

1
2, s

1
3], [s

2
1, s

2
2, s

2
3]]

T = [t1, t2]

Bounded Model Generation for Isabelle/HOL – p.12/18

λ →

∀
=Isa

be
lle

β
α

HOL

Example Translation

S : α → β, T : α, |α| = 2, |β| = 3

S = [[s1
1, s

1
2, s

1
3], [s

2
1, s

2
2, s

2
3]]

T = [t1, t2]

(S T) = [s1
1 ∧ t1 ,s1

2 ∧ t1 ,s1
3 ∧ t1]

Bounded Model Generation for Isabelle/HOL – p.12/18

λ →

∀
=Isa

be
lle

β
α

HOL

Example Translation

S : α → β, T : α, |α| = 2, |β| = 3

S = [[s1
1, s

1
2, s

1
3], [s

2
1, s

2
2, s

2
3]]

T = [t1, t2]

(S T) = [s1
1 ∧ t1∨s2

1 ∧ t2, s
1
2 ∧ t1∨s2

2 ∧ t2, s
1
3 ∧ t1∨s2

3 ∧ t2]

Bounded Model Generation for Isabelle/HOL – p.12/18

λ →

∀
=Isa

be
lle

β
α

HOL

The SAT Solver

Several external SAT solvers (zChaff, BerkMin, Jerusat,
. . .) are supported.

Efficiency

Advances in SAT solver technology are “for free”

Simple internal solvers are available as well.

Easy installation

Compatibility

Fast enough for small examples

Bounded Model Generation for Isabelle/HOL – p.13/18

λ →

∀
=Isa

be
lle

β
α

HOL

The SAT Solver

Several external SAT solvers (zChaff, BerkMin, Jerusat,
. . .) are supported.

Efficiency

Advances in SAT solver technology are “for free”

Simple internal solvers are available as well.

Easy installation

Compatibility

Fast enough for small examples

Bounded Model Generation for Isabelle/HOL – p.13/18

λ →

∀
=Isa

be
lle

β
α

HOL

Some Extensions

Sets are interpreted as characteristic functions.

σ set ∼= σ → B

x ∈ P ∼= P x

{x. P x} ∼= P

Non-recursive datatypes can be interpreted in a finite
model.

(α1, . . . , αn)σ ::= C1 σ1
1 . . . σ1

m1
| . . . |Ck σk

1 . . . σk
mk

|(α1, . . . , αn)σ| =
∑k

i=1

∏mi

j=1 |σ
i
j |

Examples: option, sum, product types

Bounded Model Generation for Isabelle/HOL – p.14/18

λ →

∀
=Isa

be
lle

β
α

HOL

Some Optimizations

At most one Boolean variable is used for types σ with
|σ| ≤ 2

On-the-fly simplification of the Boolean formula (e.g.
closed HOL formulae simply become True/False)

Hard-coded translation for logical constants

Specialization of the rule for function application

Bounded Model Generation for Isabelle/HOL – p.15/18

λ →

∀
=Isa

be
lle

β
α

HOL

Soundness and Completeness

If the SAT solver is sound/complete, we have ...

Soundness: The algorithm returns “model found” only if
the given formula has a finite model.

Completeness: If the given formula has a finite model,
the algorithm will find it (given enough time).

Minimality : The model found is a smallest model for the
given formula.

Bounded Model Generation for Isabelle/HOL – p.16/18

λ →

∀
=Isa

be
lle

β
α

HOL

Implementation

Seamless integration with Isabelle/HOL

Roughly 2,800 lines of ML code

Several user-definable parameters (e.g. a runtime limit)

Bounded Model Generation for Isabelle/HOL – p.17/18

λ →

∀
=Isa

be
lle

β
α

HOL

Future Work

Serious applications:
Benchmarks
Cryptographic protocols

Support for other HOL constructs:
Inductive datatypes
Recursive functions
. . .

A better translation:
Fewer Boolean variables
Shorter Boolean formulae

Bounded Model Generation for Isabelle/HOL – p.18/18

	Isabelle
	Bounded Model Generation
	Isabelle/HOL
	The Semantics of HOL
	The Semantics of HOL (2)
	Overview
	Fixing a Finite Environment
	Translation into a Boolean Formula
	Translation into a Boolean Formula (2)
	Translation into a Boolean Formula (3)
	Example Translation
	The SAT Solver
	Some Extensions
	Some Optimizations
	Soundness and Completeness
	Implementation
	Future Work

