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Isabelle

Isabelle is a generic proof assistant:

Highly flexible

Interactive

Automatic proof procedures

Advanced user interface

Readable proofs

Large theories of formal mathematics
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Bounded Model Generation

Theorem proving: from formulae to proofs

Bounded model generation: from formulae to models

Applications:

Finding counterexamples to false conjectures

Showing the consistency of a specification

Solving open mathematical problems

Guiding resolution-based provers
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Isabelle/HOL

HOL: higher-order logic based on Church’s simple theory of
types (1940)

Simply-typed λ-calculus:

Types: σ ::= B | α | σ → σ

Terms: tσ ::= xσ | (tσ′→σ tσ′)σ | (λxσ1
. tσ2

)σ1→σ2

Two logical constants:

=⇒ �

→

�

→

� , =σ→σ→

�

Other constants, e.g.
True | False | ¬ | ∧ | ∨ | ∀ | ∃ | ∃!

are definable.
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The Semantics of HOL

Set-theoretic semantics:

Types denote certain sets.

Terms denote elements of these sets.

An environment D assigns to each type variable α a
non-empty set Dα.

Semantics of types:

D(B) = {>,⊥}

D(α) = Dα

D(σ1 → σ2) = D(σ2)
D(σ1)
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The Semantics of HOL (2)

A variable assignment A maps each variable xσ to an
element A(xσ) in D(σ).

Semantics of terms:

[[xσ]]AD = A(xσ)

[[(tσ′→σ tσ′)σ]]AD = [[tσ′→σ]]AD([[tσ′ ]]AD)

[[(λxσ1
. tσ2

)σ1→σ2
]]AD is the function that sends each d in

D(σ1) to [[tσ2
]]
A[xσ1

7→d]
D

=⇒ �

→

�

→

� ,=σ→σ→

� : implication, equality

Hence the semantics of a term is an element of the set
denoted by the term’s type.
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Overview

Input: HOL formula φ

1. Fix a finite environment D.

2. Translate φ into a Boolean formula that is satisfiable iff
[[φ]]AD = > for some variable assignment A.

3. Use a SAT solver to search for a satisfying assignment.

4. If a satisfying assignment was found, compute from it
the variable assignment A. Otherwise repeat for a
larger environment.

Output: either a model for φ, or “no model found”
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Fixing a Finite Environment

Fix a positive integer for every type variable that occurs in
the typing of φ.

Every type then has a finite size:

|B| = 2

|α| is given by the environment

|σ1 → σ2| = |σ2|
|σ1|

Finite model generation is a generalization of satisfiability
checking, where the search tree is not necessarily binary.
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Translation into a Boolean Formula

Boolean formulae:
ϕ ::= True | False | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

Idea: Translate a HOL term tσ into a tree of Boolean
formulae. The interpretation of the Boolean variables in the
tree determines the interpretation of tσ.

create(B) = [p1, p2]

create(α) = [p1, . . . , p|α|]

create(σ1 → σ2) = [ create(σ2), . . . , create(σ2)
︸ ︷︷ ︸

|σ1|

]
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Translation into a Boolean Formula (2)

treemap(f, t) applies f to every node of the tree t

merge(f, t1, t2) applies f to corresponding nodes of t1
and t2

apply([t], [ϕ]) = treemap((λϕ′.ϕ′ ∧ ϕ), t)

apply([t1, t2, . . . , tn], [ϕ1, ϕ2, . . . , ϕn]) =
merge(∨, apply([t1], [ϕ1]), apply([t2, . . . , tn], [ϕ2, . . . , ϕn]))

enum([ϕ1, . . . , ϕn]) = [ϕ1, . . . , ϕn]

enum([t1, . . . , tn]) =
map(all, pick([enum(t1), . . . , enum(tn)]))
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Translation into a Boolean Formula (3)

T B
D (xσ) =

{

B(xσ) if xσ ∈ domB

create(σ) otherwise

T B
D ((tσ′→σ t′σ′)σ) = apply(T B

D (tσ′→σ), enum(T B
D (t′σ′)))

T B
D ((λxσ1

. tσ2
)σ1→σ2

) =

[T
B[xσ1

7→d1]
D (tσ2

), . . . , T
B[xσ1

7→d|σ1|
]

D (tσ2
)],

where [d1, . . . , d|σ1|] = consts(σ1)
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Example Translation

S : α → β, T : α, |α| = 2, |β| = 3
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Example Translation

S : α → β, T : α, |α| = 2, |β| = 3

S = [[s1
1, s

1
2, s

1
3], [s

2
1, s

2
2, s

2
3]]

T = [t1, t2]

Bounded Model Generation for Isabelle/HOL – p.12/18



λ →

∀
=Isa

be
lle

β
α

HOL

Example Translation

S : α → β, T : α, |α| = 2, |β| = 3

S = [[s1
1, s

1
2, s

1
3], [s

2
1, s

2
2, s

2
3]]

T = [t1, t2]

(S T ) = [s1
1 ∧ t1 ,s1

2 ∧ t1 ,s1
3 ∧ t1 ]

Bounded Model Generation for Isabelle/HOL – p.12/18



λ →

∀
=Isa

be
lle

β
α

HOL

Example Translation

S : α → β, T : α, |α| = 2, |β| = 3

S = [[s1
1, s

1
2, s

1
3], [s

2
1, s

2
2, s

2
3]]

T = [t1, t2]

(S T ) = [s1
1 ∧ t1∨s2

1 ∧ t2, s
1
2 ∧ t1∨s2

2 ∧ t2, s
1
3 ∧ t1∨s2

3 ∧ t2]

Bounded Model Generation for Isabelle/HOL – p.12/18



λ →

∀
=Isa

be
lle

β
α

HOL

The SAT Solver

Several external SAT solvers (zChaff, BerkMin, Jerusat,
. . . ) are supported.

Efficiency

Advances in SAT solver technology are “for free”

Simple internal solvers are available as well.

Easy installation

Compatibility

Fast enough for small examples
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Some Extensions

Sets are interpreted as characteristic functions.

σ set ∼= σ → B

x ∈ P ∼= P x

{x. P x} ∼= P

Non-recursive datatypes can be interpreted in a finite
model.

(α1, . . . , αn)σ ::= C1 σ1
1 . . . σ1

m1
| . . . |Ck σk

1 . . . σk
mk

|(α1, . . . , αn)σ| =
∑k

i=1

∏mi

j=1 |σ
i
j |

Examples: option, sum, product types
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Some Optimizations

At most one Boolean variable is used for types σ with
|σ| ≤ 2

On-the-fly simplification of the Boolean formula (e.g.
closed HOL formulae simply become True/False)

Hard-coded translation for logical constants

Specialization of the rule for function application
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Soundness and Completeness

If the SAT solver is sound/complete, we have ...

Soundness: The algorithm returns “model found” only if
the given formula has a finite model.

Completeness: If the given formula has a finite model,
the algorithm will find it (given enough time).

Minimality : The model found is a smallest model for the
given formula.
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Implementation

Seamless integration with Isabelle/HOL

Roughly 2,800 lines of ML code

Several user-definable parameters (e.g. a runtime limit)
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Future Work

Serious applications:
Benchmarks
Cryptographic protocols

Support for other HOL constructs:
Inductive datatypes
Recursive functions
. . .

A better translation:
Fewer Boolean variables
Shorter Boolean formulae
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