o N

Bounded M odel Generation for
| sabelle/HOL

Using a SAT Solver

Tjark Weber

webertj @n. tum de
TECHNISCHE
'|'|_|'|'|UNNERS|W
MUNCHEN

IJCAR — Workshop on Disproving
Cork, July 5th, 2004

| sabelle
-

Isabelle is a generic proof assistant:
Highly flexible

Interactive

Automatic proof procedures
Advanced user interface
Readable proofs

© o o o 0

Large theories of formal mathematics

\

B

Bounded Model Generation for Isabelle/HOL — p.2/18

Bounded M odel Generation
L -

Theorem proving: from formulae to proofs
Bounded model generation: from formulae to models

Applications:

Finding counterexamples to false conjectures
Showing the consistency of a specification

Solving open mathematical problems

Guiding resolution-based provers

& Bounded Model Generation for Isabelle/HOL — p.3/18

| sabelle/HOL

. -

HOL.: higher-order logic based on Church’s simple theory o
types (1940)

Simply-typed \-calculus:

® Types.oc::=B|la|loc—o0o

® Terms: t, = a5 | (tor—oto)o | Aoy toy)oy—om

Two logical constants:

®» —B BBy —c—0c—B

% .

Bounded Model Generation for Isabelle/HOL — p.4/18

| sabelle/HOL

. -

HOL.: higher-order logic based on Church’s simple theory o
types (1940)

Simply-typed \-calculus:

® Types.oc::=B|la|loc—o0o

® Terms: t, = a5 | (tor—oto)o | Aoy toy)oy—om

Two logical constants:

®» —B BBy —c—0c—B

Other constants, e.g.
True |False || AV V]I
are definable.

& Bounded Model Generation for Isabelle/HOL — p.4/18

-

The Semantics of HOL

Set-theoretic semantics:
Types denote certain sets.
® Terms denote elements of these sets.

The Semantics of HOL
-

Set-theoretic semantics:

Types denote certain sets.

Terms denote elements of these sets.

An environment D assigns to each type variable o a
non-empty set D,,.

Semantics of types:

®» D(B)={T, L1}

® D(a)=D,

® D(01 — 03) = D(02)"\V

% .

Bounded Model Generation for Isabelle/HOL — p.5/18

The Semanticsof HOL (2)

o N

A variable assignment A maps each variable =, to an
element A(x,) In D(o).

Semantics of terms:

® [z,]h = Alz,)

8 [(tor—oto)olp = [to—olp([to])

® [(\z,,. t@)gﬁ@]]é IS the function that sends each d In
D(o) to [[t@]]g[x"ﬁd]

® —p 5 B, —»_o_p. iImplication, equality

Hence the semantics of a term is an element of the set
denoted by the term’s type.

% .

Bounded Model Generation for Isabelle/HOL — p.6/18

Overview

-

Input: HOL formula ¢

Output: either a model for ¢, or “no model found”

eH
e\ 0L

a%'

Bounded Model Generation for Isabelle/HOL — p.7/18

Overview

o N

Input: HOL formula ¢

1. Fix a finite environment D.

2. Translate ¢ into a Boolean formula that is satisfiable iff
[[gb}]é — T for some variable assignment A.

3. Use a SAT solver to search for a satisfying assignment.

4. If a satisfying assignment was found, compute from it
the variable assignment A. Otherwise repeat for a
larger environment.

Output: either a model for ¢, or “no model found”

& Bounded Model Generation for Isabelle/HOL — p.7/18

Fixing a Finite Environment

o N

Fix a positive integer for every type variable that occurs in
the typing of ¢.

Every type then has a finite size:
o Bl =2
|«o] IS given by the environment

Finite model generation is a generalization of satisfiability
checking, where the search tree is not necessarily binary.

% .

Bounded Model Generation for Isabelle/HOL — p.8/18

Trandgation into a Boolean For mula

o N

Boolean formulae:
p:=True|False|p|—ow|loeVol|lpAp

|dea: Translate a HOL term ¢, into a tree of Boolean
formulae. The interpretation of the Boolean variables in the
tree determines the interpretation of .

% .

Bounded Model Generation for Isabelle/HOL — p.9/18

Translation into a Boolean For mula

o N

Boolean formulae:
p:=True|False|p|—ow|loeVol|lpAp

|dea: Translate a HOL term ¢, into a tree of Boolean
formulae. The interpretation of the Boolean variables in the
tree determines the interpretation of .

® create(B) = [p1, p2]
o create(oz) — [pl, e 7P|a|}
® create(o; — 02) = |create(oz), ..., create(o) |

N

|1

% .

Bounded Model Generation for Isabelle/HOL — p.9/18

Trandation into a Boolean Formula (2)

-

©

©

°

°

B

treemap(f,t) applies f to every node of the tree ¢

merge(f,t1,t2) applies f to corresponding nodes of ¢,
and ¢

apply ([t], [¢]) = treemap((Ap”.¢" A @), 1)
apply([tl,tz, e 7tn]7 [9017 P2y gan —
merge(V, apply([t1], [¢1]), apply ([t2, - .. . tnl, [@2, - - - @nl]))

enum(|@1, ..., 0nl) = 01, -, ©n]

enum(|ty,...,t,]) =
map(all, pick([enum(ty), ..., enum(t,)]))

|

Bounded Model Generation for Isabelle/HOL — p.10/18

Trandation into a Boolean Formula (3)

» TB(z,) = B(zy) Iif ©, € .domB
create(c) otherwise

(to' o t/a/)a) = apply(Tg (to' o), enum(TDB (t/a’)))
()\5601. t02)01—>02) —

B Loy —dq B Toq —d o1
Ty, T el),

where [dy, ..., d,, | = consts(o)

|

Bounded Model Generation for Isabelle/HOL — p.11/18

Example Trandation

-

S:a—06,T:qa,la=2,|0] =3

Bounded Model Generation for Isabelle/HOL — p.12/18

-

Example Trandation

S:a—06,T:qa,la=2,|0] =3

S = [[s1, 53, 53], [s1, 53, 3]

T = |t1,t2]

Example Trandation
- -

S:a—06,T:qa,la=2,|0] =3

S = HS%) S%a Sé]a [8%7 S%’ S%“
T = [t1,t9]
(ST)=[s1 At 53 At sy At |

|

Bounded Model Generation for Isabelle/HOL — p.12/18

Example Trandation

-

S:a—06,T:qa,la=2,|0] =3

S = HS%;S%;S%L [8%75%785]]
1T = [tlth]

(ST) = [s] At1Vss Ao, ss AN11VsE Atg, 55 At1Vss At

& q Bounded Model Generation for Isabelle/HOL — p.12/18

The SAT Solver

o N

Several external SAT solvers (zChaff, BerkMin, Jerusat,
...) are supported.

o Efficiency
#® Advances in SAT solver technology are “for free”

% .

Bounded Model Generation for Isabelle/HOL — p.13/18

The SAT Solver

o N

Several external SAT solvers (zChaff, BerkMin, Jerusat,
..) are supported.

o Efficiency
#® Advances in SAT solver technology are “for free”

Simple internal solvers are available as well.
Easy installation

#» Compatibility

Fast enough for small examples

eH
e\ OL

e

Bounded Model Generation for Isabelle/HOL — p.13/18

Some Extensions

-

Sets are interpreted as characteristic functions.
®» o0 set 20— B

®» reP=Px

® {x.Px}=P

Non-recursive datatypes can be interpreted in a finite
model.

k

® (ay,...,an)0u=Crof...00 |...|Croy...0k

k i
® [(a1,...,on)0| =37 TTZ

Examples: option, sum, product types

03-\

% .

Bounded Model Generation for Isabelle/HOL — p.14/18

Some Optimizations

f # At most one Boolean variable is used for types o with T
o] <2

On-the-fly simplification of the Boolean formula (e.g.
closed HOL formulae simply become Tr ue/Fal se)

Hard-coded translation for logical constants
Specialization of the rule for function application

% .

Bounded Model Generation for Isabelle/HOL — p.15/18

Soundness and Completeness

-

Soundness: The algorithm returns “model found” only if
the given formula has a finite model.

-

If the SAT solver is sound/complete, we have ...

Completeness: If the given formula has a finite model,
the algorithm will find it (given enough time).

Minimality: The model found is a smallest model for the
given formula.

|

Bounded Model Generation for Isabelle/HOL — p.16/18

| mplementation

o N

#® Seamless integration with Isabelle/HOL
Roughly 2,800 lines of ML code
#® Several user-definable parameters (e.g. a runtime limit)

% .

Bounded Model Generation for Isabelle/HOL — p.17/18

Future Work
-

#® Serious applications:
s Benchmarks
s Cryptographic protocols

Support for other HOL constructs:
s Inductive datatypes
s Recursive functions

o ...

® A better translation:
o Fewer Boolean variables
o Shorter Boolean formulae

eH
e\ OL

e

Bounded Model Generation for Isabelle/HOL — p.18/18

	Isabelle
	Bounded Model Generation
	Isabelle/HOL
	The Semantics of HOL
	The Semantics of HOL (2)
	Overview
	Fixing a Finite Environment
	Translation into a Boolean Formula
	Translation into a Boolean Formula (2)
	Translation into a Boolean Formula (3)
	Example Translation
	The SAT Solver
	Some Extensions
	Some Optimizations
	Soundness and Completeness
	Implementation
	Future Work

